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Abstract: Objective: CMV coinfection contributes to sustained immune activation in people with
chronic HIV. In particular, asymptomatic CMV shedding in semen has been associated with increased
local and systemic immune activation, even during suppressive antiretroviral therapy (ART). How-
ever, the effect of seminal CMV shedding in people with HIV in the earliest phase of HIV infection
is not known. Methods: Using Luminex, we measured the concentration of 34 cytokines in the
blood plasma of sixty-nine men who had sex with men with or without HIV and in subgroups
of CMV shedders vs. non-shedders. Differences in blood plasma cytokines between groups were
investigated using the multivariate supervised partial least squares discriminant analysis method.
Results: Independently of CMV, we found that concentrations of IP-10, MIG, MCP-1, I-TAC 10, IL-16,
and MIP-1β were modulated in the earliest phase of HIV infection compared with control individuals
without HIV. In people with HIV, there was no difference in blood cytokines among CMV shedders
vs. non-shedders. Conclusion: In early/acute HIV infection, asymptomatic CMV shedding in semen
does not drive additional cytokine changes in blood. Early ART initiation should remain the priority,
while the added benefit of CMV suppression during the various stages of HIV infection needs to be
further investigated.
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1. Introduction

Although antiretroviral therapy (ART) significantly improves the lifespan and general
health of people with HIV (PWH), they remain at risk of developing non-AIDS comorbidi-
ties, such as end-stage organ disease and age-related diseases (reviewed in [1,2]). Increased
morbidity and mortality in PWH are associated with inflammation and immune dysfunc-
tion, which persist even despite suppressive ART [3,4]. The reasons for persistent immune
activation, a driving force of HIV disease, are likely multifactorial (reviewed in [5]). Besides
low-level HIV replication, loss of regulatory cells, and gut damage resulting in bacterial
and fungal translocation, CMV coinfection has been proposed as a key player in sustaining
immune activation (reviewed in [6]).

CMV is a ubiquitous β-herpesvirus establishing lifelong infection through latency
with periodic subclinical reactivation [7]. Although benign in heathy individuals, CMV
exacerbates the development of HIV-triggered immunological abnormalities (reviewed
in [5,8,9]) in PWH, amongst whom CMV prevalence is about 90% [10].

Despite ART, CMV seropositivity is associated with higher levels of differentiated
CD4+ and CD8+ T-cells, leading to accelerated T-cell immunosenescence and ultimately
immune exhaustion [11–15]. Strong associations have also been found between CMV IgG
antibody levels and soluble markers of immune activation, such as C-reactive protein
(CRP), sCD163 tumor necrosis factor–alpha, IL-6, and sCD14 [16–21].
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PWH are more likely than the general population to have subclinical bursts of CMV
replication at mucosal sites and in semen. CMV shedding in semen has been associated
with increased local [22] and systemic [11,23,24] immune activation in people with chronic
HIV and those suppressed on ART. However, the effect of asymptomatic CMV shedding in
semen on immune activation in PWH in early/acute HIV infection has not been reported.
If CMV replication were found to alter the cytokine network during early HIV infection,
treatment of CMV in addition to ART could prevent subsequent immune disfunction,
similar to valacyclovir for herpes simplex virus in chronic HIV [11]. Here, we investigated
the effect of seminal CMV shedding (as a proxy of asymptomatic CMV replication) on
systemic cytokine production in a cohort of PWH with early/acute infection.

Using the multivariate supervised partial least squares discriminant analysis (PLS-DA)
statistical method, we found that early HIV infection is associated with cytokine changes
in blood plasma, while the presence of CMV genital shedding is not associated with any
systemic changes in cytokines.

2. Methods
2.1. Study Participants

Blood plasma samples from 69 individuals (48 PWH from the San Diego Primary
Infection Cohort and 21 without HIV but with similar HIV risk factors from a control
cohort) were analyzed for cytokine expression [22,25]. Blood plasma cytokines were
analyzed for all 69 individuals. The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Review Board of the Human
Research Protections Program at the University of California, San Diego (protocol code
no.: 191088; approval date release: 8 June 2021). Informed consent was obtained from all
subjects involved in the study.

