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Abstract: Norovirus (NoV) is the second most important cause of viral diarrheal disease in children
worldwide after rotavirus and is estimated to be responsible for 17% of acute diarrhea in low-income
countries. This study aimed to identify and report NoV genotypes in Mozambican children under
the age of five years with acute diarrhea. Between May 2014 and December 2015, stool specimens
were collected within the Mozambique Diarrhea National Surveillance (ViNaDia) and tested for NoV
genogroups I (GI) and II (GII) using conventional reverse transcriptase-polymerase chain reaction
(RT-PCR). Partial capsid and RNA-dependent RNA polymerase (RdRp) nucleotide sequences were
aligned using the Muscle tool, and phylogenetic analyses were performed using MEGA X. A total of
204 stool specimens were tested for NoV. The detection rate of NoV was 14.2% (29/204). The presence
of NoV was confirmed, by real-time RT-PCR (RT-qPCR), in 24/29 (82.8%) specimens, and NoV GII
predominated (70.8%; 17/24). NoV GII.4 Sydney 2012[P31] was the predominant genotype/P-type
combination detected (30.4%; 7/23). This is the first study which highlights the high genetic diversity
of NoV in Mozambican children and the need to establish a continuous NoV surveillance system.

Keywords: norovirus; genotypes; children; acute diarrhea; Mozambique

1. Introduction

Globally, norovirus (NoV) is the second most important cause of viral diarrheal disease
in children under five years old, after rotavirus infection [1]. A systematic review showed
that NoVs are responsible for 12% of severe diarrhea and up to 200,000 deaths in children
under five years old in low-income countries [2]. However, more recent meta-analysis
studies estimate that NoV is responsible for 16-18% of acute diarrhea globally in children
under five years old [3,4].

NoVs are non-enveloped viruses classified in the Caliciviridae family, genus Norovirus,
with a positive sense single-stranded RNA (ssRNA) genome. NoVs are classified into
ten genogroups (GI to GX) and 49 genotypes, based on amino acid sequence diversity
in the complete VP1 capsid protein [5]. The NoV genogroups that infect humans are GI,
GII, GIV, GVIII and GIX [5]; however, GII and GI are the predominant causes of infection
worldwide [6-9].
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Data from 19 studies in 14 African countries on children under five years of age,
hospitalized with acute gastroenteritis, showed an overall norovirus prevalence of 13.5%
(961/7141; 95% CI1 12.7-14.3), with a range of 0.8-25.5% [10].

In Mozambique, two studies carried out in children under five years in the Manhiga
district showed the circulation of NoV in the southern region of the country [11,12]. How-
ever, the genotypes were not identified, thus there is a lack of NoV genotyping information
in Mozambique, and no routine surveillance system has been established. Therefore, in
2014, the Instituto Nacional de Satide (INS)—Mozambique implemented the ViNaDia with
the aim of estimating the burden of rotavirus and other enteric agents in children with
diarrheal diseases in three regions (south, center and north) of Mozambique. In addition,
this surveillance system allows the determination of the prevalence and molecular epi-
demiology of NoV. The aim of this study is to describe the epidemiology and circulating
genotypes of NoV in children under five years old with diarrhea in these three regions
of Mozambique.

2. Materials and Methods
2.1. Study Population and Stool Sample Collection

Between May 2014 and December 2015, a cross-sectional study in children under five
years old with acute diarrhea was conducted. Acute diarrheal disease was defined as the
passage of three or more loose or liquid stools per day in less than 7 days [13]. A single
stool sample was collected from each participant enrolled at one of the six ViNaDia sentinel
sites [13,14].

2.2. Laboratory Testing
2.2.1. Detection and Molecular Characterization

Viral RNA was extracted from 10% fecal suspensions (RNase/DNase free water) using
a QIAamp Viral RNA Mini Kit (QIAGEN, Valencia, CA, USA), according to the manufac-
turer’s recommendations. Complementary DNA (cDNA) synthesis was performed using
the High-Capacity cDNA Reverse Transcription kit (Applied Biosystems™, Foster City,
CA, USA) according to the manufacturer’s instructions.

