
����������
�������

Citation: Hadj Hassine, I.; Ben

M’hadheb, M.; Menéndez-Arias, L.

Lethal Mutagenesis of RNA Viruses

and Approved Drugs with Antiviral

Mutagenic Activity. Viruses 2022, 14,

841. https://doi.org/10.3390/

v14040841

Academic Editor: Graciela Andrei

Received: 22 February 2022

Accepted: 13 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Review

Lethal Mutagenesis of RNA Viruses and Approved Drugs with
Antiviral Mutagenic Activity
Ikbel Hadj Hassine 1 , Manel Ben M’hadheb 1 and Luis Menéndez-Arias 2,*

1 Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de
Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; hadj_hassine_ekbell@yahoo.fr (I.H.H.);
benmhadhebmanel@yahoo.fr (M.B.M.)

2 Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad
Autónoma de Madrid), 28049 Madrid, Spain

* Correspondence: lmenendez@cbm.csic.es

Abstract: In RNA viruses, a small increase in their mutation rates can be sufficient to exceed their
threshold of viability. Lethal mutagenesis is a therapeutic strategy based on the use of mutagens,
driving viral populations to extinction. Extinction catastrophe can be experimentally induced by
promutagenic nucleosides in cell culture models. The loss of HIV infectivity has been observed
after passage in 5-hydroxydeoxycytidine or 5,6-dihydro-5-aza-2′-deoxycytidine while producing a
two-fold increase in the viral mutation frequency. Among approved nucleoside analogs, experiments
with polioviruses and other RNA viruses suggested that ribavirin can be mutagenic, although its
mechanism of action is not clear. Favipiravir and molnupiravir exert an antiviral effect through lethal
mutagenesis. Both drugs are broad-spectrum antiviral agents active against RNA viruses. Favipiravir
incorporates into viral RNA, affecting the G→A and C→U transition rates. Molnupiravir (a prodrug
of β-D-N4-hydroxycytidine) has been recently approved for the treatment of SARS-CoV-2 infection.
Its triphosphate derivative can be incorporated into viral RNA and extended by the coronavirus RNA
polymerase. Incorrect base pairing and inefficient extension by the polymerase promote mutagenesis
by increasing the G→A and C→U transition frequencies. Despite having remarkable antiviral action
and resilience to drug resistance, carcinogenic risks and genotoxicity are important concerns limiting
their extended use in antiviral therapy.

Keywords: lethal mutagenesis; error catastrophe; nucleoside analogs; ribavirin; favipiravir; molnupiravir;
RNA polymerase; SARS-CoV-2; HIV

1. Quasispecies and Lethal Mutagenesis

Many viruses evolve rapidly [1]. Their compact genomes, high mutation rates, short
replication times, and large population sizes are responsible for the generation of highly
variable populations forming mutant swarms known as viral quasispecies [1]. A viral
quasispecies refers to a population structure containing a large number of variant genomes
with nonidentical, but closely related, mutant and recombinant genomes [2]. Also known
as mutant spectra, mutant swarms, or mutant clouds, their composition and dynamics
are continuously changing as viral replication and selection proceed. Mutant spectra
containing related minority variants at low frequencies constitute phenotypic reservoirs
and are well suited to respond to changing environments, a trait that is most relevant to
viral populations.

The quasispecies concept was introduced by Eigen and Schuster in the 1970s to
explain the self-organization and evolution of primitive RNA (or RNA-like) replicons when
these molecules emerged from a mixture of prebiotic chemicals on the early Earth and
began to replicate at the onset of life [3,4]. The existence of RNA virus quasispecies was
independently demonstrated after studying the evolution of Escherichia coli bacteriophage
Qβ RNA using a cell-free system [5]. The bacteriophage Qβ RNA is a small, single-stranded
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(ss)RNA that replicates through a double-stranded (ds)RNA intermediate. Qβ RNA can
be replicated autocatalytically in vitro, while the sequence and composition of newly
synthesized products depend on the fidelity of the Qβ replicase, nucleotide pools, metal
cations, temperature, and speed of replication [6,7]. The mutation rates calculated for phage
Qβ populations were estimated at around 10−4 per copied nucleotide, well above the rates
calculated for DNA viruses and microorganisms [8,9].

Error catastrophe could be defined as a cumulative loss of genetic information in a
lineage of organisms due to high mutation rates. The process leading to viral extinction
through the accumulation of errors is known as lethal mutagenesis. Error catastrophe
occurs when the mutation rate exceeds an error threshold. Viruses and bacteria have
evolved to maintain a characteristic error rate. RNA viruses have very high mutation rates
and replicate near the error threshold for the maintenance of genetic information [10]. A
modest 1.1- to 2.8-fold increase in their mutation frequency can be sufficient to enter error
catastrophe, as shown for vesicular stomatitis virus and poliovirus [11].

Lethal mutagenesis is an antiviral strategy that aims at extinguishing a virus by
increasing the viral mutation rates during replication, usually through the use of mutagenic
nucleoside analogs [12] (Figure 1).
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The term ‘lethal mutagenesis’ was coined in 1999 by Loeb and colleagues after showing
that exposing the human immunodeficiency virus type 1 (HIV-1) LAI strain to 1 mM
5-hydroxydeoxycytidine (Figure 1) led to the loss of viral titer after 24 sequential passages
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in cell cultures [13]. The sequencing of part of the HIV-1 reverse transcriptase (RT) coding
region of the penultimate passage prior to extinction revealed 2.6- and 5-fold increases in
the frequency of A-to-G transitions (A→G) in two separate experiments [13]. These results
stimulated further studies addressing the potential of mutagenic nucleoside analogs as
antiviral agents driving viral populations to extinction. The other compounds shown in
Figure 1 have been tested in HIV-1 and other RNA viruses, as well as in hepatitis B virus,
with variable efficacies. In addition, virological and biochemical studies have demonstrated
that the antiviral effect of approved drugs, such as ribavirin, favipiravir, and, more recently,
molnupiravir, is due (at least in part) to their mutagenic action. Their chemical structures
are shown in Figure 2. In this review, we discuss these studies and their implications for
the further improvement of this antiviral strategy.
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2. Mutation Rates and Fidelity of Viral Polymerases