Semen was collected as previously described [26]. Among PWH, 25 had genital CMV
shedding and 22 did not. CMV shedding was available only for 47 out 48 PWH. CMV DNA
was quantified in semen, following previously published methods [26]. Baseline count
values were cell counts at study entry.

Since clinical CD4 and CD8 data were not available for people without HIV, CD4 and
CD8 percentages were calculated from a flow cytometry panel on samples taken the same
day as the samples analyzed in the cytokine assay.

2.2. Multiplex Bead Array Assay for Cytokine/Chemokine Quantification

(i) The National Institutes of Health laboratory, part of the Microbicide Quality Assurance
Program, performed Luminex measurements for 34 cytokines/chemokines involved
in different immunological functions (Table S1) [27].

(ii) Mediators of innate immunity, inflammation, and chemotaxis (Interleukin (IL)-1α, IL-1β,
IL-6, IL-17, IL-18, IL-21, IL-22, IL-33, Cal, IL-8/CXCL8, MIG/CXCL9, IFN-inducible
protein (IP)-10/CXCL10, I-TAC/CXCL11, TNF-α, monocyte chemotactic protein (MCP)-
1/CCL2, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4, regulated
on activation, normally T-cell expressed and secreted (RANTES/CCL5), Eotaxin/CCL11,
MIP-3α/CCL20, and GRO-α/CXCL1.

(iii) Mediators of hematopoiesis: macrophage colony-stimulating factor (M-CSF) and
granulocyte macrophage colony-stimulating factor (GM-CSF)).

(iv) Anti-inflammatory cytokines: IL-10, IL-13, and transforming growth factor (TGF)-β.
(v) Mediators of lymphocytes activation, proliferation, and differentiation: IL-2, IL-4,

IL-7, IL-12, IL-15, IL-16, CCL3, CCL4, CCL5, CCL20, and IFN-γ.
(vi) Human CMV IL-10 homolog (cmvIl-10).

Bead coupling was prepared according to the manufacturer’s recommendations. All
standards and capture and detection antibodies were purchased from R&D (Minneapolis,
MN, USA), except for IL-4 (Biolegend, San Diego, CA, USA), IL-12 (BD Biosciences, Franklin
Lakes, NJ, USA), and IL-21 (Thermo Fisher, Waltham, MA, USA).
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2.3. Statistical Analysis

Cytokines that were undetectable >70% of the time or more were excluded from the
analysis. Undetectable cytokine values were replaced by the minimum of half the lower
limit of detection. The limit of detection for each cytokine is provided in the Supplemen-
tary Materials. Log-transformed concentrations of cytokines were used for PLS-DA, as
previously described [28]. PLS-DA models are particularly suitable when predictors (e.g.,
cytokines) have more variables than observations (here, HIV serostatus and CMV shedding
status). PLS-DA allowed us to visualize the separation in the cytokine profiles between
PWH and controls without HIV infection. In the subpopulation of PWH, PLS-DA allowed
us to visualize the separation between individuals shedding CMV in their semen and those
who did not. In addition, we fit a PLS-DA model, including all 3 groups (people without
HIV, CMV shedders, and non-shedders among people with early/acute HIV infection).

The classification performance of the PLS-DA model was assessed with the perf
function using 5-fold cross-validation repeated 100 times. From the performance results,
a 2-component model was used for the PLS-DA model, as the performance and number
of components necessary for the final model dropped off with 3 components or more.
The difference in the PLS projections was measured using the E-statistic for a 2-sample
difference in the multivariate normal distribution [29]. When PLS projections were different,
the difference for each cytokine with variable importance in projection (VIP) >1 was further
tested with the Wilcoxon signed-rank test. To correct for multiple comparisons, raw p-
values were adjusted using the Benjamini–Hochberg procedure. Analyses were performed
using R 4.1 (R core Team, Vienna, Austria) [30], the E-test was performed using the “energy”
package [31], and the PLS-DA was performed using the “mixOmics” package [32].

