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Abstract: In this study, we analyzed the sequences of SARS-CoV-2 isolates of the Delta variant in
Mexico, which has completely replaced other previously circulating variants in the country due
to its transmission advantage. Among all the Delta sublineages that were detected, 81.5 % were
classified as AY.20, AY.26, and AY.100. According to publicly available data, these only reached a
world prevalence of less than 1%, suggesting a possible Mexican origin. The signature mutations of
these sublineages are described herein, and phylogenetic analyses and haplotype networks are used
to track their spread across the country. Other frequently detected sublineages include AY.3, AY.62,
AY.103, and AY.113. Over time, the main sublineages showed different geographical distributions,
with AY.20 predominant in Central Mexico, AY.26 in the North, and AY.100 in the Northwest and
South/Southeast. This work describes the circulation, from May to November 2021, of the primary
sublineages of the Delta variant associated with the third wave of the COVID-19 pandemic in Mexico
and highlights the importance of SARS-CoV-2 genomic surveillance for the timely identification of
emerging variants that may impact public health.

Keywords: SARS-CoV-2; variants of concern; delta variant; genomic surveillance

1. Introduction

Lineage B.1.617.2 of SARS-CoV-2 was first detected in India in October 2020. The
World Health Organization (WHO) first classified it as a variant of interest (VOI) on 4 April
2021, and later as a variant of concern (VOC) on 11 May 2021, receiving the denomination
of Delta [1]. By May 2021, the global spread of this variant had accelerated and quickly
displaced all other circulating lineages throughout the world [2], accounting for 99.7% of
SARS-CoV-2 infections by mid-November 2021, until the emergence of Omicron, the VOC
that eventually displaced it.

As the Delta lineage diversified, a dynamic classification into sublineages was es-
tablished using the nomenclature “AY.X”, giving rise to over 129 sublineages within the
Pango classification (https://cov-lineages.org accessed on 2 December 2021) [3] distributed
across the different geographical regions. Therefore, the Delta variant is comprised of a
group of distinct sublineages (AY.1–AY.133) which accumulated specific mutations while
circulating regionally or locally. The core mutations that confer Delta its transmissibility
advantage in the original B.1.617.2 lineage [4] consist of eighteen nonsynonymous substitu-
tions and two deletions, with seven mutations and one deletion in the spike protein (S).
Some of these amino acid (aa) changes have been characterized more thoroughly, such as
S:T478K, which confers a higher receptor binding affinity [5]; S:L452R, which can increase
transmissibility and immune evasion [6]; and S:P681R, which has been shown to improve
fusogenicity [7]. Additionally, sublineages such as AY.4.2 present a higher transmissibility
than the parental lineage [8], while some specific mutations, such as S:A222V, may be
associated with the slightly higher viral titers thought to result in the higher transmissi-
bility of lineage B.1.177 viruses [9], or, as in the case of S:E484K, may enhance immune
evasion [10]. Therefore, genomic surveillance is critical for tracking the evolution and
spread of SARS-CoV-2 lineages to understand their transmission and spread and to detect
specific mutations linked to changes in virulence and immune evasion, especially in a
population with increasingly higher vaccination levels.

https://cov-lineages.org
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In Mexico, SARS-CoV-2 genomic surveillance has enabled the study of the expansion,
and eventual succession, of increasingly-transmissible variants, such as B.1.1.519, which
became dominant in late 2020 during the second pandemic wave observed in the country,
peaking at 81% in March 2021 [11,12]. Later, the VOCs Alpha (B.1.1.7) and Gamma (P.1
and its sublineages) circulated in Mexico, albeit with a different geographical distribution,
reporting their highest prevalence in May (20%) and June (41%) 2021, respectively, during
the period between the second and third waves. The Delta variant was associated with
Mexico’s third wave of infections, starting its spread in May 2021. Delta reached over a
90% prevalence in August 2021 and 99% in September, and remained dominant until the
arrival of Omicron in December of the same year.

