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Supplemental Figure S1: Kinetics of TEV dissemination in tobacco plants partitioned per individual
plant show variability in leaf infection levels. We plot the data on infection of cells with either or both
variants of TEV for individual leaves of a given plant for 3 (A), 5 (B), 7 (C), or 10 (D) days since infection.
Symbols denote the frequency of infected cells in a leaf with lines connecting measurements in individual
plants. Solid red line denotes average infection per leaf for a given time point.
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Fitted with binomial distribution-based likelihood method

Parameter | Original Alt. Alt. Alt. Alt. Alt. Alt. Alt.
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Iy .0003 .0005 .0004 .00006 .0001 .0006 .0001 .0001
B, 1/day .950 .837 .887 1.289 1.040 1.000 1.037 1.032
X3, 1/day N/A N/A N/A N/A 391 .042 .385 .064
X5, 1/day 167 120 135 775 N/A 1.876 .239 .047
X6, 1/day 1.046 5.489 4.964 8.101 2.275 N/A 2.269 2.251
X7, 1/day .029 .059 465 972 193 .022 N/A N/A
U3 .080 .083 .081 .075 .074 .075 .072 072
Vs .016 .017 .016 .016 .016 011 .016 .016
Ve .224 .223 223 217 .225 .235 219 219
7 .269 276 276 .590 .265 .268 .269 .269
nll 378317 378343 378442

AICLi 756652 756704 756902

Aarc 290 342 540

Supplemental Table S1: Alternative models for viral dissemination fitted to data using binomial
distribution-based likelihood describe the data with different quality based on AIC values. We performed
the same analysis as Table 2 except that models were fitted to data using binomial distribution-based

likelihood.

‘ Param Iy B, 1/day x5, 1/day xs, 1/day xr, 1/day ‘ SSRLog AlCssr,,, Aarc ‘
‘ Fixed n ‘ ‘ T Ts Ts T n ‘ ‘
| 0.0005  0.829 0.061 0.724 0032 5762 4.194 5192  7.654  7.122 | 52.960 -13 3|
‘ Fixed T' ‘ ‘ n3 ns ng ny T ‘ ‘
| 0.00008  2.518 0.049 0.835 0055 3524 6.017 3.659 182E+00 32 | 53.073 -13 3|
‘ Fixed n,T ‘ ‘ T n ‘ ‘
| 0.001 0.673 0.025 0.602 0.068  6.127 9.316 | 67.555 0 16 |