In addition to the multivariate statistical analyses described above, cytokines were
compared individually using a Wilcoxon rank-sum test to test for differences in median
concentrations between groups analyzed by PLS-DA. In this confirmatory analysis, where
each cytokine was analyzed individually, p-values, adjusted using the FDR method, were
different to the adjusted p-values obtained in the PLS-DA method due to the larger number
of comparisons.

3. Results
3.1. Participants, Samples, and Clinical Laboratory Findings

The cohort characteristics are summarized in Table 1. All 69 individuals included
in this study were men originally enrolled in a cohort of individuals at high risk for HIV
infection. Out of these 69 individuals, 21 remained seronegative and 48 seroconverted
to HIV with a median estimated time of infection of about 12 weeks. There was no age
difference between people with and without HIV, but there were significant differences in
the mean values for CD4 and CD8 percentages. All PWH were men who had sex with men
(MSM) off antiretroviral therapy. Among people without HIV, 81.0% were MSM and 28.6%
received pre-exposure prophylaxis. PWH were mostly White (59.6%), Hispanic/Latino
(21.3%), or Other/Multiracial (19.1%). No race or ethnicity data was available for people
without HIV.
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Table 1. Demographic and clinical information: people with and without HIV.

People without HIV People with HIV Overall p-Value

Race/ethnicity - n = 47 n = 47

Hispanic/Latino - 10 (21.3%) 10 (21.3%) -

Other/Multiracial - 9 (19.1%) 9 (19.1%)

White (non-Hispanic) - 28 (59.6%) 28 (59.6%)

Age (years) n = 21 n = 48 n = 69

36.00 (25–69) 35.50 (19–54) 36.00 (19–69) 0.221

Sex at birth n = 21 n = 48 n = 69

Male 21 (100.0%) 48 (100.0%) 69 (100.0%) -

MSM n = 21 n = 48 n = 69

No 4 (19.0%) 0 (0.0%) 4 (5.8%) 0.007 **

Yes 17 (81.0%) 48 (100.0%) 65 (94.2%)

On prep n = 21 n = 0 n = 21

No 15 (71.4%) 0 (-) 15 (71.4%) -

Yes 6 (28.6%) 0 (-) 6 (28.6%)

EDI to sample collection (weeks) N/A n = 45 n = 45

- 12.14 (1.86, 153.00) 12.14 (1.86, 153.00) -

Nadir CD4 counts N/A n = 48 n = 48

- 370.00 (120.00, 784.00) 370.00 (120.00, 784.00) -

Baseline CD4 counts N/A n = 48 n = 48

- 460.00 (120.00, 959.00) 460.00 (120.00, 959.00) -

Baseline CD4/CD8 ratio N/A n = 48 n = 48

- 0.60 (0.09, 1.61) 0.60 (0.09, 1.61) -

CD4 percentage at cytokine
sample date n = 21 n = 48 n = 69

54.87 (26.62, 76.92) 36.03 (1.70, 61.71) 43.52 (1.70, 76.92) <0.001 ***

CD8 percentage at cytokine
sample date n = 21 n = 48 n = 69

37.83 (19.57, 67.12) 53.39 (27.75, 78.70) 47.07 (19.57, 78.70) 0.002 **

Peak viral load (log10) N/A n = 48 n = 48

- 5.51 (3.78, 7.49) 5.51 (3.78, 7.49) -

Seminal CMV copies/mL (log10) N/A n = 48 n = 48

- 2.35 (0.00, 8.38) 2.35 (0.00, 8.38) -

Median (range) or count (percentage) shown for continuous or categorical variables respectively. p-values were
calculated using a two-sample t-test for continuous variables, and a chi-square or Fisher’s exact test was used for
categorical variables. EDI: Estimated Date of Infection. N/A: Not applicable. ** p-value < 0.01; *** p-value < 0.001.