In this study, we characterized the dynamic distribution of the most prevalent sub-
lineages of Delta in Mexico: AY.3, AY.20, AY.26, AY.62, AY.100, AY.103, and AY.113, from
May through November 2021. These sublineages showed different geographic distribution
patterns, with some dominating specific regions. Moreover, AY.20, AY.26, and AY.100, which
accounted for 81.5 % of the infections during this period, were nearly exclusive to and
probably originated in Mexico; their dispersion and mutations are thoroughly studied here.

2. Materials and Methods
2.1. Samples

Oropharyngeal or nasopharyngeal samples were obtained from all 32 Mexican states
as part of the national governmental epidemiological surveillance program. Most samples
were collected in public clinics and hospitals of the Ministry of Health of Mexico [Instituto
Mexicano del Seguro Social (IMSS) and Instituto Nacional de Enfermedades Respiratorias
(INER)]. The RNA from 14,529 samples positive for SARS-CoV-2, as confirmed by real-time
reverse transcription-polymerase chain reaction (RT-qPCR) and anonymized before the
start of the study, were analyzed by the CoViGen-Mex consortium under the Mexican
Official Norm NOM-017-SSA2-2012 [13] between February 2020 and November 2021, as
previously described [14]. Sequencing was carried out using the Illumina COVIDSeq kit or
Nextera XT (Illumina, Inc., San Diego, CA, USA) following the manufacturer’s instructions,
using different Illumina platforms and 2 × 150 cycles of paired-end runs. FASTQ files
were generated by the Illumina pipeline at BaseSpace (https://basespace.illumina.com
accessed on 8 December 2021). Adapters, low-quality bases, and duplicate reads were
removed from each sample with a customized pipeline as previously described [15], and
the remaining reads were mapped with Bowtie2 v2.3.4.3 [16] against the Wuhan-Hu-1
(NC_045512) reference genome. Afterward, consensus sequences were generated using
iVar (v1.3.1) [17] with the following settings: base score Q > 20, 10× minimum read
coverage for basecalling, and a 55% threshold under majority rule for single nucleotide
polymorphism (SNP) calling. Lineage assignment was performed using the Pangolin
lineage classification software tool [3].

2.2. Mexican Delta Sequences Dataset

As of 14 December 2021, the CoViGen-Mex consortium has deposited 13,600 genome
sequences with a coverage >90%, along with accompanying metadata, in the Global Initia-
tive on Sharing All Influenza Data (GISAID) platform (https://www.gisaid.org/ accessed
on 14 December 2021) [18]. Of these sequences, 6685 were assigned as Delta (B.1.617.2
or AY.x) and deposited in GenBank (Supplementary Table S1). An additional dataset of
13,072 comprised of all the other available Mexican Delta sequences and their metadata
was retrieved from GISAID in the same period, summing the 19,757 Delta variant genomes
from Mexico used in this study (Supplementary Table S1).

2.3. Geographical Circulation of Delta Sublineages

To analyze the variation in the most prevalent Delta sublineages in Mexico, sequences
from AY.3 (n = 1001), AY.20 (n = 9759), AY.26 (n = 4676), AY.62 (n = 224), AY.100 (n = 1650),
AY.103 (n = 215), and AY.113 (n = 572) were specifically studied. Moreover, to inspect their

https://basespace.illumina.com
https://www.gisaid.org/
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geographical distribution and spread, the country was divided into seven regions (Figure S1)
as previously reported [14], each including the following states: Northwest (NW): Baja
California, Baja California Sur, Chihuahua, Durango, Sonora, and Sinaloa; Northeast (NE):
Coahuila, Nuevo Leon, and Tamaulipas; Central North (CN): Aguascalientes, Guanajuato,
Querétaro, San Luis Potosi, and Zacatecas; Central South (CS): Mexico City, State of Mexico,
Morelos, Hidalgo, Puebla, and Tlaxcala; West (W): Colima, Jalisco, Michoacan, and Nayarit;
South (S): Guerrero, Oaxaca, Chiapas, Veracruz, and Tabasco; Southeast (SE): Campeche,
Yucatan, and Quintana Roo. A stack density plot was built for each region using ggplot2
v.3.3.5 [19] in R v.4.1.0. Additionally, correlation analyses were performed to assess the
differences in the lineage distributions among regions.

