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Abstract: Herpes simplex virus type 1 (HSV-1), an « subgroup member of the human herpesvirus
family, infects cells via the binding of its various envelope glycoproteins to cellular membrane
receptors, one of which is herpes virus entry mediator (HVEM), expressed on dendritic cells. Here,
HVEM gene-deficient mice were used to investigate the immunologic effect elicited by the HSV-1
infection of dendritic cells. Dendritic cells expressing the surface marker CD11c showed an abnormal
biological phenotype, including the altered transcription of various immune signaling molecules and
inflammatory factors associated with innate immunity after viral replication. Furthermore, the viral
infection of dendritic cells interfered with dendritic cell function in the lymph nodes, where these
cells normally play roles in activating the T-cell response. Additionally, the mild clinicopathological
manifestations observed during the acute phase of HSV-1 infection were associated with viral
replication in dendritic cells.

Keywords: herpes simplex virus type 1; herpesvirus entry mediator; dendritic cells; innate immune

1. Introduction

Herpes simplex virus type 1 (HSV-1), a member of the x-subgroup of the human
herpesvirus family [1], is a virus that causes oral labialis, herpes progenitalis, and herpetic
encephalitis in humans [2,3]. This viral pathogen has been found to spread widely among
people of various ages and to cause infectious diseases that seriously impact the quality
of life of individuals [4]. As an enveloped double-stranded linear DNA virus, HSV-1 has
a genome approximately 150 kb in length and begins encoding following a linear time
program under a tightly genomically regulated mechanism. The complicated genomic
structure and transcriptional mechanism of HSV-1 allow it to express various structural and
nonstructural proteins [5], including 12 glycoproteins (e.g., gD, gC, gE, and gG), which are
expressed on the viral membrane and interact with different cellular receptors in various
cells to achieve viral infection and spread in vivo [6]. Some virally encoded proteins can
interact with molecules involved in the host immune system and inflammation and might
interfere with their physiological roles in antiviral immunity [7]. HSV-1 infection leads to
characteristic pathological lesions and an immune response [8]. The fact that HSV encodes
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a series of functional molecules to block or weaken innate and adaptive immunity has
impeded the development of curative drugs and preventive vaccines [9]. Previous studies
have suggested that the viral envelope glycoprotein gD interacts with HVEM, a member
of the TNF-f receptor family expressed in some immune cells, including dendritic cells
and T cells [10,11], which indicates that HSV-1 can actively enter dendritic cells unless it
is captured by these cells following activation by signaling molecules associated with the
innate immune response in infected tissue. During antiviral immunity elicited by viral
infection, dendritic cells play important roles in capturing, processing, and presenting
viral antigens, thereby activating the T-cell response [12]. During this process, dendritic
cells dynamically mature from an undifferentiated state to a differentiated state as they
receive antigenic stimuli, migrate to the lymph nodes, secrete various immunoregulatory
molecules, and express distinct cellular surface markers [13,14]. All of these findings indi-
cate that the role of dendritic cells in the innate immune response, based upon their intrinsic
functions, might be affected by viral infection and intracellular replication, which might in
turn affect the activation and production of adaptive immunity. Thus, more knowledge
concerning the interaction between HSV-1 and dendritic cells during viral infection is
needed to elucidate host pathology outcomes and immunologic mechanisms induced dur-
ing HSV-1 infection. In the current study, HVEM gene-deficient mice were used, based on
the observation of viral infections in mouse JAWSII-dendritic cells, to investigate the inter-
action between HSV-1 and dendritic cells and the impact of the viral infection of these cells
on outcomes after pathologic infection and the immunologic responses involving innate
immunity and specific antiviral immunity. The HSV-1 infection of epithelial dendritic cells
can alter the dynamics of the innate immune response and local inflammatory activation,
followed by activation of the characteristic adaptive immune response and clinical manifes-
tations. The findings provide insight into host pathology and the immune response during
HSV-1 infection.

2. Materials and Methods
2.1. Ethics Statement

C57BL/6 mice were purchased from Beijing Vital River Laboratory Animal Technology
Co., Ltd. (Beijing, China). [animal license number: SCXK (Jing) 2016-0006], and HVEM
gene knockout mice on the C57BL/6 background were constructed by Beijing Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China). The experimental mice (half male
and half female) were specific pathogen-free (SPF) grade and were aged 4-6 weeks. The
mice were bred at our institute to expand the population and were housed in SPF-grade
barrier facilities [laboratory license number: SYXK (Dian) K2014-0007]. The laboratory
animals were cared for and used following the “3R” principle and animal welfare guidelines.
The animal experiment process and animal-related care and welfare were reviewed and
approved by the Animal Experiment Ethics Committee of the Institute of Medical Biology
(IMB), Chinese Academy of Medical Sciences (CAMS) (approval number: DWSP 201803014).