The mutation rates vary considerably among viruses [14,15]. While DNA viruses
exhibit mutation rates ranging between 10−8 and 10−6 substitutions per nucleotide per cell
infection, RNA viruses have mutation rates in the order of 10−6 to 10−4 [14,16]. A high
replication rate combined with a high mutation rate allows RNA viruses to explore the
sequence space and evade the immune system, even in situations where the majority of the
viral progenies are nonviable [17].

Reverse-transcribing RNA viruses, such as retroviruses, use the viral RT to convert
their ssRNA genomes into dsDNA, which is then integrated into the host genome and
replicated along with it by eukaryotic DNA polymerases [18]. The mutation rates caused
by the inactivation of a reporter gene range from 2 × 10−5 to 6 × 10−6 per nucleotide
and replication cycle for many retroviruses, such as spleen necrosis virus, Rous sarcoma
virus, murine leukemia virus (MLV), bovine leukemia virus, HIV-1, and human T-cell
leukemia virus I (reviewed in [19]). O’Neil et al. [20] reported a mutation rate for HIV-1 of
8.5 × 10−5 mutations per base pair and replicative cycle, based on the variability observed
at the long terminal repeats of the viral genome. In their study, the authors concluded
that HIV-1 mutagenesis results from nucleotide misincorporation by the viral RT, although
some contribution of the host RNA polymerase cannot be excluded.

Retroviral RTs lack a proofreading 3′–5′ exonuclease domain and have a relatively
high propensity to extend mispaired 3′ ends when synthesizing viral DNA (reviewed
in [21]). In addition, viral and host cells may also contribute to the observed variability
in different retroviruses. Thus, feline immunodeficiency virus (FIV), equine infectious
anemia virus (EIAV), mouse mammary tumor virus (MMTV), and Mason-Pfizer money
virus (MPMV) encode a dUTP pyrophosphatase (dUTPase) within their genomes [22,23].
These enzymes reduce the mutation levels by preventing the incorporation of uracil into
the viral genome, thereby safeguarding efficient reverse transcription [24]. In HIV-1,
single-cycle replication assays using the lacZα gene as a mutational target showed that
the deletion of the vpr gene produced a four-fold increase in the viral mutation rate [25].
On the other hand, apolipoprotein B mRNA-editing, catalytic polypeptide-like enzymes
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(APOBEC3) are cytidine deaminases of the host cell that cause hypermutations of nascent
retroviral genomes by the deamination of cytidine residues [26,27]. APOBEC proteins are
encapsidated within the virion, but the viral protein Vif suppresses their mutagenic effects
by promoting APOBEC degradation in the ubiquitin-proteasome pathway (for a review,
see [28]).

The HIV-1 RT is a heterodimer composed of subunits of 66 and 51 kDa. The large
subunit contains an RNase H domain at its C-terminal end that is absent from p51. The
RNase H activity of the HIV-1 RT degrades the RNA strand in the RNA/DNA duplexes
formed during reverse transcription (for a review, see [18]). The DNA polymerase active site
of the enzyme is located in the 66-kDa subunit and contains the catalytic residues Asp110,
Asp185, and Asp186. The polymerase domain shares a subdomain arrangement found
in many polymerases consisting of fingers, palm, and thumb subdomains, and a series of
conserved motifs (A, B, C, D, and E) contributing key residues of the nucleotide-binding
site [18]. In the fingers subdomain of p66, the incoming dNTP is tightly coordinated by the
side-chains of Lys65 and Arg72, the main chain amido groups of Asp113 and Ala114, and
two magnesium cations. Tyr115, Phe116, and Gln151 are additional residues delineating
the dNTP binding pocket. Site-directed mutagenesis studies have shown that Lys65 has
a major influence on the fidelity of HIV-1 RTs. Its substitution by Arg rendered enzymes
with increased fidelity of DNA synthesis in HIV-1 M and O strains [29,30]. On the other
hand, the substitution of Ala for Tyr115 conferred a mutator phenotype, as demonstrated
by using enzymatic and cell-based assays [31–33].

HIV and other retroviruses evolve at rates similar to those of non-reverse transcribing
RNA viruses (often referred to as riboviruses). Riboviral RNA-dependent RNA poly-
merases (RdRps) share the classical fingers–palm–thumb subdomain arrangement and lack
3′ exonuclease proofreading activity [34,35]. Notable exceptions are members of the Nidovi-
rales order, including coronaviruses, a family of positive-strand RNA viruses encoding an
RdRp complex (nsp7/(nsp8)2/nsp12) that associates with a protein subunit (nsp14) with 3′

exonuclease activity (for recent reviews, see [36,37]). The coronavirus genomes are among
the largest known for RNA viruses, ranging from∼26–32 kbp [38]. The amino-terminal half
of SARS-CoV nsp14 (59 kDa) contains active site residues (Asp90, Glu92, Glu191, Asp273,
and His268) also found in the cellular enzymes of the DEDD superfamily, including those
that catalyze DNA proofreading. The substitution of Ala for Asp90 or Glu92 in SARS-CoV
and the equivalent positions of murine hepatitis virus (MHV) rendered viable mutants that
showed 15- to 20-fold increases in mutation rates, and were up to 18 times greater than
those tolerated for fidelity mutants of other RNA viruses [39,40].