2.4. Mutation Description

Only sequences from the three most prevalent Delta sublineages in Mexico, AY.20,
AY.26, and AY.100, accounting for 81.5% of the sequenced genomes, were included in
the analysis of their mutations and spread over time. Synonymous/nonsynonymous
substitutions were identified using the Nextclade single nucleotide variant (SNV) calling
system [20]. Only SNVs present in more than 1% of the genomes were considered for
downstream analyses. A heatmap of mutation frequency was built using ComplexHeatmap
v.2.8.0 [21] in R.

2.5. Phylogeny and Haplotype Network

A randomized subset of 1190 sequences, representative of AY.20, AY.26, and AY.100,
was evenly drawn from all the Mexican states, reflecting the sublineages’ monthly circula-
tion proportions in Mexico. Additionally, 591 genomic sequences from other countries were
included: 295 from the rest of North America, 88 each from Europe and South America,
60 from Asia, and 30 each from Africa and Oceania. These sequences were aligned against
the reference Wuhan-Hu-1 isolate sequence (NC_045512) using MAFFTv7 with the option
-addfragments [22]. The reference sequence and the UTR regions were manually removed
from the alignment. A maximum-likelihood phylogeny was built using iqtree2 [23], with
the GTR + R + F3 substitution model [24], and time-scaled using LSD2 and collection
dates [25]. Finally, the ggtree v.3.0.2 [26] and treeio v.1.16.1 [27] packages were used to
display the tree using R. The alignment was converted into the Nexus format and imported
into the PopArt v.1.7 software [28] to generate a Templeton, Crandall, and Sing (TCS)
network [29], masking sites with more than 5% undefined states. Each sample’s lineage
and location information were used to estimate and visualize the geographical and lineage
relationships of haplotype groups. SNVs were associated with specific haplotype groups.

2.6. Statistical Analysis

Independence χ2 tests were carried out in R with 10,000 Monte Carlo replicates to
evaluate the association between sublineages and categorical variables [gender, patient
status, cycle threshold (Ct, evaluating different binning sizes 1, 2, 5, and 10), region, and age].
The results were evaluated with pairwise student’s t-tests with 10,000 resamples, using the
lowest sublineage depth to overcome sampling bias. Normality was tested with the Shapiro–
Wilk test. False discovery rate (FDR) correction was carried out for multiple sublineage
testing. Finally, the odds ratio between Nextclade clades and categorical variables, at a
95% confidence level, was calculated using binary logistic regression models in SPSS v22.

3. Results
3.1. Spread and Epidemiology of Delta Sublineages

In Mexico, as of March 2022, the pandemic has presented four distinct nationwide
epidemiological waves of SARS-CoV-2 (Figure 1A shows the first three waves), with
corresponding peaks of cases in June 2020, January 2021, August 2021, and January 2022,
respectively. The swift expansion of the Delta VOC ensued during the third epidemiological
wave in Mexico, spanning from late June to November 2021 (Figure 1A). Delta overtook
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the previously prevalent Alpha and Gamma VOCs and the previously dominant lineage
B.1.1.519 (Figure S2). Delta showed exponential growth starting in May (5.5%), becoming
the most prevalent variant in the country by June (38.6%) and reaching over 97% prevalence
in August 2021. Moving forward, our study will focus on Delta genomes from samples
collected from May to November 2021.
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Figure 1. SARS-CoV-2 cases and diversity of Delta variant viruses in Mexico. (A) Confirmed cases,
deaths, and total genomes sequenced between 1 March 2020, and 30 November 2021 in the country.
(B) Stacked area plot showing the lineage diversity from April to November 2021. Vertically, lineages
are stacked on top of one another. The black line corresponds to the total Delta genomes reported
and the dashed red line to the number of confirmed cases for context.