2.2. Cell Lines

The African green monkey kidney cell line Vero (ATCC, Rockefeller, MD, USA) and
mouse marrow immature dendritic cell line JAWSII (ATCC, Rockefeller, MD, USA) were
purchased and maintained in the viral immunization room of IMB, CAMS. Vero cells were
cultured with Dulbecco’s modified Eagle medium (DMEM; Corning, NY, USA) supple-
mented with 10% fetal bovine serum (FBS; HyClone, Logan, UT, USA), 100 U/mL penicillin
and 100 ug/mL streptomycin (IMB, CAMS, Kunming, China) in an incubator at a constant
temperature of 37 °C. JAWSII cells were cultured in minimum essential medium o« (MEMo;
Gibco, Shanghai, China) supplemented with 20% fetal bovine serum (FBS; HyClone, Logan,
UT, USA) and 5 ng/mL recombinant mouse granulocyte macrophage colony-stimulating
factor (rMuGM-CSF; MedChemExpress, Shanghai, China) in an incubator at a constant
temperature of 37 °C with 5% CO,. After viral infection, the culture medium was changed
to cell culture medium supplemented with 2% FBS.
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2.3. Virus

The WT HSV-1 strain McKrae was maintained by IMB, CAMS. The titers of McKrae
were determined by standard viral titration in Vero cells. Virus samples were serially
diluted 10-fold in serum-free DMEM, and each dilution (100 puL per well) was added
to 96-well plates with eight replicates, in which each well contained 100 pL of Vero cell
suspension at a concentration of 5 x 10° cells/mL. After the plate was incubated at 37 °C in
5% CO, for 7 days, the cytopathic effect (CPE) was assessed under an inverted microscope
(Nikon, Tokyo, Japan). All virus-related experiments were performed under biosafety level
(BSL) 2 conditions.

2.4. Isolation of Dendritic Cells from Mouse Skin and Bone Marrow

The small pieces of skin were incubated in a digestion solution containing 5 mg/mL
collagenase I (Sigma-Aldrich, St. Louis, MO, USA), 2.5 mg/mL trypsin (Thermo Fisher
Scientific, Waltham, MA, USA), and 1 U/mL DNase I (Sigma-Aldrich) in Roswell Park
Memorial Institute (RPMI) 1640 medium for 1.5 h at 37 °C with shaking at 200 rpm. The
digested supernatant was filtered through a 70-um cell strainer to obtain a single-cell
suspension [15]. Furthermore, after removing both ends of the femur and tibia from the
euthanized mice, the bone marrow was repeatedly flushed out into a Petri dish with PBS via
a syringe until the bone was completely white. The bone marrow suspension was collected
and filtered through a 70 um cell strainer to remove debris and muscle tissue. The cells were
washed with RPMI 1640 medium, red blood cell lysis buffer (Solarbio, Beijing, China) was
added to remove the red blood cells, and the mouse bone marrow cells were resuspended in
RPMI 1640 medium containing 10% FBS [16]. An EasySep™ Mouse Dendritic Cell Isolation
Kit (StemCell Technologies Inc., Shanghai, China) was used to select dendritic cells using
immunomagnetic particles. In brief, all cells (1 x 10® cells/mL) were placed in a round-
bottom tube, and then rat serum and selection cocktail were added to the tube. The mixture
was incubated at room temperature for 5 min, and then Rapid Spheres™ were added to the
sample. The tube was placed in the magnet and incubated at room temperature for 3 min,
and dendritic cells were labeled with magnetic particles. The suspension was removed,
and cells attached to the tube wall were pipetted and resuspended in RPMI 1640 medium
with 2% FBS. The separated cells were plated and collected after infection with McKrae to
construct a proliferation curve (multiplicity of infection (MOI) = 0.1) and determine the
cytokine levels (MOI = 0.1). The specific primers used are listed in Supplementary Table S1.

2.5. Analysis of Virus Growth in Cells

A growth curve was generated to detect the replication characteristics of McKrae
in JAWSII dendritic cell lines (MOI = 0.01) and dendritic cells from bone marrow and
skin (MOI = 0.1). The untreated JAWSII dendritic cells were deemed the experimental
group, and the two groups of JAWSII dendritic cells treated with rabbit anti-HSV1 gD
antibody (Bioss, Beijing, China) or rabbit anti-TNFRSF14 antibody (Bioss, Beijing, China)
were deemed the antibody blocking group. Dendritic cells were incubated with HSV-1 for
1 h at 37 °C. The cells were then washed to remove cell-free virus and resuspended in RPMI
1640 medium containing 2% FBS. Cultured viruses were collected, frozen and then thawed
at 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88 and 96 h, and the virus titer was determined in
Vero cells.

2.6. Mouse Experiment Design

C57BL/6 mice were used as the control group, and HVEM gene knockout mice on
the C57BL/6 background (HVEM ™/~ mice) were used as the experimental group. Each
group comprised 70 mice, and each mouse was intradermally infected with 2 x 10° plaque-
forming units (PFU) of McKrae. The mice were weighed every day, and the survival-to-
mortality ratio was evaluated over a 15-day period. Three mice from each group were
sacrificed 12, 24, 48, and 72 h and 5 and 7 days after infection. Skin and lymph node tissues
were collected from the armpits and groin, and viral load, cytokine levels, pathology, and
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immunity were assessed. Serum samples were collected 28, 56, and 84 days after infection,
and the spleen was collected for lymphocyte isolation 7, 28, 56, and 84 days after infection.