3. Driving HIV into Error Catastrophe and Preliminary Clinical Development of
KP1212/KP1461 as an Antiretroviral Agent Causing Lethal Mutagenesis

Available evidence in the late 1990s suggested that a small increase in the mutation
rate of HIV could lead to error catastrophe and viral extinction [11]. Nucleoside analogs
(e.g., 3′-azidothymidine (AZT), 5-azacytidine, and 5-hydroxydeoxycytidine) (Figure 1) have
been shown to effectively increase the mutation rates of several retroviruses, including
spleen necrosis virus, MLV, FIV, and HIV-1 [41–45] (Table 1). These effects were consistent
with an observed increase in the frequencies of G→C transversions (5-azacytidine) or G→A
transitions (3′-azidothymidine). Interestingly, 5-azacytidine promotes G→C hypermutage-
nesis in HIV-1, but not in oncoretroviruses (e.g., MLV or feline leukemia virus) [46]. The
mutagenic effect is enhanced by the conversion of 5-azacytidine into 5-aza-2′-deoxycytidine,
which promotes G→C transversion during reverse transcription [47]. However, enzymatic
assays have shown that, unlike the HIV-1 RT, the MLV RT is able to incorporate 5-aza-2′-
deoxycytidine-triphosphate while inhibiting the polymerization reaction by introducing
pause sites and reducing the amount of fully extended product [46].
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Table 1. Mutagenic nucleosides and their mutational effects on HIV-1.

Mutagenic Nucleoside Increase in
Mutation Frequency Mutational Preference References

5-azacytidine 2.3-fold G/C transversions [45,47]
5-fluorouracil <1.5-fold A/G, U/C transitions [48]
5-hydroxymethyl-2′-deoxycytidine 3.4-fold G→A, G→T [49]
5-hydroxymethyl-2′-deoxyuridine 3.1-fold A→G, G→C [49]
Decitabine (5-aza-2′-deoxycytidine) 4.1-fold G/C transversions [50]
Gemcitabine (2,2(′)-difluoro-2(′)-deoxycytidine) <1.5-fold [48]

As of today, nucleoside analogs were widely used in the late 1990s for the treatment of
HIV infection [51,52]. In this context, five nucleosides were initially tested as potential lethal
mutagenesis agents against HIV-1: 5-hydroxydeoxycytidine, O4-methylthymidine, O6-
methyldeoxyguanosine, 8-aminodeoxyguanosine, and 8-oxodeoxyguanosine [13]. These
nucleoside analogs were selected because they were phosphorylated in human cells and
then incorporated into DNA by HIV-1 RT while being resistant to the action of host cell
DNA repair systems. Of course, a very important property of these molecules is their
ability to generate mismatched base pairs when incorporated into DNA. Mismatches are
commonly due to the tautomerization of bases during DNA replication and result in the
generation of mutations.

Viral extinction associated with increased mutagenesis was observed only in the ex-
periments carried out with 5-hydroxydeoxycytidine [13]. However, hypermutation was
detected, but only in a few clones passaged in the presence of O4-methylthymidine. Al-
though this experiment provided a proof of principle for lethal mutagenesis, the results
were not easily reproduced, probably due to the strict experimental requirements intro-
duced in those experiments. Thus, Tapia et al. [53] were unable to extinguish the high-fitness
HIV-1 isolate F96 after 16 serial passages in peripheral mononuclear cells (PBMCs) or MT-4
cells in the presence of 2 mM 5-hydroxydeoxycytidine. However, systematic extinction of
HIV-1 was observed when a combination of the mutagenic agent (5-hydroxydeoxycytidine)
and the antiretroviral drug 3′-azido-3′-deoxythymidine (AZT) was used. Despite the low
concentration of AZT (0.01 µM) used in these experiments, extinction due to the expected
mutagenic effect of 5-hydroxydeoxycytidine was not demonstrated, since the mutation
frequencies in pre-extinction passages remained unchanged. At sublethal doses, AZT
has no significant effect on frameshifts and most base substitution mutations. However,
recent studies showed that AZT and other chain-terminating nucleoside RT inhibitors
(e.g., 2′-3′-didehydro-3′-deoxythymidine (stavudine) and 2′-3′-dideoxyinosine (didano-
sine)) are mutagenic for template-switch-generated genetic mutations [54].