In Mexico, 89 sublineages of Delta were detected in the analyzed period (Supplementary
Table S1), dominated by AY.20, AY.26, and AY.100, which accounted for about 49.4%, 23.7%,
and 8.4%, respectively, of all genomes reported in the study period (Figure 1B). Of interest,
all three lineages seem to have emerged in Mexico since their prevalence was extremely low
in the rest of the world, with a percentage of 0.6%, 1.0%, and 0.7%, respectively (Figure S3).
Other less abundant sublineages in the country include AY.3 [Mexico (M): 5.1%; World
(W): 3.6%], AY.103 (M: 1.1%; W: 6.4%), AY.113 (M: 2.9%; W: 0.3%), and AY.62 (M: 1.1%;
W: 0.1%). These seven Delta sublineages constitute the majority (91.6%; n = 18,576) of the
cases during Delta circulation in Mexico.

Sublineage AY.20 remained the most prevalent since May, reaching 60% in June and
decreasing to 46% in November 2021 (Figures 1B and S2), while AY.26 had a maximum
prevalence of 33% during June and dropped to 9% in November. On the other hand,
AY.3, AY.100, AY.103, and AY.113 were initially detected at low levels (<1.5%, each) but
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then increased their prevalence, with a peak in November (7.5%, 12.5%, 3.9%, and 6.3%,
respectively) when the Omicron variant reached Mexico. Finally, AY.62 had a very low
prevalence nationally, but it was detected almost exclusively in the state of Yucatan in the
SE region, with a frequency higher than 10% throughout the evaluated period.

A significant association was found between Delta sublineages and their monthly
distribution (at α = 0.05; p-value = 0.0001), as well as with the states (p-value = 0.0001). On
the contrary, no significant associations with cycle threshold values (Ct values), gender,
patient status, or age group were observed (at α = 0.05; p-values > 0.05 in all cases).

3.2. Delta Sublineages Geographical Dispersion

The country was divided into seven geographical regions to analyze the spread of the
Delta sublineages throughout Mexico, as seen in Figure S1. Lineage AY.20 was the most
prevalent in the country, and Figure 2 shows that it reached at least 75% of all cases in the
CS region (Figure 2D); however, it was identified in less than 25% of the cases in the NW
(Figure 2A) and SE regions (Figure 2G). Moreover, AY.20 was identified in the CS region
as early as May 2021 and spread later to other regions. Contrastingly, the most abundant
lineage in the NW was AY.26 (>65%), appearing before May 2021. This lineage was also
detected throughout the country, although further ahead in time and at a lower percentage
(8–33%). Likewise, AY.103 was present almost exclusively in the NW region and extended
to the NE and CN but did not spread further. In the SE, the lineages AY.20, AY.26, and
AY.100 circulated with similar frequencies, while the lineage AY.62 was only detected in
this region (Figure 2G) suggesting a local transmission chain. In the S region (Figure 2F),
the AY.20, AY.26, AY.100, and AY.113 lineages were also frequently identified. Regarding
the NE, CN, and W regions, AY.3 (15–25%), AY.20 (45–53%), and AY.26 (19–25%) were
the most abundant sublineages (Figure 2B,C,E). In these regions, the Pearson correlation
coefficient, calculated between their sublineages’ monthly distributions, was greater than
0.94 (p < 0.05), suggesting similar spread patterns of these sublineages over time; thus, they
were considered a single region (NE + CN + W) in subsequent analyses.

3.3. Mutations in Delta AY.20, AY.26, and AY.100 Sublineages

To further characterize the most prevalent sublineages in Mexico, the defining muta-
tions of AY.20, AY.26, and AY.100 were examined. All available Mexican sequences of these
sublineages were analyzed, resulting in 16,085 genomes (Supplementary Table S1). In total,
14,541 nucleotide changes were identified. Of these, 57.8% (n = 8429) were nonsynonymous
SNPs, whereas the rest were synonymous (n = 6112). Among the nonsynonymous SNPs,
only 66 showed a prevalence higher than 1%. When analyzing the accumulation of mu-
tation patterns by sublineages, it was seen that AY.20 and AY.100 had, on average, more
substitutions (40.6 and 41.6, respectively) than AY.26 (35.1). Interestingly, AY.20 and AY.100
belong to the 21J Nextclade Delta subclade, the most widespread in Mexico, whereas AY.26
falls within subclade 21I which started decreasing before Omicron appeared.