NoV was initially detected by RT-PCR, using sets of genogroup-specific primers for
GII (Mon 431/433) and GI (Mon 432/434) that target the RdRp (region B). Previously
described PCR conditions were used [15], and the PCR products were analyzed on a 1.5%
agarose gel stained with ethidium bromide and observed under ultraviolet light.

Aliquots of positive specimens were sent to South Africa (Department of Medical
Virology, University of Pretoria) for confirmation using RT-qPCR, which targets the ORF1/2
junction. RNA was extracted from 10% fecal suspensions using the semi-automated
NucliSENS EasyMAG Instrument (bioMérieux, Marcy 1'Etoile, France). RT-qPCR was
performed to detect GI and GII using the QuantiFast Pathogen RT-PCR + IC kit and
published primers and probes (Table 1) [16,17]. The NoV strains detected by RT-qPCR were
genotyped using primers specific for the partial RdRp (region A) [18] and partial capsid
(region C) [19] (Table 1), as previously described [20], except that Emerald-Amp MAX PCR
master mix (Takara Bio Inc., Shiga, Japan) was used. PCR-positive products were purified
(DNA Clean & Concentrator-25 Kit, Zymo Research, Irvine, CA, USA) and sequenced using
the Big Dye Terminator v3.1 kit (Applied Biosystems, Waltham, MA, USA).

2.2.2. Phylogenetic Analysis

BioEdit Sequence Alignment Editor was used for sequence alignment. Phylogenetic
analysis was performed using MEGA X [21]. The genetic distance was calculated by the
Tamura—-Nei + gamma distributed (T93+G) for GI capsid gene, Tamura 3-parameter +
gamma distributed + invariant sites (T92+G+I) for RDRP gene, Kimura-2-parameter +
gamma distributed (K2+G) for GII capsid and RDRP model using the maximum-likelihood
method, with 1000 bootstrap replicates to estimate branch support. The nucleotide partial
sequences determined in this study were submitted to GenBank with the following acces-
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sion numbers: GI RdRp (ON951678—-0ON951684), GI capsid (ON951685-ON951691), GIL
RdRp (ON951692-ON951705) and GII capsid (ON951706-ON951721).

Table 1. Primer sequences used for real-time RT-PCR, RT-PCR and genotyping of norovirus GI
and GII.

Target Norovirus Primer Sequence (5'-3') * Polarity Location
Region A Noroviruses JV12Y [18] ATA CCA CTA TGA TGC AGA YTA + 42794299 *
JV13I[18] TCA TCA TCA CCA TAG AAI GAG - 4585-4605 *
ar Mon 432 [15] TGG ACICGY GGICCY AAY CA +
Region B Mon 434 [15] GAA SCG CAT CCA RCG GAA CAT -
GII Mon 431 [15] TGG ACI AGR GGI CCY AAY CA +
Mon 433 [15] GAA YCT CAT CCA YCT GAA CAT -
QNIF4 [16] CGC TGG ATG CGN TTC CAT + 5291-5308 *
GI G1SKEF [19] CTG CCC GAATTY GTA AAT GA + 5342-5361
Region C G1SKR [19] CCA ACCCARCCATTIRTACA - 5653-5671
QNIF2 [17] ATG TTC AGR TGG ATG AGR TTC TCW GA + 5012-5037 ¥
Gl G2SKF [19] CNT GGG AGG GCG ATC GCA A ¥ 5046-5064 ¢
G2SKR [19] CCR CCN GCA TRH CCR TTR TAC AT - 5367-5389 ¥

* Mixed bases in degenerate primers are as follows: Y =Cor T; R = A or G; W = A or T; I = Inosine; N = any; S = C
or G. T Location based on M87661. ¥ Location based on X86557.