Among PWH, 53.2% (n = 23) had detectable CMV in their semen, while 22 (46.8%)
did not. The characteristics of people shedding CMV in semen or not are summarized in
Table 2. Race, ethnicity, age, gender, CD4 T-cell counts, CD8 percentage at cytokine sample
date, and HIV RNA levels were not statistically different between CMV shedders and
non-shedders. CD4 percentage at cytokine sample date was significantly different between
CMV shedders and non-shedders. The median CMV viral load among CMV shedders was
4.73 log10 copies/mL.
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Table 2. Demographic and clinical information: CMV shedders vs. non-shedders.

Non-Shedders Shedders Overall p-Value

Race/ethnicity n = 22 n = 25 n = 47

Hispanic/Latino 5 (22.7%) 5 (20.0%) 10 (21.3%) 0.716

Other/Multiracial 3 (13.6%) 6 (24.0%) 9 (19.1%)

White (non-Hispanic) 14 (63.6%) 14 (56.0%) 28 (59.6%)

Age (years) n = 22 n = 26 n = 48

38.00 (23.00, 51.00) 32.50 (19.00, 54.00) 35.50 (19.00, 54.00) 0.443

Sex at birth n = 22 n = 26 n = 48

Male 22 (100.0%) 26 (100.0%) 48 (100.0%) -

MSM n = 22 n = 26 n = 48

Yes 22 (100.0%) 26 (100.0%) 48 (100.0%) -

EDI to sample collection (weeks) n = 22 n = 23 n = 45

12.07 (3.00, 91.00) 12.14 (1.86, 153.00) 12.14 (1.86, 153.00) 0.895

Nadir CD4 counts n = 22 n = 26 n = 48

379.00 (120.00, 731.00) 339.00 (143.00, 784.00) 370.00 (120.00, 784.00) 0.798

Baseline CD4 counts n = 22 n = 26 n = 48

511.00 (120.00, 892.00) 412.00 (179.00, 959.00) 460.00 (120.00, 959.00) 0.51

Baseline CD4/CD8 ratio n = 22 n = 26 n = 48

0.79 (0.14, 1.52) 0.43 (0.09, 1.61) 0.60 (0.09, 1.61) 0.081

CD4 percentage at cytokine
sample date n = 22 n = 26 n = 48

41.53 (22.67, 61.71) 31.05 (1.70, 55.14) 36.03 (1.70, 61.71) 0.009 **

CD8 percentage at cytokine
sample date n = 22 n = 26 n = 48

46.45 (29.16, 63.42) 55.05 (27.75, 78.70) 53.39 (27.75, 78.70) 0.056

Peak HIV viral load (log10) n = 22 n = 26 n = 48

5.41 (3.78, 7.49) 5.85 (4.42, 7.44) 5.51 (3.78, 7.49) 0.362

Seminal CMV copies/mL (log10) n = 22 n = 26 n = 48

N/A 4.73 (2.00, 8.38) 2.35 (0.00, 8.38) <0.001 ***

Median (range) or count (percentage) shown for continuous or categorical variables, respectively. p-values were
calculated using a two-sample t-test for continuous variables, and a chi-square or Fisher’s exact test was used for
categorical variables. EDI: Estimated Date of Infection. N/A: Not applicable. ** p-value < 0.01; *** p-value < 0.001.

Thirty-four cytokines/chemokines (see Section 2) were measured in the blood of
all 69 individuals. Differences in the concentrations of these markers were reported (i)
for PWH in comparison to people living without HIV and (ii) for CMV shedders versus
non-shedders among PWH.