2.7. Immunofluorescence and Confocal Microscopy

Skin and lymph node tissues were collected from infected mice and immediately
frozen in liquid nitrogen. According to the protocol, the tissue sections were embedded in
optimal cutting temperature (OCT) compound (Tissue-Tek, Sakura, Torrance, CA, USA)
and sectioned on a cryostat (CM1850, Leica, Wetzlar, Germany) at a thickness of 4 pum. The
sections were fixed in 4% paraformaldehyde for 15 min at room temperature and then
blocked with 5% bovine serum albumin (BSA). A rabbit anti-herpes simplex virus strain
F (human) polyclonal antibody (Invitrogen, Thermo Fisher, Shanghai, China) and Alexa
FluorTM 647-conjugated AffiniPure goat anti-rabbit IgG secondary antibody (Invitrogen,
Carlsbad, CA, USA) were used to detect HSV-1 antigen, while a mouse anti-CD11c antibody
(Abcam, Shanghai, China) and Alexa FluorTM 488-conjugated AffiniPure goat anti-mouse
IgG secondary antibody (Invitrogen, Carlsbad, CA, USA) were used to detect dendritic cells.
The cell nuclei were stained with DAPI. A confocal microscope (TCS SP2, Leica, Wetzlar,
Germany) was used to visualize and analyze the fluorescence signals. The percentage of
dendritic cells colocalized with HSV-1 out of all the dendritic cells was calculated based on
the observation of 50 fields.

2.8. Quantification of Viral Load by gqRT-PCR

An Axygen® AxyPrep Body Fluid Virus DNA/RNA Miniprep Kit (Axygen Bio-
sciences, Union City, CA, USA) was used to extract total DNA from tissue samples from the
experimental mice. The primer pairs and probes used in this assay were designed to detect
the gG sequences of the HSV-1 genome (forward primer: 5-TCCTSGTTCCTMACKGCCTC
CCC-3/, probe: 5'-FAM-CGTCTGGACCAACCGCCACACA-BHQ1-3, reverse primer:
5'-GCAG/ideoxyl/ CAYACGTAACGCACGCT-3'). The real-time PCR amplification condi-
tions used were as follows: 95 °C for 30 s followed by 40 cycles of 95 °C for 5 s and 60 °C for
30 s. qRT-PCR was performed using a Takara Premix Ex Taq™ (probe qPCR) Kit (TaKaRa
Bio, Dalian, China).

2.9. Cytokine Analysis

According to the manufacturer’s protocol, TRIzol-A+ reagent (TianGen, Beijing, China)
was used to extract total RNA from the tissues of mice or dendritic cells collected at different
time points after infection, and the One Step TB Green™ Prime Script™ PLUS RT-PCR
Kit (TaKaRa Bio, Dalian, China) was used for amplification. Mouse glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was the normalization control gene. The relative
expression levels of inflammatory cytokines in mouse tissues were normalized to their
levels in the blank control group by using the comparative Ct (AACt) method. The specific
primer sets used are listed in Supplementary Table S1.

2.10. Histopathology
The skin tissues of euthanized mice were fixed in 4% paraformaldehyde, dehydrated,

embedded, and then cut into 4-pm-thick sections for hematoxylin and eosin (HE) staining.
Pathological changes were examined with an optical microscope (Leica, Wetzlar, Germany).

2.11. Neutralizing Antibody Detection

Serum samples were serially diluted 2-fold with serum-free DMEM and incubated
with McKrae at 37 °C for 2 h. The mixture was then added to Vero cells seeded in a 96-well
plate, and the cells were incubated at 37 °C and 5% CO,. The CPE was observed after
7 days to determine the neutralizing antibody titer in each serum sample.
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2.12. Flow Cytometry Analysis

The spleen was collected under aseptic conditions and prepared as a single-cell suspen-
sion using a cell strainer, and peripheral blood mononuclear cells (PBMCs) were isolated
from the spleen suspensions using lymphocyte isolation solution (Dakewe Biotech, Beijing,
China) according to the manufacturer’s instructions. For analysis in a flow cytometer (LSR-
Fortessa™, BD, Franklin, NJ, USA), PBMCs were stained with APC-CD83 (BioLegend, San
Diego, CA, USA). Flow]o software was used to analyze the total number of lymphocytes.

2.13. ELISPOT Assay

The spleen was divided into PBMC suspensions as described above, and a mouse
ELISPOT kit MABTECH Inc., Cincinnati, OH, USA) was used to measure the interferon
(IFN)-y and interleukin (IL)-4 levels following the manufacturer’s protocol. Briefly, the
positive control stimulant phytohemagglutinin (PHA) (5 ug/well) and a specific stimulant
(95% pure peptide: gB498-505: SSIEFARL) (Sangon Biotech, Shanghai, China) were added
to a 96-well plate precoated with IFN-y and IL-4. Then, splenic lymphocytes were added
to the plate and incubated at 37 °C for 1248 h. After the incubation step, the cells and
medium were removed to allow the spots to develop. An automated ELISPOT reader (CTL,
Cleveland, OH, USA) was used to count the colored spots. Spot-forming cells (SFCs) were
T cells that produced HSV-1-specific IFN-y or IL-4.

2.14. Identification of the Effect of HVEM Deficiency

A MightyAmp Genotyping Kit (TaKaRa Bio, Dalian, China) was used to extract
DNA from the mouse tail tip and determine the genotypes of the mice. Specific primers
surrounding and inside the mutated regions of the HVEM gene were designed (upstream
primer (Tnfrsf14-seqF): 5-CTGACGTGGTGTCTGGGAAG-3'; internal primer at the gene
deletion site (Tnfrsf14-seqR1): 5'-GCTGCCCAGACAGAGCTAAG-3'; downstream primer
(Tnfrsf14-seqR2): 5'-CAAAGGCAGCTGGGCATATTR-3'), the genes were amplified by
PCR using specific primers, and the samples were analyzed by agarose gel electrophoresis.