In Figure 3, all mutations with a prevalence higher than 5% in at least one sublineage
are shown. The 18 defining changes of the Delta variant (B.1.1.617.2), shared by all its
sublineages, can be observed. Seven substitutions are found in spike (S), three in ORF1b
and N, two in ORF7a, and one in ORF3a, M, and ORF9b, with none in ORF1a, E, ORF6,
ORF7b, nor ORF8. In addition, all Delta sequences harbor two aa deletions (S:157/158 and
ORF8:119/120) and three stop codons. The sublineages AY.20, AY.26, and AY.100 harbor
13, 9, and 13 additional nonsynonymous changes, respectively, compared to the signature
mutations of the Delta variant (Figure 3).
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Some sublineage-specific substitutions were present in prevalences ranging from 86%
to 99% of their analyzed genomic sequences; eight in lineage AY.26 (four in ORF1a, three
in S, and one in ORF6, see Figure 3), two were only present in AY.20 (ORF1a:A599V and
S:V1104L), and one in AY.100 (ORF1b:A1219S). Additionally, AY.20 and AY.100, which are
placed in clade 21J of the Nextclade classification, also share ten high-frequency substitu-
tions (six in ORF1a, and one in each ORF1b, S, ORF7b, and N). Moreover, other substitutions
had a prevalence of <50%, suggesting that these three sublineages may have distinct local
transmission chains that led to local viral subpopulations. This observation was further
explored using a haplotype network and a phylogenetic reconstruction.

3.4. Delta Haplotype Network

A time-scaled phylogenetic tree and a haplotype network were built to further explore
the spread of Delta sublineages at Mexico’s regional level. The NE, CN, and W regions
(Figure S1) were collated into a single region (NE + CN + W) given the high correlation of
circulating sublineages in these areas over time. The network in Figure 4 reveals a clear
separation of the sublineages and their association with specific regions in which they
circulated; for lineage AY.20, three large (marked as A, B, and C) and two minor (D and
E) subclusters can be clearly identified, indicating that different haplotypes of AY.20 may
have circulated together. In the periphery of the main haplotypes (corresponding to the
largest circles) of the A and C subclusters, many sequences from the CS (purple) region
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were present, but also from the NE + CN + W (orange) region. Correspondingly, in the
phylogeny (Figure S4), AY.20 sequences from the CS region appeared earlier than those
from the NE + CN + W, suggesting that the spread of this sublineage started there.

Interestingly, sequences within subcluster B, which had the highest number of interna-
tional samples (grey), harbor two additional nonsynonymous substitutions (ORF1b:V2287I
and S:G142D) (Figure 4). This contrasts with subcluster C, comprised mainly of Mexican
sequences, which carry only sublineage-specific mutations. These observations also sup-
port the idea that the original AY.20 started its circulation in the CS region and acquired
additional mutations as it spread. The spatiotemporal distribution of AY.20 (Figure 5A)
shows that the earliest identification was observed in the CS region, specifically in Mexico
City (28% in May–June), and in the South region with the highest prevalence in Guerrero
(14% in May–June), following dispersion to other regions, especially the NE + CN + W.
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For the sublineage AY.26, the network revealed the presence of different haplotypes
with distinct geographical distributions. The largest subcluster F, as well as G, were domi-
nated by sequences obtained from samples collected in the NW region (red), NE + CN + W
regions (orange), and USA (yellow). Additionally, subcluster I from the SE region (green)
and H from the SE region (green) derived from F, suggesting different haplotypes with local
transmission chains. These observations were consistent with the phylogeny (Figure S4),
where samples from the NW region dominated, especially at earlier dates, along with a
few sequences from the SE region. Later, sequences from NE + CN + W regions appeared,
followed by sequences from the rest of the country, but with distinct clades for the S and
SE regions. Moreover, the data shown in Figure 5B confirms that AY.26 spread initially in
the northern states of Mexico, probably corresponding to haplotypes F and G, and at a
lower frequency in the SE region with haplotypes H and I; then, this lineage spread to the
NE + CN + W and S regions.