The screening of potential mutagenic nucleosides led to the selection of 5,6-dihydro-5-
aza-2′-deoxycytidine (KP1212) (Figure 1), another deoxycytidine analog that extinguished HIV
in culture after 13 passages [55]. KP1212, and its prodrug KP1461 (Figure 1), are prototypes of
a new class of antiretroviral drugs designed to increase the viral mutation rates. The cloning
and sequencing of HIV-1 RT-coding regions and the V3 loop in the envelope gene from the
eleventh passage indicated that KP1212 at 10 µM enhanced the mutation frequencies by
1.5- and 1.9-fold, respectively [12,55]. A→G and C→T transitions were the most frequent
mutations. These observations were consistent with the existence of a broad ensemble of
interconverting tautomers of KP1212, among which enolic forms dominated [56]. It was found
that KP1212 paired with both A (10%) and G (90%), in agreement with data obtained in cell
culture experiments. KP1461 entered clinical trials, and, at phase 2, individuals previously
treated with antiretroviral drugs received 1600 mg of KP1461 twice per day for 124 days.
As expected, KP1461 treatment resulted in a significant increase in transition mutations,
especially G→A and A→G [57]. KP1416 was safe and well-tolerated, but its development
into an antiretroviral drug was halted due to inconsistent antiviral activity. Further attempts
to improve its efficiency still remain at an investigational level.
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HIV mutagenesis can be also modulated by ribonucleotide reductase inhibitors, such
as hydroxyurea or resveratrol [58]. These compounds are small nonnucleosidic molecules
that alter the dNTP pools, therefore interfering with polymerase fidelity. Their effects in
mutagenesis have been investigated in experiments using gemcitabine [2,2(′)-difluoro-2(′)-
deoxycytidine] and clofarabine [(2′S)-2′-deoxy-2′-fluoro-2-chloro-adenosine] as deoxynu-
cleoside analogs (Figure 1) [58–61]. It has been noted that 5-azacytidine has anti-HIV-1
activity (i.e., EC50 around 200 nM) and low cytotoxicity, and it has been shown to act in
synergy with gemcitabine and resveratrol [62,63]. The EC50 values obtained for HIV-2 inhi-
bition with 5-azacytidine, clofarabine, and resveratrol were significantly lower than those
obtained with HIV-1 [64]. These findings were consistent with the higher susceptibility
of HIV-2 RT to dNTP pool alterations [18,65] and suggest that HIV-2 is more susceptible
to lethal mutagenesis, particularly when the antiviral agent is combined with a ribonu-
cleotide reductase inhibitor, such as resveratrol. In addition, studies carried out in HIV-1
cell cultures have shown that gemcitabine or resveratrol promote the mutagenic activity of
KP1212 by increasing the frequency of G→C transversions [59].

As in retroviruses, Hepadnaviridae replicate through the reverse transcription of an
RNA intermediate. Experiments in vitro have shown that 5-aza-2′-deoxycytidine and
5-azacytidine are able to eliminate hepatitis B virus transfer to target cells. Both nucleosides
induced mutagenesis during relaxed circular DNA (rcDNA) formation while reducing the
amount of viral DNA synthesis during rcDNA formation and the conversion of rcDNA to
covalently closed circular DNA (cccDNA) [66]. Consistent with HIV-1, in these studies, an
antiviral drug synergy was also observed between 5-aza-2′-deoxycytidine or 5-azacytidine
and gemcitabine.

4. Lethal Mutagenesis in Non-Retroviral RNA Viruses: An Overview of Studies
Showing the Effects of Base and Nucleoside Analogs

The introduction of lethal mutagenesis as a plausible antiviral strategy led researchers
to test whether known mutagenic nucleosides and available antiviral drugs could promote
mutagenesis in many different viruses. RNA viruses show high mutation rates and are
particularly sensitive to the genetic meltdown expected by the increase in the mutation
frequencies. As mentioned above, early work by Holland and colleagues using polioviruses
and vesicular stomatitis virus showed that a modest increase (1.1- to 2.8-fold) in the
mutation frequency would be sufficient to decrease viral titers more than 100-fold [11,67].
Since then, several mutagenic nucleoside analogs have been tested in cell culture and
animal models in order to evaluate their antiviral efficacy and mechanism of action.

Numerous studies have shown that single-stranded RNA viruses can be extinguished
by increasing their mutation rate during replication using different base and nucleoside
analogs (Table 2). However, we are not aware of similar studies carried out with double-
stranded RNA viruses (e.g., reoviruses, birnaviruses, and others). In general, 5-fluorouracil
(Figure 1), ribavirin, favipiravir, and, more recently, β-D-N4-hydroxycytidine (molnupiravir)
(Figure 2) appear as the most effective compounds inducing lethal mutagenesis. The last
three drugs have been approved for clinical use in different countries. Although they
have broad-spectrum activity, there are important concerns about their efficacy and side
effects due to their mutagenic properties. Thus, Zhou et al. [68] recently demonstrated that
treatment with β-D-N4-hydroxycytidine can induce mutations in the host cell DNA. Inside
the cell, ribonucleotide reductases catalyze the conversion of β-D-N4-hydroxycytidine to
the 2′-deoxyribonucleotide form than can be then incorporated into DNA while inducing
mutagenesis in the host. Therefore, the development of reliable genotoxicity assays will be
critical for the establishment of lethal mutagenesis as an antiviral strategy.
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Table 2. Studies showing lethal mutagenesis in single-stranded RNA viruses grown in the presence
of mutagenic base and nucleoside analogs.

Virus Names Family/Genus Mutagenic Base and Nucleoside Analogs Refs.

Positive-strand RNA viruses

-

Poliovirus Picornaviridae/Enterovirus Ribavirin, 5-nitrocytidine,
6-(β-D-ribofuranosyl)-3,4-dihydro-8H-pyrimido
[4,5-c][1,2]oxazin-7-one, and N-6-substituted
purine analogs (JA28 and JA30)

[69–72]

Coxsackievirus Picornaviridae/Enterovirus Ribavirin, and N-6-substituted purine analogs [72,73]
Encephalomyocarditis virus Picornaviridae/Cardiovirus 5-Fluorouracil [74]
Foot-and-mouth disease virus Picornaviridae/Aphthovirus 5-Fluorouracil, ribavirin, and favipiravir [74–79]
Murine norovirus Caliciviridae/Norovirus Favipiravir [80]
Dengue virus Flaviviridae/Flavivirus 3-Hydroxy-2-pyrazinecarboxamide (T-1105), and

its ribose derivative (T-1106)
[81]

Usutu virus Flaviviridae/Flavivirus 5-Fluorouracil and favipiravir, while ribavirin
effects are less pronounced.