At the same time, the spleen lymphocytes of C57BL/6 mice and HVEM ™/~ mice were
lysed by RIPA buffer (Solarbio, Beijing, China) and then Western Blot was performed to
verify HVEM deficiency. Protein lysates were separated using SDS-PAGE. Afterwards,
proteins were transferred onto a nitrocellulose membrane by semi-dry transfer. After
blocking the membrane in 5% skim milk solution (BioFroxx, Guangdong, China) for 2 h
at RT, the membrane was incubated with rabbit anti-TNFRSF14 antibody (Bioss, Beijing,
China) or (3-actin mouse mAb (Cell signaling, Shanghai, China) overnight at 4 °C. The
antibodies were detected via Image Quant and ECL using BeyoECL Moon Western blotting
detection reagent (Beyotime, Shanghai, China) after the membrane was incubated with the
HRP-labeled goat anti-rabbit IgG (H + L) (Beyotime, Shanghai, China). All antibodies are
diluted in 5% skim milk solution.

2.15. Statistical Analysis

The experiments were performed in triplicate, and all the data are expressed as mean
values with their standard errors. Significant differences between groups were analyzed by
two-way ANOVA (GraphPad Prism8.0.2; GraphPad Software, San Diego, CA, USA), and
p < 0.05 was considered statistically significant.

3. Results
3.1. HSV-1 Enters Dendritic Cells via gD Binding to HVEM and Replicates in the Cells

The specific interaction between the HSV gD protein and the HVEM receptor on the
cellular surface initiates the membrane fusion reaction and transmits a signal to heterodimer
gH/gL followed by possible viral infection of the cells [17]. Here, we detected viral infection
in the mouse JAWSII dendritic cell line mediated by the interaction between gD and HVEM,
in which viral infection was observed in the presence of a specific antibody against HVEM
or gD or in the presence of medium only, with different proliferation rates (Figure 1A).
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The dynamic titration of viruses during infection suggested that HSV-1 presented a higher
replication rate in untreated JAWSII dendritic cells than in cells treated with specific
antibodies against HVEM or gD molecules (Figure 1A). The viral load detection of these
infected cells indicated there were more copies of viral immediate—early and late genes
in the experimental group than the antibody blocking group, which supported the above
result (Figure 1B). Further detection of transcripts of some innate responsive genes during
viral infection, such as the members of the IFN family, GM-CSE, TNF-«, TGF-f3, IL-4, and
IL-6, indicated that virion binding to HVEM was similar to specific antibody binding to
it and could lead to a cellular response through some immune signal factors (Figure 1C).
Previous data suggested that HVEM interacted by physiological ligands LIGHT or BTLA
can induce a powerful pro-inflammatory reaction in immune cells [18], and that HSV gD is
a dual antagonist by competitive displacement of BTLA and non-competitive blockade of
the binding of LIGHT [19]. In this case, in the event that viruses or the antibody binding to
HVEM lead to a pro-inflammatory reaction of dendritic cells, including a higher expression
of the IFN-¢, IFN-3, and IFN-y in groups of virus infection and adding antibodies of HVEM
than those in group of adding antibody of gD, it should be understandable during post
infection, as while higher expression of GM-CSF, TNF-&, TGF-f3, IL-4 and IL-6 was found
at 48 h after infection (Figure 1C). The upregulation of some surface markers of dendritic
cell maturation, such as CD83 and MHC-I [20-22], was also observed in virus-infected
JAWSII-dendritic cells compared with antibody-blocking cells (Figure 1D). These results
show that HSV-1 enables the infection of dendritic cells via the interaction between gD and
HVEM, followed by viral replication. This event leads to an innate immune response of
dendritic cells against the virus followed by their transfer of viral antigenic information to
the adaptive immune system.

3.2. HSV-1 Enters Dendritic Cells in Epithelial Tissue via the Interaction between gD and HVEM
and Replicates in the Cells