Finally, the sublineage AY.100 had two main subclusters: J and K (Figure 4). Subcluster
K included sequences mainly from the USA (yellow) and all regions of Mexico, except
the SE region (green). In subcluster J, samples were from the SE region (green) and at
a lower prevalence than the rest of the country, suggesting two separate transmission
chains for these haplotypes: one that started spreading from the North, and another from
the South. These patterns matched those observed in the phylogeny (Figure S4) and the
spatiotemporal distribution of AY.100 (Figure 5C).
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Of note, some of the less-frequent mutations (present in <85% of the total Mexican
Delta sequences) found in the heatmap (Figure 3) correspond to a particular subcluster in
the network, supporting the idea of different local transmission chains of Delta sublineages.
For instance, the mutation S:K97E, present in only 21.6% of AY.20 genomes, was present
in subcluster A (Figure 4). Additionally, the mutation ORF1a:T403I, identified in 55.7% of
AY.100 sequences, was only found in subcluster J. On the other hand, some less-frequent
mutations, such as S:G142D, were shared among sublineages. This mutation was present
in 25.8% of AY.20 sequences corresponding to subclusters A and B, and in 9.8% of AY.26
sequences belonging to subclusters H and I. In some cases, the subclusters with additional
mutations were restricted to a geographical region, as can be observed in subclusters H and
I of AY.26, which share mutations S:G142D (25.8% prevalence) and S:N1074S (61.4% preva-
lence), plus ORF1b:P2434S (10.2% prevalence) in H, and ORF1a:N278S (16.4% prevalence)
in I.

4. Discussion

The Delta variant of SARS-CoV-2 spread worldwide during 2021 and replaced most
previously circulating lineages due to its transmission advantage and its ability to partially
evade pre-existing immunity [30]. The ample circulation of Delta led to a regional diversifi-
cation that resulted in 133 sublineages. In Mexico, Delta was principally responsible for
the third wave of the COVID-19 pandemic, accounting for more than 99% of infections by
November 2021.

In contrast to other countries in which the Delta variant was associated with an in-
creased severity of COVID-19 in unvaccinated patients (higher numbers of hospitalizations
and severe symptoms) [31,32], in Mexico, the proportion of severe illness and case-fatality
rates remained lower than in the previous waves [12]. Despite having low vaccination
rates when the first cases of Delta were detected in Mexico (<9% with a complete initial
vaccination protocol and <12% partly vaccinated) and during its peak surge (<43% and
<24%, respectively) [33], hospitalization and mortality decreased in Mexico in comparison
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to the second wave. Various factors may have contributed to lessening the impact of the
Delta wave, such as the decision of health authorities to prioritize the vaccination of older
people, a better knowledge of the medical treatment of the disease, and an estimated
seroprevalence of 23.4% before the entry of Delta [34,35]. However, by the end of the
third wave, seroprevalence had reached 86.7%, probably due to the onset of Delta and the
progress in vaccination (Muñoz-Medina JE et al., in preparation).

This work describes the presence and geographical distribution of the Delta sublin-
eages AY.3, AY.20, AY.26, AY.62, AY.100, and AY.113, which were the most prevalent in
Mexico, with a particular focus on the three most abundant (AY.20, AY.26, and AY.100). It
seems that migration patterns could have influenced the sublineage distribution chains. For
instance, the sublineages AY.100 and AY.113 were highly prevalent in the S and SE regions,
correlating with their maximum frequencies in Central American countries such as Costa
Rica (3.4 and 21%, respectively) and Guatemala (30 and 68%). This observation may reflect
the continuous influx of migrants from Central America to Mexico. However, AY.100 was
also detected early in the NW, suggesting at least two possible spread chains of distinct
haplotypes in each region. By contrast, the sublineage AY.3, which was equally prevalent
in the USA and Mexico, exhibited a higher prevalence only in the NE + CN + W regions
(15–25%). A very interesting case was sublineage AY.62, which, in Mexico, was almost
exclusively found in the state of Yucatan in the SE region, where it reached 20% prevalence
from July to September. This lineage was also detected in the USA, particularly in Texas and
Kentucky; however, it only accounted for 0.75% of genomes in those locations during the
period, suggesting that it may have entered Mexico through the tourism hotspots within
the region and stayed there.