3.2. Cytokine Profile in the Blood of People with Early/Acute HIV Is Different from That of
Controls without HIV

We used the multivariate supervised PLS-DA statistical method to investigate the
differences in blood cytokines between people with and without HIV. PLS-DA, which has
demonstrated great success in modelling high-dimensional datasets to predict outcome,
works by reducing the number of variables. In our study, the optimal model was obtained
with two components or latent variables (LVs), with an error rate of 12% (Figure S1). As a
result, our model suggests that blood cytokine values can predict early/acute HIV infection
in PWH in comparison to people without HIV with 88% accuracy. Samples projected
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into the subspace spanned by the two LVs are shown as PLS projections (Figure 1A). LV1
explains 42% of variance in cytokines and 100% in HIV status; LV2 explains 28% of variance
in cytokines and 69% in HIV status.
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Figure 1. (A) Two-dimensional PLS projections of blood cytokines in people with and without
HIV. Shown are PLS-DA projections in two LVs with ellipses representing Hotelling’s 2-samples T2
with 95% confidence intervals in blood plasma for people with early/acute HIV (orange triangles)
or without HIV (blue circles). The E-statistic was used to test the statistical differences in the
separation between the cytokine profiles of the two groups. The multivariate distance between
people with and without HIV was significant (p = 0.02). (B) Effect of early/acute HIV infection on
chemokines/cytokines in blood. The statistical significance of 12 cytokines with VIP > 1 identified
in the PLS-DA model were tested by Wilcoxon Rank Sum test. Six out of 12 remained significant.
Shown is the difference of the log10-transformed concentrations of the 6 chemokine/cytokines in
people with or without HIV and plotted as boxplots. For each cytokine and each boxplot, each point
represents a participant’s cytokine concentration, the box represents the interquartile range (IQR), the
middle line represents the median, while the points beyond the whiskers are outliers.

PLS projections showed distinct separation between the cytokine profiles in people
with HIV versus people without HIV. Confidence ellipses for each class were plotted to
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highlight the strength of the discrimination (confidence level set to 95%). The separation
between the two groups, measured as the energy (E) statistic, was statistically different
(E-statistic p = 0.02) (Figure 1A).

In our PLS-DA model, each cytokine was assigned a weight or loading for both LV1
and LV2. These loadings were used to define a VIP score, which reflects the importance of
a given cytokine. Cytokines with VIP > 1, which were deemed important to predict acute
HIV infection, were IP-10, MCP-1, MIP-1β GM-CSF, MIG, IL-18, I-TAC, IL-17, RANTES,
IL-16, eotaxin, and TNFα (in descending order) (Tables 3 and S2). When subjected to
Wilcoxon rank-sum testing, only 6 cytokines remained significant (Table 4). These cytokines
were IP-10, MIG, MCP-1, I-TAC 10, IL-16, and MIP-1β (from most to least significant).
IP-10, MIG, I-TAC, and IL-16 were upregulated 2.7, 1.34, 1.17, and 1.23 times, respectively,
while MCP-1 and MIP-1β were downregulated 2.35 and 1.49 times (Figure 1B). The same
cytokines were found to be statistically significant between people with early/acute HIV
and people without HIV in an independent individual cytokine analysis (Table S3).

Table 3. VIP scores for each cytokine: people with and without HIV.

Cytokine VIP

IP-10 1.65
MCP-1 1.39
MIP-1β 1.28
GM-CSF 1.25

MIG 1.24
IL-18 1.16
ITAC 1.16
IL-17 1.15

RANTES 1.13
IL-16 1.06

EOTAXIN 1.04
TNF-α 1.04

IL-7 0.96
IL-4 0.95
CAL 0.92
IL-1β 0.86
TGF-β 0.8
GRO-α 0.79
IL-21 0.78
IL-15 0.75
IL-12 0.71

CMVIL-10 0.7
MIP-1α 0.7

IL-6 0.69
IFN-γ 0.67
IL-22 0.65

M-CSF 0.58
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Table 4. Results from Wilcoxon rank-sum test: people with and without HIV.

Cytokine Raw p-Value Adjusted p-Value

RANTES 0.872 0.872
TNF-α 0.469 0.512
Eotaxin 0.234 0.28
GM-CSF 0.059 0.078

IL-17 0.047 * 0.075
IL-18 0.05 0.075

MIP-1β 0.018 * 0.035 *
IL-16 0.004 ** 0.01 **
ITAC 0.004 ** 0.01 **

MCP-1 0.002 ** 0.008 **
MIG <0.001 *** <0.001 ***
IP-10 <0.001 *** <0.001 ***

* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.