Previous in vivo studies have concluded that viral debris and antigen fragments
from lysed HSV-1-infected epithelial cells are usually captured or engulfed by dendritic
cells, which can automatically process and present these antigen epitopes to T cells as
they migrate to the lymph nodes [22]. Some HSV-1-infected dendritic cells do not fully
migrate to the lymph nodes or stay in local tissue, but how these infected cells impact
the immune system is still unclear [23]. Based on the observation of HSV-1 infection in
mouse JAWSII- dendritic cells above, HVEM-deficient (HVEM ~/~) mice (genotyped and
identified with specific antibody against the HVEM molecule; Western blot shown in
Supplementary Figure S1) and wild-type (WT) C57BL/6 mice were intradermally infected
with 2 x 10° PFU of HSV-1. Epithelial tissues from the infection site were collected from
the mice of both groups 12, 24, 48, and 72 h after infection, and the localization of viral
antigen (detected using anti-herpes simplex virus strain F (human) polyclonal antibody) in
dendritic cells (detected using an antibody against CD11c) was assessed. Additionally, the
viral load in the tissues was measured. The distribution of HSV-1 antigen in dendritic cells
was different between tissues from HVEM ™/~ mice and those from WT C57BL/6 mice, as
determined by measuring the degree of colocalization between the antigen and the dendritic
cell marker in 50 fields: The colocalization percentages were 4% and 3% in HVEM~/~
mice and 15% and 16% in WT C57BL/6 mice 24 and 48 h after infection, respectively
(Figure 2A,B). The viral load in these samples was 100 times lower in HVEM~/~ mice than
in WT C57BL/6 mice 48 h after infection (Figure 2C) and remained unchanged in C57BL/
6 mice (Figure 2C). These data suggest that infection by HSV-1 of dendritic cells might be
different during the early period in HVEM~/~ mice and WT C57BL/6 mice and imply
the possibility that the infection by the wild-type strain of dendritic cells might weaken
the responsive capacity of dendritic cells, triggering stress inflammation and the innate
immunity in local tissue, which could permit viral proliferation in the cells. In WT C57BL/
6 mice, the observation that a higher colocalization of the virus and dendritic cells at 24 h
after infection was followed by a higher viral titer in tissue at 48 h after infection suggested
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that because of the capacity of the virus to directly infect dendritic cells in HVEM~/~ mice,
the virus might be trapped in local epithelial tissue by the host-stress response, including
inflammatory and innate immune responses triggered by dendritic cells and other immune
cells residing in epithelial tissues. In this case, the viral antigens are actively captured
by dendritic cells in response to viral infection in the epithelial tissue of HVEM ™/~ mice.
However, the virus can enter dendritic cells via the interaction between gD and HVEM
and replicate in the cells; additionally, some debris of infected epithelial cells is captured
with the dendritic cells in WT C57BL/6 mice. These events logically lead to a discrepancy
in the pathological and immunological outcomes between both groups of mice in downs-
tream processes.
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Figure 1. HSV-1 enters dendritic cells via the binding of gD protein to the HVEM receptor and
replicates in the cells. The untreated JAWSII dendritic cells were deemed the experimental group, and
the two groups of JAWSII dendritic cells treated with anti-gD specific antibody or anti-HVEM specific
antibody were deemed the antibody blocking group. (A) Growth curves for the McKrae strains
from the experimental and antibody blocking groups. (B) mRNA expression levels of genes and
structural proteins such as ICPO and UL41 of the McKrae strains in the experimental and antibody
blocking groups. (C) Transcript levels of the IFN family, GM-CSF, TNF-«, TGF-, IL-4, and IL-6 in
the experimental and antibody blocking groups. (D) Expression of the maturation markers CD83 and
MHC-I on the dendritic cell surface in the experimental and antibody blocking groups. The relative
expression levels of inflammatory cytokines in JAWSII dendritic cells were normalized to their levels
in the blank control group by using the comparative Ct (AACt) method. The data are from three
independent experiments that were run in duplicate. Statistical significance was assessed by two-way
ANOVA with Holm-Sidak adjustment for multiple comparisons (¥, p < 0.05; **, p < 0.01; ***, p < 0.001;
% p < 0.0001).



Viruses 2022, 14, 1046

8 of 16

A B
C57BL/6 HVEM™* ke
S DC (CD11c")
)
32
iR 2 . *kokok o C57BL/6
13 A = HVEM™
E 10 ", \‘s
= 5
HER
g 0
24h £ 12 24 48 72
O
= Hours post Infection
c skin
108 © C57BL/6
u B - e
-3
g .§_ 104
> o 103
72 h 102 T T T T

Hours post Infection

Figure 2. HSV-1 antigen enters dendritic cells in skin tissue and replicates after infection. (A) Repr-
esentative confocal fluorescence images of HSV-1 expression (red), CD11c+ (green) and DAPI (blue)
in the skin of C57BL/6 and HVEM~/~ mice 12, 24, 48, and 72 h after intradermal infection, taken at
20x magnification under a confocal microscope. The percentage of colocalized cells out of all the
dendritic cells was based on the observation of 50 fields. The red scale bar is 100 um, and the white
scale bar is 5 um. (B) Colocalization rate between HSV-1 antigen and a dendritic cell marker after
infection (1 = 3 per time point in each group). (C) Viral load in local skin tissues at 12, 24, 48, and 72 h
after infection (1 = 3 per time point in each group). Statistical significance was assessed by two-way
ANOVA with Holm-Sidak adjustment for multiple comparisons (**, p < 0.01; ****, p < 0.0001).