[82]

West Nile virus Flaviviridae/Flavivirus Ribavirin and favipiravir [83,84]
Zika virus Flaviviridae/Flavivirus Ribavirin and favipiravir [82]
GB virus B Flaviviridae/Hepacivirus Ribavirin [85]
Hepatitis C virus Flaviviridae/Hepacivirus Ribavirin and favipiravir [86–92]
Hepatitis E virus Hepeviridae/Orthohepevirus Ribavirin [93]
Venezuelan equine
encephalitis virus

Togaviridae/Alphavirus β-D-N4-hydroxycytidine (molnupiravir) [94]

SARS-CoV-2 Coronaviridae/Betacoronavirus Favipiravir and β-D-N4-hydroxycytidine
(molnupiravir)

[68,95,96]

Tobacco mosaic virus Virgaviridae/Tobamovirus 5-Fluorouracil [97]
Negative-strand RNA viruses

Influenza A virus Orthomyxoviridae/
Alphainfluenzavirus

Ribavirin, 5-azacytidine, 5-fluorouracil, and
β-D-N4-hydroxycytidine (molnupiravir)

[98,99]

Vesicular stomatitis virus Rhabdoviridae/Vesiculovirus 5-Fluorouracil [74,100]
Hantaan virus Hantaviridae/Orthohantaviridae Ribavirin [101,102]
Rift Valley fever virus Phenuiviridae/Phlebovirus Favipiravir [103]
Lymphocytic
choriomeningitis virus

Arenaviridae/Mammarenavirus 5-Fluorouracil [74,104]

Ebola virus Filoviridae/Ebolavirus Favipiravir [105]
Marburg virus Filoviridae/Marburgvirus Favipiravir [105]

5. Mutagenic Effects of Ribavirin

Ribavirin [1-(β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide] (Figure 2) exhibits broad-
spectrum antiviral activity against DNA- and RNA-based viruses. Despite being widely
used in clinics for almost five decades, its efficacy has only been established for chronic
hepatitis C virus infection, chronic hepatitis E virus infection in transplant recipients, and
respiratory syncytial virus infection in infants and immunocompromised elderly patients.
In addition, it is used to treat infections causing hemorrhagic fevers (e.g., Lassa fever,
Crimean–Congo hemorrhagic fever, and Hantavirus infection), although it has very poor
activity against filoviruses, such as Ebola or Marburg viruses [106,107].

The mechanism of action of ribavirin has remained largely elusive, probably due to
the multiple targets of the drug [108,109]. These mechanisms include host-targeted effects,
such as the inhibition of inosine monophosphate dehydrogenase (IMPDH) by ribavirin
5′-monophosphate (RMP), host immune response modulation (including the regulation
of interferon-stimulated gene expression), and inhibition of translation initiation, through
ribavirin binding to the translation initiation factor 4E (eIF4E) or enzymes responsible for
RNA cap synthesis [110]. Interestingly, the lack of viral RNA capping triggers the antiviral
host immune response by the recognition of a foreign viral RNA. IMPDH plays a key role in
guanine nucleotide biosynthesis by catalyzing the conversion of inosine 5′-monophosphate
into xanthine 5′-monophosphate, an intermediate in the de novo synthesis of guanosine.
IMPDH regulates intracellular GTP pools necessary for RNA synthesis, and this could
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explain the activity of ribavirin against both DNA and RNA viruses [111]. However,
nucleotide pool alterations due to IMPDH inhibition have a relatively small effect on the
increased mutation frequencies observed during ribavirin treatments, as demonstrated for
foot-and-mouth disease virus infections in cell cultures [75].

Viral replication is also a target of ribavirin. Thus, viral RNA-dependent RNA poly-
merases can be inhibited directly by ribavirin 5′-triphosphate (RTP) or can be incorporated
(as RMP) into the viral genome, leading to viral mutagenesis [108]. Ribavirin does not have
modifications in its sugar moiety and it is not clear how RMP incorporation inhibits RdRp.
Ribavirin decreases viral RNA synthesis in infected cells, while in vitro studies have also
demonstrated that the drug inhibits the polymerases of influenza A virus, hepatitis C virus,
and vesicular stomatitis virus [112]. Studies carried out with poliovirus RdRp showed
that RMP incorporation occurs opposite both template cytidine and uridine template
residues [69,113]. Virological studies with poliovirus showed that ribavirin-mutagenized
genomes had a 600-fold increase in G→A and C→U transition mutations [69]. C→U
mutations would be a consequence of the incorporation of RTP as a GTP analog during
negative-strand RNA synthesis. The effects of ribavirin as a lethal mutagen have been
extensively studied in hepatitis C virus [74–78], but have also been demonstrated for other
RNA viruses (Table 2).

The early studies with poliovirus suggested that the virus could develop resistance
to ribavirin. However, the analysis of the polymerase-coding sequence of virus grown in
the presence of 0.8 mM ribavirin showed that conserved motifs C–E remained unchanged,
while some variability was observed at motifs A and B [114]. The passage of poliovirus
in cell cultures in the presence of ribavirin led to the selection of G64S. This mutation
is located at the fingers subdomain of the viral RdRp (Figure 3A). Ribavirin-resistant
poliovirus displays increased fidelity of RNA synthesis in the absence of ribavirin, as well
as increased survival in the presence of ribavirin and in the presence of 5-azacytidine [115].