3.3. Seminal CMV Shedding Does Not Impact Blood Plasma Cytokines of People Living with HIV
during Early Infection

Among PWH, 25 individuals shed seminal CMV, while 22 did not. We next investi-
gated whether blood cytokines were influenced by seminal CMV shedding. Among all
documented parameters, only CMV shedding was different (see Table 2). Similar to what
was done for the previous analysis in predicting early/acute HIV-infection, the PLS-DA
model used here was initially fitted with ten components to evaluate the performance and
the number of components necessary for the optimal model. The best model was also
obtained with two components or variables, although it was very poor. The error rate
using two components was 45%, which is only slightly better than guessing at random
(Figure S2). Samples projected into the subspace spanned by the two components are
presented in Figure 2. PLS projections showed a large overlap between the cytokine profiles
of CMV shedders versus non-shedders. The separation between the two groups was not
statistically different (E-statistic p = 0.748) (Figure 2). Furthermore, none of the cytokines
with the highest VIP (Tables 5 and S4) was statistically different between CMV shedders
and non-shedders according to Wilcoxon rank-sum testing (Table 6). Similar results were
found in an independent individual cytokine analysis (Table S5).

E−stat p = 0.748

Cytokine PLS−DA projection

−4 −2 0 2 4 6

−5

0

5

First Component (31% expl. var.)

S
ec

on
d 

C
om

po
ne

nt
 (

41
%

 e
xp

l. 
va

r.)

CMV status
CMV non−shedders
among people with 
early/acute HIV infection

CMV shedders
among people with
early/acute HIV infection

Figure 2. Two-dimensional PLS projections of blood cytokines in CMV shedders versus non-shedders.
Shown are the PLS-DA projections in two LVs with ellipses representing Hotelling’s two-sample
T2 with 95% confidence intervals in the blood plasma of people with early/acute HIV who shed
CMV (orange triangles) and people who did not shed CMV (blue circles). PLS projections showed a
large overlap between the cytokine profiles of CMV shedders versus non-shedders. The separation
between the two groups, measured as the energy (E) statistic, was not statistically different (E-statistic
p = 0.748).
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Table 5. VIP scores for each cytokine: CMV shedders versus non-shedders.

Cytokine VIP

RANTES 1.48
IL-18 1.42
IL-17 1.33
IL-16 1.3
IL-6 1.29
IP-10 1.28

MIP-1β 1.19
ITAC 1.16

MCP-1 1.13
GRO-α 1.04

IL-7 1.04
IL-15 1
IL-4 0.9
MIG 0.9

EOTAXIN 0.87
IL-22 0.85

MIP-1α 0.82
CMVIL-10 0.81
GM-CSF 0.81

IL-1β 0.76
TGF-β 0.71
CAL 0.7

IFN-γ 0.7
IL-12 0.7

M-CSF 0.67
IL-21 0.63

TNF-α 0.6

Table 6. Results from Wilcoxon rank-sum test: CMV shedders versus non-shedders.

Cytokine Raw p-Value Adjusted p-Value

GRO-α 0.872 0.959
IL-16 0.786 0.959
IL-18 0.858 0.959
IL-6 0.932 0.959
IL-7 0.66 0.959

MCP-1 0.8 0.959
RANTES 0.959 0.959

IL-17 0.263 0.722
IP-10 0.146 0.535
ITAC 0.103 0.535

MIP-1β 0.104 0.535

In an attempt to compare each of the two PWH groups separately with the control
group of people without HIV, we performed a new PLS-DA analysis based on a three-
group model (people without HIV and CMV shedders or non-shedders among PWH). PLS
projections showed distinct separation between the cytokine profiles of people without
HIV and people with early/acute HIV whether they shed CMV or not. Moreover, there
was no separation between CMV shedders and non-shedders in PWH (Figures S3 and S4).
Furthermore, cytokines with VIP > 1 in the three-group analysis were similar to the ones
obtained in the PLS-DA analysis of people with and without HIV (Table S6).