3.3. HSV-1 Infection in Dendritic Cells Restrains the Activation of Innate Immunity and
Inflammatory Reactions

In most cases, the replication of viral agents can destroy host cells as they infect epithe-
lial tissue, causing pathologic lesions in tissues [24]. This process leads to the activation of
the innate immune response and inflammatory reactions in tissues followed by the recruit-
ment of immune cells, including dendritic cells, macrophages, and neutrophils through
the gradient effect of various cytokines and chemokines secreted by infected epithelial
cells [25,26]. This process also primarily determines the antiviral immunity of the host [27].
Because dendritic cells are infected by HSV-1 early, we hypothesized that the viral infection
of these cells might alter the cellular program and the processing, transfer, and presentation
of antigens to activate adaptive immunity. To test this hypothesis, dynamic alterations in
the transcription levels of various innate immune regulators and inflammatory factors in
samples of local infected tissue from C57BL/6 mice and HVEM ~/~ mice were analyzed.
The transcription level of IFN-y secreted by local infected tissue, a critical immune regulator
that exerts antiviral effects, was five times higher in tissues from HVEM~/~ mice than
in those from C57BL/6 mice 48 h after infection, and the transcription level of IFN-«, a
key indicator of innate immunity activation, was three times higher in HVEM~/~ mice
than in C57BL/6 mice and stayed at a higher level in HVEM~/~ mice for a period of time
(Figure 3A). Notably, the transcription levels of IFN-o in C57BL/6 mice were low during
the acute phase of infection (Figure 3A). The expression of some inflammatory factors,
including TNF-«, IL-6, and GM-CSF, were upregulated in HVEM~/~ mice (Figure 3B),
and the expression of IL-12 and IL-23x, which stimulate the proliferation of Th1 and Th17
cells, showed a similar trend of upregulation in this group (Figure 3C). Conversely, the
transcription levels of the chemokines CCL28 and CXCL12, which control homeostasis of
the immune system and the strength of innate immunity, were higher in C57BL/6 mice than
in HVEM ™/~ mice (Figure 3D). These data suggested that the viral infection of dendritic
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Figure 3. Change in the inflammatory response and the transcriptional expression of immune
signaling molecules. (A) IFN-«, IFN-y, (B) TNF«, IL-6, GM-CSF, (C) IL-12, IL-23«, (D) CCL12 and
CXCL28 expression in the skin of C57BL/6 and HVEM ™/~ mice after infection with HSV-1 was
measured (n = 3 per timepoint in each group). (E) Analysis of the viral titer in dendritic cells from the
skin and bone marrow of C57BL/6 and HVEM ~/~ mice infected with HSV-1 and cultured in vitro
for different times (n = 3 per timepoint in each group). (F) IFN-«, IFN-y, TNFe, IL-6, and GM-CSF
levels in mouse HSV-1-infected dendritic cells from the skin of C57BL/6 mice cultured in vitro. The
gene expression of HSV-1-infected dendritic cells from C57BL/6 mice is shown as the fold-change
(2728CH) relative to the levels in samples from un-infected dendritic cells of C57BL/6 mice, which
were used for calibration (1 = 3 per time point in each group). Statistical significance was assessed by
two-way ANOVA with Holm-Sidak adjustment for multiple comparisons (*, p < 0.05; **, p < 0.01; ***,
p < 0.001; ****, p < 0.0001).

3.4. HSV-1 Infection in Dendritic Cells Leads to Alleviation of Infectious Manifestations in the
Acute Phase

HSV-1 infection leads to oral or genital herpetic lesions in the skin followed by spon-
taneously recurrent latent viral neurological infection [28]. However, no obvious clinical
manifestations are usually associated with the initial phase of infection [29], which is usu-
ally thought to be due to the alleviation of the innate immune response and inflammatory
reactions in epithelial tissue by certain virus-encoded proteins [27,30,31]. Considering the



Viruses 2022, 14, 1046

10 of 16

differences in the transcription levels of innate immunity-related signaling molecules and
inflammatory factors in epithelial tissue between infected HVEM~/~ mice and C57BL/
6 mice, the clinicopathological process in both groups was evaluated. The results sug-
gested that infectious inflammatory reactions, including capillary injection, the infiltration
of inflammatory cells, and the degeneration of epithelial cells (Figure 4A), were most
severe on days 4 to 6 after infection and were then rapidly alleviated in HVEM~/~ mice
(Figure 4A, Table 1). No typical pathologic lesions were observed in the epithelial tissue of
infected C57BL/6 mice, although a slight infiltration of inflammatory cells was observed
during the same period (Figure 4B, Table 1). However, increased epithelial cell necrosis
and severe infiltration of inflammatory cells into the dermis layer were found in C57BL/
6 mice beginning on day 7 (Figure 4B, Table 1). Interestingly, the change in body weight
was different between the groups of mice, the body weight of HVEM~/~ mice being re-
duced slightly on days 3 to 6 and increasing beginning on day 7 (Figure 4C), while the
body weight of C57BL /6 mice showed a persistent decrease (Figure 4C). More HVEM ~/~
mice than C57BL/6 mice died in the early stage (Figure 4D). Previous data suggested that
physiological inflammatory reactions and innate immunity in local tissue allow a rapid
response to viral infection in epithelial cells that primarily depends on the activation of
dendritic cells and other inflammatory cells through immune signals secreted by infected
epithelial cells [32,33]. This stress reaction could restrict viral infection in local tissue to
further eliminate viruses, destroy cellular debris, and subsequently activate adaptive im-
munity via the presentation of antigens to T cells by dendritic cells and other cells [34].
Our work suggested that, as dendritic cells are infected by viruses, the innate immune
response, which is associated with inflammatory reactions, can be interfered with and lead
to attenuated clinical-pathological processes in the acute infection phase, providing an
environment that allows viral replication and spread in tissues. However, viral infection in
dendritic cells is alleviated in HVEM~/~ mice, which might lead to the real pathological
phenotypes mediated by the inflammatory reaction in the acute phase of infection, which
include severe pathological lesions in local tissue and a higher death rate in the period of
acute infection.