2.3. Data Management and Analyses

Socio-demographic and clinical information of the children were double entered into
an Epi Info™ 3.5.1 (CDC, Atlanta, GA, USA, 2008) database, after which a single cleaned
dataset was used. Descriptive statistics were used to summarize the data in frequencies;
Chi-square and Fisher’s exact test were used to identify socio-demographic variables
associated with NoV detection. Data were analyzed in IBM SPSS software (Statistical
Package for the Social Science, Armonk, NY, USA: IBM Corp, 2011, version 26.0, Chicago,
IL, USA).

2.4. Ethical Approval

The National Bioethical Committee for Health of Mozambique approved the study
protocol (IRB00002657, reference N°: 348/CNBS/13). Parents or guardians of eligible
children provided informed consent after receiving information about the purpose of
the study.

3. Results
3.1. Norovirus Prevalence

During the study period, 204 stool specimens from children under five years old
were tested for NoV. The majority of children (87.3%; 178/204) were under two years old
and 57.8% (118/204) were male (Table 2). Most of the tested samples were from Maputo
City (56.7%; 116/204), followed by Nampula (36.8%; 75/204). NoV was detected in 14.2%
(29/204) of children by RT-PCR; infections were observed in all age groups and both
genders, with comparable detection in age groups 0 to 11 months (16/100; 16.0%) and 12 to
23 months (12/78; 15.4%) and higher detection in males (22/118; 18.6%; p = 0.034) (Table 2).
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Table 2. Socio-demographic and clinical characteristics of children under five years old with and
without norovirus in Mozambique 2014-2015 (n = 204).

" Number in Category/ . o
Characteristic Total Number of Samples (%) Number of NoV-Positive Samples (%) p-Value
Total Enrolled 204 29 (14.2)
Sex 0.0342
Male 118/204 (57.8) 22/118 (18.6)
Female 86,204 (42.2) 7/86 (8.1)
Age group (months) 0.292b
0-11 100/204 (49.1) 16/100 (16.0)
12-23 78/204 (38.2) 12/78 (15.4)
24-59 26/204 (12.7) 1/26 (3.8)
Province 0.400 P
Maputo city 116/204 (56.7) 18/116 (15.5)
Sofala 5/204 (2.5) 1/5 (20.0)
Zambézia 8/204 (3.9) 2/8(25.0)
Nampula 75/204 (36.8) 8/75 (10.7)
Vomiting 0.986 2
Yes 133/202 (65.8) 19/133 (14.3)
No 69/202 (34.2) 10/69 (14.5)
Unknown/missing 2 0
Fever 0.308 @
Yes 60/196 (30.6) 6/60 (10.0)
No 136/196 (69.4) 21/136 (15.4)
Unknown/missing 8 2
HIV Status 0.735°
Positive 17/149 (11.4) 3/17 (17.6)
Negative 134/149 (88.6) 21/134 (15.7)
Unknown/missing 53 5
Source of drinking water 0.496 @
Tap 113/197 (57.4) 14/113 (12.4)
Public tap 40/197 (20.3) 8/40 (20.0)
Well 43/197 (21.8) 6/43 (14.0)
Purchased /bottled water 1/197 (0.5) 0
Unknown/missing 7 1
Diarrhea episodes 0.916 P
3 81/204 (39.7) 12/81 (14.8)
4-6 101/204 (49.5) 15/101 (14.8)
>7 22/204 (10.8) 2/22(9.1)

2 Chi-square test; ® Fisher’s exact test. Bold: significant p-values.

Regarding clinical features, the NoV infection rate was similar between children with

and without vomiting (14.3%, 19/133 versus 14.5%, 10/69, respectively), similar between
human immunodeficiency virus (HIV)-positive and HIV-uninfected children (17.7%, 3/17
versus 15.5%, 21 /134, respectively) and lower in children with fever (10.0%, 6/60 versus
15.4%, 21/136), although this was not statistically significant (Table 2). The proportion of
NoV infection varied among the three groups of water sources (tap in the house, public tap
and well) but differences were not statistically significant (Table 2).