4. Discussion

CMV, a common β-herpesvirus, is one of the largest and most immunogenic viruses that
infects humans. Despite its inflammatory potential, it rarely causes inflammatory conditions
in immunocompetent individuals. In PWH however, CMV coinfection has been linked to
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non-AIDS comorbidities, such as cardiovascular disease, neurocognitive complications, cancer,
fragility, and immunological aging (reviewed in [5,33,34]). The reason behind these adverse
health outcomes is partly due to chronic activation as a result of CMV infection itself and the
magnitude of the host’s immune response against CMV. Indeed, in PWH, CMV becomes the
target of a large proportion of circulating T-cells, which skews the immune system toward a
CMV-specific response, thus maintaining systemic immune activation/inflammation [35,36].
In PWH, despite suppressive ART, CMV has been associated with T-cell immunosenescence
and immune exhaustion [11,18,23,24,37–40], slower decay of HIV DNA [41], and lower
overall survival [20,42]. Furthermore, in PWH on ART, higher anti-CMV IgG antibody
levels are associated with higher plasma levels of markers of gut damage translocation [40],
and proinflammatory cytokines [16–21], including sCD14, a marker of monocyte activation.
Although the associations between CMV replication and systemic inflammation in PWH
during suppressive ART have been well documented, it not clear whether CMV replication
is associated with systemic immune activation during the earliest phase of untreated HIV
infection and therefore a potential target for early CMV intervention. Here, we investigated
whether genital CMV shedding contributed to systemic immune activation, as evaluated by
the concentration of 34 blood cytokines in PWH in the early/acute phase of HIV infection.
We used PLS-DA, a supervised principal component-type analysis that is well adapted to
datasets comprising a large number of variables (cytokines) [28,43].

First, we looked at the modulations of blood plasma cytokines associated with
early/acute HIV infection independent of CMV. Our findings that plasma concentrations of
IP-10, MIG, MCP-1, I-TAC, IL-16, and MIP-1β were modulated in early/acute HIV infection
compared with people living without HIV are in agreement with previous reports [25,44,45].
Interestingly, IP-10, MIG, and I-TAC, which were upregulated here in early/acute phase,
were the cytokines that were most downregulated in a study on the effect of early ART in
PWH [43]. This particular finding for IP-10, MIG, and I-TAC was not surprising, as these
three cytokines are all involved in Th1 trafficking in response to HIV infection via their
receptor CXCR3.

In our cohort of people with early/acute HIV-infection, 53% of individuals shed CMV
in semen, while 47% did not. Seminal CMV shedding is associated with higher seminal HIV
levels in semen [26,46–50], contributing to higher risk of transmission [51,52]. However,
little is known about the role of genital CMV shedding on systemic immune activation in
PWH in early/acute phase. In particular, the effect of frequent asymptomatic CMV episodic
bursts in semen on blood cytokines has not been addressed. Using PLS-DA, we found
that PLS projections of blood cytokines in CMV shedders versus non-shedders strongly
overlapped, suggesting that CMV replication in semen does not alter blood cytokines
during early/acute HIV infection.

Although PLS-DA is considered particularly suitable for datasets with a large num-
ber of variables, such as cytokines, as used in our study, as an additional confirmatory
analysis we compared all cytokines individually using a Wilcoxon rank-sum test in (i)
people with early/acute HIV compared to people without HIV and (ii) in CMV shedders
versus non-shedders among PWH. We found that the cytokines statistically different in the
individual cytokine analysis were similar to the ones reported to be statistically different
in our combined analysis of people with early/acute HIV compared to people without
HIV (Table S5). Similarly, both PLS-DA and individual cytokine analysis showed that no
cytokines were statically different between CMV shedders and non-shedders among PWH
(Table S6). Altogether, these data validated our approach and our choice to apply PLS-DA
to our dataset.