3.5. HSV-1 Infection Interferes with the Roles of Dendritic Cells in the Lymph Nodes

Considering that dendritic cells are powerful antigen-presenting immune cells [35],
we speculated that the biologic phenotype of dendritic cells infected with HSV-1 might
impact T-cell activation via antigen presentation. The colocalization of viral antigen and
the marker CD11c in lymph node tissues collected from infected HVEM~/~ mice and
C57BL/6 mice at different time points was observed under a fluorescence microscope. The
colocalization percentage of viral antigen and the dendritic cell marker in lymph node
tissue was obviously higher after 6 days after infection in HVEM~/~ mice than in C57BL/
6 mice (Figure 5A,B), in contrast to that observed in skin tissue (Figure 1A,B). An analysis
of the viral load in the lymph nodes showed a tendency for the viral load to increase in
HVEM~/~ mice but to remain unchanged in C57BL/6 mice (Figure 5C). These results
suggest that viral antigen was transferred to the lymph nodes by activated dendritic cells
in HVEM~/~ mice but not in C57BL/6 mice. This was because the immunological role
of dendritic cells infected by the virus in C57BL/6 mice was altered to some extent, and
their capacity to transfer antigen to lymph nodes was weakened, which led to a lower
viral load in their lymph nodes. The transcription levels of various signaling molecules,
including IKKf3, p38, STAT1, STAT3, and STAT6, showed a sharp increase from day 6 after
infection in HVEM~/~ mice, compared with the rapid decrease at the same time in WT
C57BL/6 mice (Figure 5D and Supplementary Figure S2). A similar trend was found for
transcription factors related to T- and B-cell proliferation in the lymph nodes, indicating
markedly increased ROXyt, Foxp3, and T-bet since day 6 after infection in HVEM~/~
mice compared with WT C57BL/6 mice (Figure 5D and Supplementary Figure S3). These
signaling molecules and transcription factors have been found to increase the activation
of specific antiviral immunity by participating in the signal transduction process and
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activating downstream gene expression, regulating the development and differentiation of
T cells and B cells, adjusting the balance of the intracellular microenvironment and other
effects [36-38]. All of these results imply that the canonical process by which dendritic
cells activate adaptive immunity in lymph nodes went unimpeded in HVEM~/~ mice
but was hindered in C57BL/6 mice. Additionally, the percentage of T cells expressing
the surface marker CD83 in the lymph nodes of C57BL/6 mice was increased (Figure 5E).
The extracellular structural domain of CD83 can restrain T-cell proliferation mediated by
dendritic cells, although the mechanism is unclear [39-41]. These data also support our
hypothesis that HSV-1 infection of dendritic cells may interfere with the ability of these
cells to activate T cells, probably via antigen presentation and other mechanisms.

C57BL/6 =357 © C57BL/6
= HVEM™

B i
012345678 9101112131415
Days post Infection

100 e-0-0-0-0 O C57BL6
- -
754 HVEM

Survival rate(%)

012345678 9101112131415
Days post Infection

Figure 4. Clinical manifestations of HSV-1-infected C57BL/6 and HVEM~/~ mice. Pathological
changes in the epithelial tissue of (A) HVEM~/~ and (B) C57BL/6 mice within 1-10 days of infection
with HSV-1. Inflammatory cell infiltration and tissue necrosis are indicated with red and blue arrows,
respectively, and tissue hyperemia and tissue bleeding are indicated with yellow and green arrows,
respectively (1 = 3 per time point in each group). The black scale bar is 200 um, and the cyan scale bar is
50 pm. (C) Increase in weight and (D) the survival rate of C57BL/6 (circle) and HVEM~/~ (square) mice
infected with HSV-1 (n = 12/group) during the 15-day observation period. Statistical significance was
assessed by two-way ANOVA with Holm-Sidak adjustment for multiple comparisons (****, p < 0.0001).

Table 1. Pathological analysis of C57BL/6 mice and HVEM ™/~ mice infected with McKrae (1 = 3 per
time point in each group).

C57BL/6 HVEM-/—

1dpi —/+ +

2 dpi + —/+
3 dpi — +

4 dpi + ++
5 dpi + +++
6 dpi ++ ++++
7 dpi +++ ++
8 dpi + +

9 dpi —/+ —/+
10 dpi - +

Note: —, normal tissue; —/+, some proliferation of local lymphocytes; +, slight infiltration of inflammatory cells; ++,
slight damage with inflammatory cell infiltration; +++, massive tissue necrosis with inflammatory cell infiltration
and local vascular congestion; ++++, severe tissue necrosis with inflammatory cell infiltration and bleeding.
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Figure 5. Effect of HSV-1 antigen on the activation of T cells after entering the lymph nodes. (A) Repr-
esentative confocal fluorescence images of HSV-1 expression (red) and CD11c+ (green) in the lymph
nodes of C57BL/6 and HVEM ~/~ mice infected with HSV-1 antigen intracutaneously at 3, 4, 5, 6,
and 7 days, taken at 20 x magnification under a confocal microscope. The percentage of colocalized
cells in the total dendritic cells was based on the observation of 50 fields. The red scale bar is 100 um,
and the white scale bar is 5 um. (B) The colocalization rate of HSV-1 antigen and a dendritic cell
marker after infection is shown (1 = 3 per time point in each group). (C) Trend of the change in
viral load in the lymph nodes within 1-10 days after infection (1 = 3 per time point in each group).
(D) Analysis of the transcription levels of various signaling molecules and transcription factors
related to T-cell proliferation in the lymph nodes. The relative expression levels of inflammatory
cytokines in mouse tissues were normalized to the level of the blank control group by using the
comparative Ct (AACt) method (1 = 3 per time point in each group). (E) Flow cytometry analysis and
comparison of CD83" cells in the lymph nodes within 3, 5, and 7 days after infection (1 = 3 per time
point in each group). Statistical significance was assessed by two-way ANOVA with Holm-Sidak
adjustment for multiple comparisons (¥, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).