Unexpectedly, the equivalent substitution in the RNA polymerase of foot-and-mouth
disease virus (i.e., G62S) was never selected when the virus was passaged in the presence
of ribavirin and was not detected as a minority variant in the mutant spectra of the virus
that replicated in the absence or presence of ribavirin or other mutagenic agents [75,77].
Instead, P44S, P169S, and M296I in the RdRp of foot-and-mouth disease virus (serotype C)
were shown to confer different levels of ribavirin resistance [77,78,116] (Figure 3B), while
selection studies with the drug using hepatitis C virus replicons selected for P415Y in the
thumb subdomain of the polymerase [117]. However, this substitution did not lead to
treatment failure in infected patients treated with interferon and ribavirin, or to ribavirin
resistance in cell culture assays [118,119]. More recently, Mejer et al. [120] showed, in a
hepatitis C virus genotype 3a cell-culture-adapted strain, that certain combinations of
mutations selected in patients treated with ribavirin (e.g., D148N/I363V, A150V/I363V,
and T227S/S183P) conferred resistance, possibly by increasing the overall fidelity of the
viral polymerase as a putative mechanism for ribavirin resistance. Although the structural
basis of ribavirin resistance is still uncertain, many of the involved mutations are located at
the periphery of the nucleotide entry site in the predicted polymerase structure.
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Figure 3. Poliovirus (A) and foot-and-mouth disease virus (B) RdRp structures showing the location
of motifs A–D and residues relevant for ribavirin binding and resistance. Locations of motifs A, B, C,
and D are shown in orange, yellow, blue, and magenta, respectively [34,121]. Spheres are used to
represent the location of relevant amino acid substitutions. Crystal structures were taken from PDB
files 2ILY (poliovirus RdRp) and 1U09 (foot-and-mouth disease virus RdRp).

Apart from the structural constraints and mechanisms affecting ribavirin incorporation
and nucleotide selectivity by the viral RdRp, it should be noted that viral fitness might
be an important factor contributing to the viral response to lethal mutagenesis. Cell
culture studies with hepatitis C virus showed that high-fitness viral quasispecies showed
resistance to ribavirin and favipiravir without modifying the mutation-type bias typical
of those mutagens, probably by limiting the expansion of their mutational spectra [122].
Although ribavirin has been extensively used for various decades, its interaction with the
host cell machinery results in poor selectivity and toxicity, yielding undesirable side effects,
including severe anemia.

6. Favipiravir as a Lethal Mutagenesis Agent

Favipiravir (6-fluoro-3-oxo-3,4-dihydropyrazine-2-carboxamide, T-705) (Figure 2) is
an antiviral drug used in Japan to treat influenza. Favipiravir is a prodrug whose active
form (favipiravir-ribofuranosyl-5′-triphosphate) mimics both guanosine and adenosine as
substrates of viral RdRPs. It has a broad-spectrum antiviral effect, and, apart from influenza
virus, favipiravir is also able to inhibit the replication of flavi-, alpha-, filo-, bunya-, arena-,
noro-, and other RNA viruses, including neglected and (re)emerging viruses for which no
antiviral therapy is currently available [123,124].

Enzyme kinetic analysis with influenza A virus RdRp demonstrated that favipiravir-
ribofuranosyl-5′-triphosphate inhibited the incorporation of ATP and GTP in a competitive
manner [125,126]. In addition, the incorporation of favipiravir into the nascent RNA strand
as a purine nucleotide analog inhibited its further extension [125]. Cell culture studies with
influenza A H1N1 viruses showed that favipiravir treatment produced an increased number
of G→A and C→T mutations, suggesting that the favipiravir-ribofuranosyl-5′-triphosphate
base pairs with either cytosine or uracil [127]. The increased mutation frequency is also
dose-dependent, demonstrating that favipiravir is also a lethal mutagen. Therefore, the com-
bination of ambiguous base-pairing with low discrimination of favipiravir-ribofuranosyl-
5′-triphosphate is a key factor contributing to the mutagenic effect of favipiravir.

Evidence of the mutagenic effects of favipiravir in infected animals was reported after
studying norovirus infections in a mouse model [80]. Viral RNA isolated from treated
animals showed reduced infectivity, while a five- to six-fold increase in mutation frequency
was obtained after the sequence analysis of individual molecular clones isolated from
populations subjected to four passages in the presence of a drug concentration of 200 µM.
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Interestingly, these increases were higher than those obtained with ribavirin in parallel
experiments (estimated at around three-fold). Favipiravir treatments led to a slight increase
in the A→G and U→C transition rates in these assays. The study by Arias et al. [80]
constitutes a proof of concept for lethal mutagenesis in vivo, supporting antiviral therapies
based on mutagenic compounds at the clinical level. Table 2 shows several examples
of viruses where favipiravir has been successfully used to extinguish the virus through
lethal mutagenesis, with a concomitant excess of G→A and C→U transitions in the mutant
spectrum of preextinction virus populations [91,92,95,103], although these preferences
were not always predominant, as reported for favipiravir extinction experiments with
foot-and-mouth disease virus [79] and West Nile virus [84].

The heterotrimeric influenza virus polymerase, containing the PA, PB1, and PB2
proteins, catalyzes viral RNA replication and transcription in the nucleus of infected cells.
Studies with H1N1, H3N2, and H7N9 strains of influenza A virus showed that K229R in the
catalytic PB1 subunit confers favipiravir resistance while impairing viral replication [128].
K229R reduced the mutagenic effect of favipiravir at a cost to growth, but this effect could
be alleviated by P653L in the PA subunit. The combination of both mutations led to a
virus that was 30-fold less susceptible to favipiravir relative to the wild-type virus and not
impaired in replication kinetics [128]. Although the clinical relevance of these mutations
is unclear, studies with ferrets have shown the transmissibility of the favipiravir-resistant
strains in vivo [129].