Positive correlations between the presence of CMV and soluble markers of inflamma-
tion and immune activation in blood have been previously reported in six studies [16–21].
However, all the studies correlated the markers of inflammation with CMV IgG antibody
levels. Our study focused on CMV shedding and not IgG levels, as caution has been
urged when considering CMV IgG antibodies as surrogate markers of active CMV replica-
tion [23,53]. For example, CMV replicates intermittently and may not have been “captured”
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in cross-sectional studies using CMV IgG. In fact, one of the studies reported on the associ-
ation between CMV IgG and concentrations of sCD14 in blood although replicating CMV
was not found [17]. CMV IgG levels or actual CMV replication aside, the differences in
results between the six previous studies and our study may simply be related to the stage
of HIV disease. While we investigated the effect of CMV shedding on systemic cytokines in
early/acute HIV, all the other studies were performed in virologically suppressed or ART
long-term PWH.

Our results suggest that CMV shedding in the male genital tract is not the main driver
of systemic immune activation in the early phase of HIV infection. This contrasts with the
later phase of HIV infection, in which CMV contributes to immune activation even when
HIV replication is controlled on ART. Indeed, we and others have shown that asymptomatic
shedding of CMV in the male genital tract is associated with increased systemic T-cell
immune activation and proliferation and with higher levels of HIV DNA in peripheral CD4
T-cells [22–24].

We acknowledge certain limitations to our study. First, this is a cross-sectional study
involving a single time point, which may not be fully reflective of CMV DNA and cytokine
changes over time. Second, we did not have information on seminal cytokines and possible
correlations with seminal shedding. Third, our study cohort was entirely composed of men.
Our findings may not be relevant to women in whom frequent bursts of asymptomatic
CMV reactivation have also been documented [54–57]. We acknowledge the evidence that
the immune response to CMV may differ by sex [34]. For example, unlike what has been
previously described for men, the presence of CMV DNA was not associated with increased
HIV DNA in women [58]. Fourth, due to the limited sample size, the comparison between
CMV shedders and non-shedders could be underpowered, thus limiting the statistical
significance of the results. Finally, since absolute CD4 and CD8 T-cell counts were only
available for PWH but not for controls, we provided CD4 and CD8 as percentages of total
lymphocytes for all individuals for comparison.

Despite these limitations, to our knowledge, this is the first study on the effect of
active CMV replication in semen on systemic cytokines in early/acute HIV infection. Our
study may be one piece in the puzzle aiming at deciphering the exact role of CMV in
contributing to persistent immune activation in PWH. Our results suggest that HIV rather
than CMV replication in the male genital tract drives immune activation in the early phase
of HIV infection. Thus, starting ART in early/acute HIV infection remains a priority to
limit immune activation [59,60].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14081833/s1, Figure S1: Classification error for people with
early/acute HIV or people without HIV in PLSDA model estimated using k-fold CV; Figure S2:
Classification error for CMV shedders versus CMV non-shedders in PLSDA model estimated using
k-fold CV; Figure S3: Two-dimensional PLS projections of blood cytokines in people without HIV
and in CMV shedders versus non-shedders among people with early/acute HIV; Figure S4: The
statistical significance of 12 cytokines with VIP > 1 identified in the PLS-DA model (comparing
people with early/acute HIV versus people without HIV) were tested by Wilcoxon Rank Sum test.
Table S1: Lower limits of detection for each Cytokine included in the assay and percentage of
participants with undetectable values for each cytokine split the respective analysis; Table S2: Median
(range) of log-transformed and normalized concentrations of cytokine with VIP > 1 in people with
early HIV infection and people without HIV; Table S3: Median (range) for each log-normalized
cytokine in people with early/acute HIV and people without HIV. Cytokines were individually tested
using Wilcoxon rank-sum test to compare groups; Table S4: Median (range) of log-transformed and
normalized concentrations of cytokine with VIP > 1 in CMV shedders versus non-shedders; Table S5:
Median (range) for each log-normalized cytokine in CMV shedders vs non-shedders among people
with early/acute HIV. Cytokines were individually tested using Wilcoxon rank-sum test to compare
groups; Table S6: VIP scores for each cytokine in a PLS-DA 3-group model: people without HIV and
CMV shedders versus non shedders among people with early/acute HIV.
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