Interestingly, the sublineages AY.20 and AY.26 seem to be almost exclusive to Mexico,
representing nearly 74% of Delta infections in the country, while it was detected at a
much lower prevalence (<1.6%) elsewhere (Figure S3). Regarding the sublineage AY.20, all
subclusters in the network were dominated by samples from the CS region, particularly
Mexico City, which also corresponded to the earliest samples in the phylogeny and on
the map (Figures 5 and S4). Therefore, this sublineage either entered or originated in
Mexico City and later spread efficiently towards other regions. The haplotype network and
mutation analysis showed limited regional clustering of AY.20 populations, but different
spread chains could be observed. Interestingly, the AY.26 sublineage was detected early in
the north of Mexico, particularly in the NW region, although the bordering USA states did
not exhibit high frequencies of this sublineage (California and Arizona reported a frequency
of AY.26 of 5% vs. 50% in NW Mexico, according to GISAID data), indicating that the
exchange of AY.26 through the Mexico–US border was limited in contrast to what has been
reported for the Alpha variant [14]. This data suggests that this sublineage originated in the
NW of Mexico. Interestingly, the prevalence of AY.26 decreased by November 2021 (<10%),
as did the majority of worldwide Delta sublineages belonging to clade 21I (of Nextclade),
while AY.20 remained the most prevalent (>44%) until the expansion of the Omicron variant.
Overall, AY.20 started to spread from central and southern Mexico, where it reached its
highest prevalence, whereas AY.26 and AY.100 seem to have spread simultaneously from
the NW and the S/SE regions towards the center of the country and the NE + CN + W
regions. In general, the region NE + CN + W seems to be a transition area where the three
main sublineages co-circulated but were introduced at different timepoints.

Mutation analysis was carried out for the three most prevalent sublineages: AY.20,
AY.26, and AY.100. Notably, in addition to the defining Delta substitutions in the spike
protein, namely L452R, T478K, D614G, and P681R, which increase transmissibility and
immune escape [5–7,30], other substitutions were identified within these sublineages
which may have also played a role in enhanced Delta phenotypes. For instance, several
substitutions in the N-terminal domain of S were present, including T19R and R158G,
which were shared among the three sublineages: T95I was shared by AY.20 and AY.100;
and G142D was shared by AY.20 and AY.26. These substitutions have been identified in
other Delta sublineages such as AY.4 and some of them in Omicron (T95I and G142D).
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The role of each specific mutation has not been completely elucidated, but they have all
been implicated in immune escape [36–38]. In addition, the mutation S:A222V, present
in AY.26, slightly increases human cell receptor (ACE2) binding [39], while the mutations
N:R203M, common to the three sublineages, and N:G215C, present in AY.20 and AY.100,
have been shown to improve viral replication and assembly [40,41]. Even though Delta-
defining mutations do not include changes in ORF1a, many Delta sublineages harbor
specific mutations in this ORF. Here, we identified 16 aa changes in ORF1a, 6 of which
were shared by AY.20 and AY.100, probably due to their placement within the Nextclade
subclade 21J. Despite the abundance of mutations in ORF1ab in all SARS-CoV-2 genomes,
most remain uncharacterized.

5. Conclusions

This study describes the evolution of the most prevalent sublineages of the Delta
variant in Mexico, contributing to a better understanding of their dynamics and spread. This
knowledge is relevant since new SARS-CoV-2 lineages and mutations have the potential to
substantially impact public health systems as they can potentially lead to an increase in
infectivity, transmissibility, and/or disease severity. Additionally, the description of the
circulation dynamics of SARS-CoV-2 within the country will aid public health authorities in
focusing their genomic surveillance efforts in the states or regions where newly introduced
variants are repeatedly detected, as the NW and SE regions and Mexico City.
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lineage circulation in Mexico; Figure S3: Frequency of the most prevalent Delta sublineages in Mexico;
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characteristics of Mexican sequences classified as Delta and reported as of 14 December 2021.
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