Favipiravir resistance has also been mapped in the RNA polymerases of chikungunya
virus (i.e., K291R) [130] and enterovirus 71 (i.e., S121N) [131], although the antiviral effects
were assessed in replication assays and the mutation frequencies were not determined.
Favipiravir has been approved for COVID-19 treatment in Russia, but there is no evidence
of resistance so far. Based on the structural information of SARS-CoV-2 RdRp bound to
favipiravir-ribofuranosyl-5′-triphosphate [132] and the variability observed in circulating
viruses, a number of residues have been predicted as potentially involved in favipiravir
resistance [133]. However, the phenotypic effects on resistance caused by the proposed
substitutions are still being investigated.

One of the major limitations to the use of favipiravir is its relatively low bioavailability,
resulting in relatively low plasma concentrations of the drug. This is apparently due to
its short half-life caused by rapid renal elimination. Strategies to increase its potency are
needed, particularly considering its strong antiviral effect against different viruses and
in different animal models (most notably, mice, Guinea pigs, and non-human primates)
(reviewed in [112]). Despite these limitations, Clinicaltrials.gov (accessed on 10 April 2022)
currently includes more than one hundred clinical trials testing the efficacy of favipi-
ravir alone or in combination with other drugs (https://clinicaltrials.gov/, accessed on
10 April 2022). Most of these trials (>85%) evaluate the efficacy of favipiravir as a drug
against SARS-CoV-2, although there are trials where the compound has been tested against
influenza, Ebola, or Lassa virus infections.

7. Molnupiravir as a Broad-Spectrum Antiviral Drug Effective against SARS-CoV-2

Molnupiravir (EIDD-2801, MK-4482) is the isopropylester prodrug of the nucleoside
derivative β-D-N4-hydroxycytidine (NHC, EIDD-1931) (Figure 2). The triphosphorylated
form of β-D-N4-hydroxycytidine is a substrate of RdRps and interferes with viral replication.
Molnupiravir is a broad-spectrum antiviral compound that inhibits multiple viruses in cell
culture. Examples of molnupiravir-susceptible viruses are Chikungunya virus, Venezuela
equine encephalitis virus, respiratory syncytial virus, hepatitis C virus, norovirus, influenza
A and B viruses, Ebola virus, and human coronaviruses [94,96,99]. Currently in phase
2/3 clinical trials, molnupiravir has been approved in Britain for the clinical treatment
of SARS-CoV-2 infections. In cell culture assays, SARS-CoV-2 (and the related Middle
East respiratory syndrome (MERS) coronavirus) were found to be effectively inhibited
by submicromolar concentrations of molnupiravir [96,134]. Evidence of its mutagenic
effect was also noted in experiments with SARS-CoV-2 when authors found that β-D-N4-

Clinicaltrials.gov
https://clinicaltrials.gov/
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hydroxycytidine increased the proportion of G→A while inducing C→U transitions after a
single round of infection [96], as well as in MERS coronavirus-infected mice treated with
β-D-N4-hydroxycytidine [135] and influenza virus in animal models [99].

Two papers published in 2021 described the biochemical and structural bases of how
molnupiravir impairs the fidelity of SARS-CoV-2 replication and provokes error catas-
trophe [136,137]. Both labs found that β-D-N4-hydroxycytidine triphosphate competes
effectively with cytidine triphosphate (CTP) for incorporation into the nascent RNA. Mol-
nupiravir is then effectively used as a template in the next round of viral RNA synthesis.
β-D-N4-hydroxycytidine (NHC) forms base pairs with A and G due to the tautomerization
of the cytosine analog [138]. The formation of NHC:G mispairs could lead to RNA synthesis
inhibition [136], but NHC:A base-pairing induces mutagenesis leading to increased G→A
and C→U transition frequencies (Figure 4), in agreement with results obtained in vitro and
in vivo [96,135].

High-resolution cryo-EM structures showed that SARS-CoV-2 RdRp can accommodate
NHC:G and NHC:A mispairs without introducing major distortions in the enzyme’s active
site or the nucleic acid scaffold [137]. Although the prevalence of G→A and C→U transition
mutations can be explained by the incorporation of β-D-N4-hydroxycytidine in the template
strand [136], the low prevalence of A→G transitions found by Sheahan et al. [135] could be
explained if we assume that β-D-N4-hydroxycytidine triphosphate also competes weakly
with UTP during RNA polymerization [137].

The biochemical experiments described above were carried out with the RdRp holoen-
zyme, without the intervention of the exonuclease protein (nsp14) found in the SARS-CoV-2
replicase-transcriptase complex. However, previous studies with the related complexes of
murine hepatitis virus and MERS coronaviruses revealed that β-D-N4-hydroxycytidine is a
potent inhibitor of its exonuclease activity [96].

The efficacy of molnupiravir against SARS-CoV-2 has been observed in animal mod-
els and humanized mice [135,139], while the administration of β-D-N4-hydroxycytidine
to infected ferrets prevented SARS-CoV-2 transmission in untreated and uninfected an-
imals [140]. In October 2021, Merck Sharp & Dohme reported results from the interim
analysis of a phase 3 clinical trial showing that molnupiravir reduced the risk of admis-
sion to hospital or death by approximately 50% in non-hospitalized adults with mild to
moderate COVID-19 and at risk of poor outcomes, although the efficacy was reduced to
roughly 30% when the study was completed [141]. The interim analysis results led to
the approval by the British regulatory agency of Lagevrio (molnupiravir) in November
2021. In December 2021, the U.S. Food and Drug Administration (FDA) also granted an
emergency use authorization to molnupiravir for use in certain populations where other
treatments are not feasible. Further evidence of molnupiravir’s efficacy has been obtained
in a phase 2a clinical trial, where individuals receiving an 800 mg dose of the drug reduced
the viral RNA more rapidly than those receiving a placebo while eliminating the infectious
virus in nasopharyngeal swabs [142]. In addition, molnupiravir retains efficacy in cell
culture and animal models against the original SARS-CoV-2 strains, as well as the later
emerging variants of concern alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2),
and omicron (B1.1.529) [143–145]. An added benefit of molnupiravir is its high genetic
barrier to resistance [96,99].
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hydroxycytidine (NHC)-induced mutagenesis and the inhibition of RNA synthesis. Tautomeric forms
and the base pairing of NHC are shown in the lower-left panel. Illustration based on the experimental
data reported by Gordon et al. [136] and Kabinger et al. [137], and adapted from ref. [146].