3.2. Norovirus Genotyping

RT-qPCR confirmed norovirus presence in 82.8% (24/29) of samples that previously
tested positive by conventional RT-PCR. The discrepancy in NoV detection rates between
the conventional RT-PCR and RT-qPCR could possibly be ascribed to sample degradation
during storage and subsequent transport to South Africa. In addition, nucleotide sequence
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Genotypes

GI

GII

differences could allow detection with one assay (B region) but not with another (ORF1/2
junction). NoV GII was the predominant genogroup (70.8%; 17/24). Overall, 95.8% (23/24)
of the strains were genotyped by nucleotide sequence analysis. The partial RdARp and
capsid sequence analysis revealed the predominance of GII.4 Sydney 2012[P31] (30.4%;
7/23), followed by GIL.3[PNA] (17.4%; 4/23) and GL.7[P7] (13.0%; 3/23) (Figure 1).

GL2[P2] T >
GL3[P3] M 2
GL7[P7] I 3
GIL17[P17] . 1
GIL21[P21] . 1
GIL3[PNA] I 1
GIL7[P untypeable] I 2

GIL4 Sydney 2012[P4] NN 1
GIL4 Sydney 2012[P31] I

0 2 4 6 8

Absolute frequencies (n)

Figure 1. Distribution of norovirus genogroups and genotypes in samples collected from 23 children.

3.3. Phylogenetic Analyses
3.3.1. VP1 Gene

Phylogenetic analysis of the partial VP1 gene sequence of the 23 identified strains showed
that 16 sequences belonged to GII (Figure 2A) and 7 belonged to GI (Figure 3A). Within GII,
genotypes GIIL.4 Sydney 2012 (eight strains), GIL3 (four strains), GIL7 (two strains), GI.17
(one strain) and GII.21 (one strain) were identified. Three GI genotypes were characterized;
namely, GL.7 (three strains), GI.3 (two strains) and GL2 (two strains). The majority of
GII.4 Sydney 2012 Mozambican strains clustered with African strains (Botswana, South
Africa and Burkina Faso) and Asian strains (Japan) (Figure 2A). The GII.3 Mozambican
NoV strains clustered close to strains detected in humans and wastewater in South Africa.
One GIL7 strain clustered with a strain from Italy and the other GII.7 formed a subcluster
with strains from the United States of America (USA) and Gabon. The GI.3 and GI.2
Mozambican strains were closely related to wastewater strains detected in South Africa.
The GI.7 Mozambican strains formed a distinct subcluster between them, and they were
closely related to a wastewater strain detected in Spain (Figure 3A).

3.3.2. RdRp Gene

Phylogenetic analysis of the partial RARp gene sequence of the 21 identified strains
showed that 14 sequences belonged to GII (Figure 2B) and 7 belonged to GI (Figure 3B).
Within GII, P-types GILP31 (seven strains), GILPNA (four strains), GIL.P4 (one strain),
GII.21 (one strain) and GIL.17 (one strain) were identified, and, within GI, P-types GL.P7
(three strains), GL.P3 (two strains) and GI.P2 (two strains) were detected. The GII.P31
formed four distinct subclusters with strains from Africa (South Africa, Botswana, Gabon)
and Argentina. The GII.P4 strain from the central Mozambique region was closely related
to a Chinese strain (JQ7510560). All GIL.PNA strains were closely related to South African
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strains (Figure 2B). The GL.P7, GI.P3 and GI.P2 Mozambican strains formed three subclus-
ters between them and were related to strains detected in South Africa, USA and Japan,
respectively (Figure 3B).
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Figure 2. Cont.
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Figure 2. (A) Maximum-likelihood phylogenetic tree of partial VP1 gene (region C), representing
16 NoV GII strains comprising five genotypes from Mozambique, and (B) maximum-likelihood
phylogenetic tree of partial RARp gene (region A), representing 14 NoV strains depicting five P-types
from Mozambique. Bootstrap support of >70% is indicated.
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Figure 3. (A) Maximum-likelihood phylogenetic tree of partial VP1 gene (region C), representing
seven NoV GI strains and three genotypes from Mozambique, and (B) maximum-likelihood phyloge-
netic tree of partial RARp gene (region A), representing seven NoV GI strains and four P-types from

Mozambique. Bootstrap support of >70% is indicated.

