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The eukaryotic cytoskeleton comprises a network of actin, microtubules, and interme-
diate filaments that not only provide mechanical support to maintain cell morphology but
also serve many other critical roles in cell motility, division, and intracellular transport of
cargo such as vesicles and organelles. Recent evidence suggests that the cytoskeleton also
participates in the regulation of host immune responses to infection by pathogens. These
important roles of the host cytoskeletal network have made it a key target for manipulation
by diverse DNA and RNA viruses.

Evidence for virus–cytoskeleton interactions were shown as early as the 1960s [1].
Since then, various components of the cytoskeleton network have been shown to be in-
volved in virtually all steps of the viral life cycle. For example, numerous viruses have been
found to re-organize actin structures near the plasma membrane to facilitate endocytosis-
mediated viral entry [2–4]. Once inside the cell, many viruses hijack motor proteins on
microtubules for transport to replication sites and for movement to the cell periphery for
exit after replication [5–7]. At the same time, some viruses also modulate the expression of
or re-organize cytoskeletal components to create an environment that favors viral replica-
tion [8,9]. As research on virus–cytoskeleton interactions progresses, it is becoming clear
that unrelated viruses from different families have evolved both unique and common
mechanisms to manipulate the host cytoskeleton in their favor, highlighting the importance
of cytoskeletal machinery to viral infection.

Due to the importance of the cytoskeleton in the life cycle of virtually all viruses, it is
critical to understand the mechanisms used by viruses to manipulate, usurp, and/or inhibit
host cytoskeletal processes, as it may lead to new therapeutic strategies that can broadly
target many important human viral pathogens. Furthermore, viruses can serve as excellent
tools to study basic mechanisms of cytoskeletal network regulation and cytoskeleton-
dependent processes. A deeper understanding of host cytoskeleton function may, in
turn, lead to new therapeutics for diseases and pathologies resulting from cytoskeleton
malfunction such as cancer and neurological disorders [10].

In this Special Issue, we publish papers with recent examples of how viruses that
infect mammals, insects and plants manipulate cytoskeletal networks in their respective
hosts. Khorramnejad et al. review the insect cytoskeleton in depth and show various
examples of how viruses infecting insects utilize actin for short-distance transport while
using microtubules for long-range transportation; they also describe how these transporta-
tion strategies contribute to horizontal and vertical viral transmission [11]. Zaghloul et al.
additionally highlight how ascovirus infection alters the expression of cytoskeletal com-
ponents in lepidopteran insect hosts to promote replication [12]. Another article in this
Special Issue explores how Dengue virus infection and cytokine signaling synergistically
contribute to changes in transendothelial permeability due to altered arrangements of the
actin cytoskeleton, providing insight into underlying mechanisms of the increased vas-
cular permeability typically associated with Dengue virus infection [13]. In addition, Seo
and Gammon review the mechanisms employed by viral microtubule-associated proteins
to alter viral transport, replication and immune evasion [14]. Overall, this Special Issue
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highlights the depth and breadth of cytoskeletal manipulations by viral pathogens that
have been recently discovered and that have contributed to a greater understanding of
virus–host cytoskeleton interactions.
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