Supplemental Table S2: A mathematical model assuming that virus dissemination is influenced by the
leaf-specific and systemic immunity can describe the experimental data. We changed the original, Tromas
et al. [14] model by assuming the time-dependent and leaf-dependent Sy function (Alternative model 9, see
eqn. (17)) and fitted the model to the data using least squares with a logarithmic transform eqn. (35). In
fits we either varied the time (7}%) at which Sy declines to zero, the Hill coefficient (nj) which determines
the speed at which Sy declines to zero, or both parameters being independent of the leaf number (k).
The resulting SSRr,y and AICssr,,, values for different model fits are shown (AICs are rounded to the
nearest whole number). We found the following values of the alternative model 8 (eqn. (16)) fits of the data:
SSRLOg = 52.285 and AICSSRLOg = —10.
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Supplemental Figure S2: Shifting original model predictions (found in Tromas et al. [14]) by three days
reasonably well matches experimental data. We integrated the original model (given in eqns. (1)—(3)) using
an ODE solver in python either assuming that infection starts at day 0 (solid lines) or infection starts at
day 3 (dashed lines); data are shown by markers for leaf 3 (A), leaf 5 (B), leaf 6 (C), and leaf 7 (D). By
default, ODE solver in python is initialized by the first time point provided in the data which is day 3 in
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the data set. We overrode the default by forcing the solver to start infection at day O.
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Supplemental Figure S3: The difference between the best performing alternative model 1 (eqn. (4))
and the worst-performing, alternative model 7 (eqn. (15)) is visually small. We fitted the two models
using the least-squares method with a log transformation where zeros were replaced with a limit of detec-
tion model (LOD) value, in this case 5.12 - 107%. The parameters for Alt Model 1 with 95% confidence
intervals are: I = 0.0008 (0.0002,0.0017), 5 = 0.744 (0.554,1.308), x5 = 0.059 (0.033,0.119), x¢ =
8.201 (4.151,13.206), x7 = 0.073 (0.052,0.152), 3 = 0.083 (0.059,0.117), 5 = 0.006 (0.005,0.013), s =
0.204 (0.186,0.227), ¢7 = 0.228 (0.081,0.699). The parameters for Alt. Model 7 with 95% confidence
intervals are: Iy = 0.0005 (2-1076,1-107%), B = 1.159 (0.973,1.898), x3 = 0.286 (0.117,0.645), x5 =
0.050 (0.023,20), xs = 3.263 (2.365,5.890), 13 = 0.051 (0.041,0.069), 15 = 0.005 (0.003,0.008), s =
0.184 (0.143,0.226), 17 = 0.209 (0.081,0.415). The goodness of fit metrics for Alt. Model 1 are: SSRy,q =
51.991 and AICgssg,,, = —16, and for comparison the Alt. Model 7’s metrics are: SSRLog = 56.309 and
AlICssR,,, = —10, giving Asrc = 6.
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Supplemental Figure S4: The simplest 1-alpha coinfection model does not adequately describe coin-
fection data. The l-alpha coinfection model (given by eqns. (18)—(19) and eqn. (21)) assumes that coin-
fection of individual cells by two different strains occurs independently (o = 1) or coinfection may be
more (a > 1) or less (0 < a < 1) likely that infection of an uninfected cell (Figure 2A). Other graph
details are similar to those given in Figure 6. The parameters and 95% confidence intervals for this
model are: Vp = .0006 (.0003,.001), By = .0003 (0.3 x 107°,.001), My = .0001 (.0004,.001), By =
744 (.443,6.178)/day, Bp = .666 (.260,6.580)/day, y5 = .269 (.034,8.76)/day, xs = .939 (.395, 2.292) /day,
x7 = .044 (.015,2.107)/day, ¢35 = .078 (.044,.954), ¢5 = .016 (.006,.028), g = .201 (.156,.267),
7 = .254 (.100,.449), o = 2.332 (.103,5.772).
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Supplemental Figure S5: A python-based tool to study the impact of parameters of a given mathematical
model on the infection rate of a given leaf. By using a function Slider from pylab in python we visualized
the dynamics of cell infection by individual viruses (Venus and BFP) and coinfection of cells by the two
viruses according to the Probabilistic Analytic Model. Parameters of the model can be changed using sliders
resulting in the changed kinetics of virus infection (shown in the left panel), or changes in the predicted
relationships between the degree of coinfection of cells by two viruses (denoted as “Mixed”) and singly
infected cells (Venus or BFP for middle and right panels, respectively). The example shown is for infection
of leaf 6; the code allows to chose any individual leaf for visualization. In all panels data are shown by markers
and predictions of the model by lines. Additional parameters shown are i) the negative log-likelihood (nli,
see eqns. (30)—(33)); ii) the average ratio of the frequency of coinfected cells to singly-infected cells (secant);
iii) the values of the expressions m M and m M evaluated at the rightmost timepoint in the leftmost panel,

in this case t=12 (mu and mu).
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Expansion of the Tromas et al. [14] model

dl
— = BI5Ss,

dt

dI,
=2 B15S5 + x5S513,

dt

dI
=5 _ B16Ss + x656(13 + Is5),

dt

dl
— L = BI;:S7 + x2S:(Is + Is + I).

dt

Alternative formulations of coinfection models

Expansion of the 1-alpha coinfection model (eqns. (18)—(20) and eqn. (21)):

v

dt
4B,

dt
dMs

dt
Vs

dt
4B,

dt
dM;

dt
Ve

dt
dBg
dt
dMg
dt
av;
dt
45;
dt
d M-
dt

Expansion of the 2-alpha coinfection model (eqns. (18)—(20) and eqn. (22)):

By V353,

BpB3Ss,

a(BpV3Bs + By VaBs),

Bv VS5 + X555 V3,

BpBs5Ss5 + X555 Bs,

a(BpVsBs + By Vs Bs),
BvVeSs + x656(Va + Vs),
BpBsSs + X656(Bs + Vs),
a(BpVeBs + By Vs Bs),
BvVzSz + x757(Vs + Vs + Vg),
BpB1S7 + x757(Bs + Bs + Bs),

a(BVeBr + By Vi DBr).
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dvs
dt
dB;
dt
dMs
dt
avs
dt
dBs
dt
dMs
dt
Vs
dt
dBs

dt
dMs

= Pv V353,

= BpBsSs,

= apPpV3Bs + ay Py V3 Bs,
= Bv V555 + X555 V3,

= BpBsS5 + X555 Bs,

= apPpVsBs + ay Py Vs Bs,
= By VsSs + x656(Va + V5),

= BpBsSe + x656(Bs + Vs),

—— = apfpVsBs + ay By Vs B,

dt
vz

dt
dBy

dt
dMy

dt

Expansion of the 1-alpha probabilistic model (eqns. (18)—(20) and eqn.