4. Discussion

This study aimed to determine the epidemiology and genotypes of NoV in children
under five years old with diarrhea in all three regions of Mozambique. Approximately 3 in
20 children were infected (14.2%). The proportion observed is higher than a previous study
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in diarrhea cases conducted in a rural setting in the Manhica district, southern Mozambique
(4.2%; 33/784; p-value < 0.001) [12]. This difference can be explained by the sentinel site
location (urban versus rural site) and the sampling period. This difference suggests an
increased occurrence of NoV in children with diarrhea over the years; the same has been
observed in Malawian children [22,23], of whom a previous study identified NoV in 6.5%
and later in 11.3%, both before the rotavirus vaccine introduction.

NoV infections were detected in all age groups, but a higher rate of infection was
observed in children younger than 12 months. These findings are consistent with previous
findings that showed that NoV infections usually occur in early childhood [24]. NoV GI
and GII were the identified genogroups, with GII being the most common (70.8%). A
similar result was observed in previous studies in Malawi [25], Zambia [26], Ghana [6],
Brazil [8,9] and other countries in Africa where GII strains detection rates range from 71%
to 100% with an average of 84.1% [10].

The partial sequence results of the 23 study strains showed the circulation of nine
NoV genotypes during the study period, suggesting a significant genetic diversity of NoV
in Mozambique. Overall, the capsid genotype GII.4 Sydney 2012 was the most common
in Mozambique, reflecting global trends [10,27]. NoV GII.4 was reported to be the most
prevalent genotype in Africa at 54.1%, followed by GIL.3 at 12.2% [10], consistent with our
findings. Norovirus GI was observed in one-third of the samples. GI strains are common
causes of foodborne and waterborne outbreaks [28].

Regarding the partial RdRp gene, few studies reported RdRp typing data. In this
study, the GILP31 (previously named GII.Pe) was the most identified P-type, which is
consistent with previous studies from the USA [10,20,27,29,30].

The GII.4 Sydney 2012 strains formed several subclasses, some of them clustered
within the same province, suggesting that strains that circulated in the country in the
same year were relatively different. The Maputo City and Nampula provinces showed
more diversity in the genotype distribution and close relatedness with strains from non-
neighboring countries such as Japan, Lebanon, Burkina Faso, USA and China. These
Mozambican provinces have the highest economic and political activity with the most
population flow and major development in the country [31]. Additionally, Nampula has
the Nacala development corridor which stimulates cross-border trade, resulting in an
increased movement of people in the geographic region [31]. However, other strains
clustered close to viruses detected in neighboring southern African countries. The main
limitations of this study were: (1) the limited number of samples tested; (2) the surveillance
was hospital-based and focused on severe gastroenteritis; therefore, data on mild and
asymptomatic infections are lacking; (3) the samples were from 2014-2015, so the current
genotype circulation may be different; and (4) seasonality could not be evaluated due to
the duration of study being less than 24 months.

5. Conclusions

This study showed the importance and genetic diversity of NoV mainly in Mozam-
bican children under two years old. NoV occurs in children with acute diarrhea in all
three regions of Mozambique. The identified genogroups were GI and GII. Genotype
clustering suggests different sources of infection in each province. The study provides
valuable baseline data of NoV occurrence and genetic diversity in Mozambique. The data
emphasizes the need to educate caregivers about child health, hygiene and water treatment,
especially for children under two years of age. The improved management of childhood
diarrhea in health facilities is essential to reduce morbidity and mortality. Continued
surveillance is required to identify infection trends and monitor virus evolution in the
Mozambican community.
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