3.6. HSV-1 Infection of Dendritic Cells Followed by Suppression of Innate Immunity Leads to a
Weakened Specific Antiviral Immune Response

A previous study demonstrated that indicators of the immune response, such as neu-
tralizing antibodies and the specific cytotoxic T-lymphocyte response, are activated during
specific immunity elicited by HSV-1 infection [33]; however, the presence of these indicators
does not mean that immunity enables the elimination of viruses in vivo or defends against
viral reinfection [42]. This is due to the interference effect of viral infection strategies on the
immune system [7]. The current study suggests that HSV-1 infection of dendritic cells may
exert these interference effects and alleviate the immunologic phenotype because the titer
of neutralizing antibodies was higher, as determined by the neutralizing antibody assay.
This high titer is associated with a stronger T-cell response and greater IL-4 specificity
in the ELISPOT assay in infected HVEM ™/~ mice than in C57BL/6 mice (Figure 6A-C).
These results indicate that the infection and replication of HSV1 in dendritic cells lead
to an alteration of cellular immunological roles, including antigenic treatment, transfer
and presentation, and the alleviation of specific antiviral immune responses through some
unknown mechanism.
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Figure 6. Dendritic cells infected with HSV-1 suppress innate immunity and weaken the adaptive
immune response. (A) The levels of neutralizing antibodies in C57BL/6 and HVEM~/~ mice were
measured at different time points (n = 3 per time point in each group). (B) ELISPOT analysis of
gBuog-505 elicited IFN-y-secreting T-cell responses within the splenic lymphocyte population from
C57BL/6 and HVEM~/~ mice. The samples were run in duplicate (n = 3 per time point in each
group). (C) ELISPOT analysis of gB4gg-505 elicited IL-4-secreting T-cell responses within the splenic
lymphocyte population from C57BL/6 and HVEM~/~ mice. The samples were run in duplicate
(n = 3 per time point in each group). SFC, spot-forming cell. Statistical significance was assessed by
two-way ANOVA with Holm-Sidak adjustment for multiple comparisons (¥, p < 0.05; **, p < 0.01; ***,
p <0.001).

4. Discussion

HSV-1, a DNA virus with a large genome encoding dozens of nonstructural proteins
that interact with components of the innate and adaptive immune systems [43], causes a
complicated pathologic process associated with an abnormal immune response [44]. Our
understanding of this process is incomplete, likely because of the complicated mechanism
by which this virus interacts with various host molecules, including components of signal
pathways, transcriptional regulators, and effectors of the innate and adaptive immune
systems [9,45], causing the infectious mechanism of HSV-1 to be distinct from that of
other viruses [46]. Previously, HVEM was identified as being capable of interacting with
some ligands to create the diverse sets of intrinsic and bidirectional signaling pathways
controlling, enhancing, or inhibiting inflammatory responses through the activation of the
NF-kB transcriptional system [12,47]. Interestingly, HSV gD was found as a competitor of
BTLA to bind HVEM or acting as a non-competitive blockade of LIGHT [19,48]. These data
suggested a hypothesis that the HSV-1 infection of resident dendritic cells in epithelial tissue
via the binding of the viral glycoprotein gD to HVEM expressed on the cellular surface,
may interfere with the local inflammatory response and innate and adaptive immune
systems. Based on this hypothesis and the ability of dendritic cells to present antigens
during the generation of specific antiviral immunity, our data firstly performed using mouse
JSAWII dendritic cells showed that HSV-1 replication in dendritic cells modulates cellular
phenotypes, including by changing the transcription levels of various immune regulating
factors, such as interferons and chemokines. These findings, in which the HSV-1 infection
group turns on the HVEM-LIGHT pathway and activates pro-inflammatory signaling, and
because HSV-1 infection with the anti-gD group does not work in this way, are supportive to
this hypothesis. Further, in HSV-1 infection with the anti-HVEM group, higher expressions
of various pro-inflammatory factors, including members of the IFN family, suggest that
the activating effect of HVEM by gD is similar to that by the specific antibody against
HVEM. These results imply that the innate immune response and inflammatory reactions
associated with epithelial dendritic cells are directly and/or indirectly altered, possibly
leading to persistent viral proliferation in local tissue with less interference by the host and
lesser inflammatory lesions in the acute phase of infection. This process may explain the
characteristic pathologic process and attenuation of the immune response in HSV-1-infected
patients in the clinic. Our observation of a severe inflammatory reaction in epithelial tissue
during the acute phase, and the enhancement of antiviral immunity during the recovery
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phase in HVEM ~/~ mice but not in C57BL/6 mice, suggests the later had a certain balance
resulting from the interaction between viral infection and the host response. Although the
pathological and clinical outcomes of HSV-1 infection in the acute phase are mild because
of the viral takeover of the host innate immune response through the infection of dendritic
cells, the final result is the widespread infection of the cell population with this virus. Thus,
the virus is seemingly the winner over the immune system. In summary, our work reveals
a mechanism by which HSV-1 restrains the host immune system through its infection of
dendritic cells and the modification of their immune activity. This mechanism increases the
likelihood that the virus will survive and spread in exchange for lesser pathologic lesions
in the host.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/v14051046/s1, Figure S1: Analysis of HVEM gene deficiency
by nucleic acid electrophoresis and western blot. Figure S2: Analysis of the viral titer in dendritic
cells from the skin and bone marrow of C57BL/6 and HVEM~/~ mice infected with HSV-1 and
cultured in vitro at different time points. Figure S3: Analysis of the transcription levels of various
signaling molecules and transcription factors related to T-cell proliferation in the lymph nodes. Table
S1: Primers used for quantitative RT-PCR in the study.
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