= BvVaS7 + x757(Va + Vs + V),
= BpB7St + x757(Bs + Bs + Bs),

= apfBpVrBr + ay v Vi By.
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dVs

=L = Bass, (529)

dB

d_t3 = /BBB3S37 (SSO)

dM.

_dt3 = a[S3V3B3(8s + Bv )], (531)

dV:

d_tS = BvVsSs + x555 V3, (532)

dB

d_5 = BpB5S5 + X555 Bs, (S33)
t

dM,

75 = a[SsB5V5(8s + Bv) + Xx595(BsVs + Vs Bs)], (S34)

dV;

— = BrVeSs+ xoSe(Va+ V5), (835)

dB

d_tﬁ = BBBsSs + X656( B3 + Bs), (536)

dM,

76 = a[(SsVsBs(By + B5) + x656(Bs(Vs + Vi) 4+ Vi(Bs + Bs))], (S37)

dv.

d_t7 = ByVaSr 4+ x757(Vs + Vs + Vg), (S38)

dB;

i B B7S7 + x7S57(Bs + Bs + Bg), (539)

d M-

77 = a[(S:ViB:(By + Bp) + x7S7(B:(Vs + Vs + Vi) + Vo(Bs + Bs + Bg))].  (S40)

Deriving relationship between coinfected and single-infected cells
We found that the relationship between the frequency of coinfected cells and of singly infected cells

is approximately linear (e.g., Figure 7). To understand this we performed the following analyses.
Specifically, we aim at calculating asymptotic behavior of % and %.

Derivation of the “V}.,” case

Using basic calculus and eqn. (18), eqn. (19), and eqn. (23) we find:

vy, e v/

dM,, dg/tfk B Q[Bkw + WB,;] . {Bk . VkBllg]
dt

= 41
7 (s41)

where ’ denotes derivative in time. The key to the behavior of the relationship between coinfected
and single-infected cells thus lies in understanding the behavior of

Vi By
7

(S42)
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Leaf 3. We first consider the leaf 3 as it is the simplest and provides a method we can use to
understand patterns for higher leaves. Simplifying eqn. (S42) gives:

VaBy  Vs(8SsBs)  fs B.. (S43)

Vi BvSsVs By

Using this, we can find the expression for the original equation.

de 53 BB
—de Oé|: 3+ B, 3:| OJ( + 3, 3 = CD3 ( )
Further leaves. In the cases where k& > 3 we have:

ViBj, _ Vi(BSkBr + Xk Sk S B)
Vi By SV + XuSk Yoimy Vi

(S45)

This expression is much more difficult to simply than the k = 3 case. However, if we take a linear
combination between V3, V5, etc. we can proceed. For simplicity, we can use the average:

k—1 k—1

1 — 1
n+1<Vk+§W>, n+1( k—i-; 1)7 (546)

<l

where n is the number of proper leaves below the kth leaf. Using this eqn. (S45) becomes:

v(/BBSkE + XkSkE) —BB + Xk

ko 2B . (947)
Bv SV + xuSkV Bv + Xk
And thus we have:
dMj, {— —5B+Xk} ( 5B+Xk:>— =
—r_—al|B+B =afl+ B = ¢B. S48
vy Bv + Xk Bv + Xk (548)

Because V and B are linear functions of V;, and By, we can conclude that indeed % is propor-

dM;,
’ dBy

tional to By, and by inference is proportional to Vj.

Derivation of the “B.” case

Proceeding similarly as with eqn. (S41) we find
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dM,
a _ oAB Vi VB _ {BkVé +Vk} _

% B, B,
Leaf 3.
B _ BbvsV) _ vy S, V_Vv +V1 =a(ﬁ—v+1)v — o
Bj BpSsBs  fBp vy Bt By T
Further leaves. In the cases where k& > 3 we have:
BV}, _ Vi(By Sk Vi + X1:Sk Zf:_gl Vi)
By BSkBr, + xSk Yoh— B;
Let
1 E—1 1 k—1
1 = —_— i E — B Bz
1% +1<Vk+zgv>, n+1<k+; )

where n is the number of proper leaves below the kth leaf.

BV} . B(BySkV + xxSiV) Vﬁv + Xk

B, BSkB + x1SkB B+ Xk

And thus we have:

d My, {—BV + Xk —1 (53 + Xk )— —
— =a |V +Vi=a|>——+1)V=cV.
dBj, Be + Xk Bv + Xk
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