A synergistic effect has been reported for molnupiravir and favipiravir in the hamster
model [147]. The synergy was achieved at doses where either drug had demonstrated
antiviral activity. However, so far, favipiravir has shown antiviral activity in the hamster
model, but not in larger animal models or in humans, due to its rapid turnover, and
better ways of administration are required to improve the pharmacokinetics of the drug.
Interestingly, in a recent study, Schultz et al. [148] demonstrated a strong synergistic effect
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of pyrimidine biosynthesis inhibitors (most notably DHODH inhibitors, such as brequinar
or BAY-2402234) with molnupiravir in inhibiting SARS-CoV-2 infection in vitro and in vivo
against emerging strains of SARS-CoV-2. These findings argue in favor of the clinical
testing of molnupiravir in combination with different drugs as part of current efforts aimed
to fight the current pandemic.

Despite evidence showing the efficacy of molnupiravir, there are still concerns about
its use. Getting molnupiravir to patients in a timely way is likely to be problematic, and its
mutagenic potential is a matter of concern. β-D-N4-hydroxycytidine can be metabolized by
the host cell to the 2′-deoxyribonucleoside form by the ribonucleoside reductase and then
incorporated into the host cell’s DNA. The mutagenic effect of β-D-N4-hydroxycytidine has
been shown in animal cell cultures [68]. However, these findings are difficult to confirm in
animal models.

Candidate drugs are subjected to genotoxicity assays with somatic cells to determine
the possibility of mutations or chromosomal abnormalities that could pose a risk to human
health. Pig-a, Big Blue® (cII locus), or MutaTMMouse LacZ are examples of well-established
genotoxicity assays. The reported genotoxicity profile for molnupiravir was negative with
the Big Blue® (cII locus) assay and inconclusive with Pig-a [149]. The Pig-a mutation assay
is a flow cytometry-based assay developed for cells of peripheral blood (e.g., red blood and
white blood cells) that harbor inactivating mutations in the phosphatidyl inositolglycan
class A gene, linked to chromosome X [150]. Furthermore, negative in vivo animal muta-
genicity cannot completely exclude a genetic risk to patients in clinical trials. Therefore,
the human genetic risk of treatment needs to be carefully evaluated for molnupiravir and
other mutagenic nucleosides, since antiviral lethal mutagens have the potential of perma-
nently modifying the genomes of treated patients while causing human teratogenicity or
embryotoxicity [151].

8. Future Directions and Challenges

The development of lethal mutagens faces several challenges. Most notably, the cell
toxicity needs to be very low, particularly in relation to their carcinogenic potential. Similar
to the case of other antivirals, drug resistance is a fundamental issue, not only because it
could lead to drug inactivation, but also because a mutagen could spur the emergence of
novel virus variants with potentially increased pathogenicity and transmissibility. Attempts
to design and develop bona fide lethal mutagens (such as KP1212, for example) have not
been successful and issues related to their efficacy and selectivity need to be addressed.
However, lethal mutagens, such as ribavirin or favipiravir, were approved for clinical use
based on their antiviral efficacy before the demonstration of their mutagenic effect. In the
case of ribavirin, the drug has been used for decades to treat chronic hepatitis C, although
with limited efficacy and adverse side effects. The mutagenic effect of ribavirin has been
demonstrated with several viruses, including hepatitis C virus (Table 2). However, ribavirin
has multiple targets, including enzymes and processes occurring in the host cell, and its
side effects seem to be unrelated to mutagenicity.

Interestingly, favipiravir and molnupiravir act mainly by driving viruses to error
catastrophe. Both compounds have broad-spectrum activity and show some resilience
to drug resistance. Molnupiravir shows a very high genetic barrier to resistance and the
selection of mutants conferring drug resistance has not been successful. However, learning
from experience with HIV and other viruses [52,152], combination therapies should be the
choice for a most efficient treatment and, in the case of COVID-19, further studies will be
necessary to test the efficacy of molnupiravir combined with remdesivir (Veklury) or the
protease inhibitor nirmatrelvir (Paxlovid). Future research efforts should also concentrate
on finding or designing novel, more specific mutagenic agents acting on viral polymerases,
suitable for combination therapies in order to avoid the selection of escape mutants.

Concerns about the potential genotoxicity of lethal mutagens are justified and have to
be carefully addressed. However, in acute infections leading to COVID-19 or flu, the rela-
tively short incubation time limits the extent of the medication and, therefore, the exposure
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to the mutagenic compounds. Reliable assessment of mutagenicity and carcinogenicity
is still complex, since the results obtained in current tests (usually carried out in mice or
rats) are difficult to confirm in primate models or humans. Another issue that is not always
considered in genotoxicity assays is the impact of the drug exposure time. This could
be short in acute viral infections, but long and probably hazardous in chronic infections.
Finally, the prescription of mutagenic nucleosides should take into account long-term
pharmacovigilance. A registry of patients treated with those drugs would be very helpful
for a long-term follow-up of potential adverse effects, including genetic, carcinogenic,
teratogenic, and embryotoxic damage.
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