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Supplemental Figure S1: Kinetics of TEV dissemination in tobacco plants partitioned per individual
plant show variability in leaf infection levels. We plot the data on infection of cells with either or both
variants of TEV for individual leaves of a given plant for 3 (A), 5 (B), 7 (C), or 10 (D) days since infection.
Symbols denote the frequency of infected cells in a leaf with lines connecting measurements in individual
plants. Solid red line denotes average infection per leaf for a given time point.
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Fitted with binomial distribution-based likelihood method
Parameter Original Alt. Alt. Alt. Alt. Alt. Alt. Alt.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

I0 .0003 .0005 .0004 .00006 .0001 .0006 .0001 .0001
β, 1/day .950 .837 .887 1.289 1.040 1.000 1.037 1.032
χ3, 1/day N/A N/A N/A N/A .391 .042 .385 .064
χ5, 1/day .167 .120 .135 .775 N/A 1.876 .239 .047
χ6, 1/day 1.046 5.489 4.964 8.101 2.275 N/A 2.269 2.251
χ7, 1/day .029 .059 .465 .972 .193 .022 N/A N/A
ψ3 .080 .083 .081 .075 .074 .075 .072 .072
ψ5 .016 .017 .016 .016 .016 .011 .016 .016
ψ6 .224 .223 .223 .217 .225 .235 .219 .219
ψ7 .269 .276 .276 .590 .265 .268 .269 .269

nll 378317 378212 378172 378343 378495 379377 378442 378524
AICLik 756652 756442 756362 756704 757008 758772 756902 757066
∆AIC 290 80 0 342 646 2410 540 704

Supplemental Table S1: Alternative models for viral dissemination fitted to data using binomial
distribution-based likelihood describe the data with different quality based on AIC values. We performed
the same analysis as Table 2 except that models were fitted to data using binomial distribution-based
likelihood.

Param I0 β, 1/day χ5, 1/day χ6, 1/day χ7, 1/day SSRLog AICSSRLog
∆AIC

Fixed n T3 T5 T6 T7 n

0.0005 0.829 0.061 0.724 0.032 5.762 4.194 5.192 7.654 7.122 52.960 -13 3

Fixed T n3 n5 n6 n7 T

0.00008 2.518 0.049 0.835 0.055 3.524 6.017 3.659 1.82E+00 3.2 53.073 -13 3

Fixed n, T T n

0.001 0.673 0.025 0.602 0.068 6.127 9.316 67.555 0 16

Supplemental Table S2: A mathematical model assuming that virus dissemination is influenced by the
leaf-specific and systemic immunity can describe the experimental data. We changed the original, Tromas
et al. [14] model by assuming the time-dependent and leaf-dependent Sk function (Alternative model 9, see
eqn. (17)) and fitted the model to the data using least squares with a logarithmic transform eqn. (35). In
fits we either varied the time (Tk) at which Sk declines to zero, the Hill coefficient (nk) which determines
the speed at which Sk declines to zero, or both parameters being independent of the leaf number (k).
The resulting SSRLog and AICSSRLog

values for different model fits are shown (AICs are rounded to the
nearest whole number). We found the following values of the alternative model 8 (eqn. (16)) fits of the data:
SSRLog = 52.285 and AICSSRLog

= −10.
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Supplemental Figure S2: Shifting original model predictions (found in Tromas et al. [14]) by three days
reasonably well matches experimental data. We integrated the original model (given in eqns. (1)–(3)) using
an ODE solver in python either assuming that infection starts at day 0 (solid lines) or infection starts at
day 3 (dashed lines); data are shown by markers for leaf 3 (A), leaf 5 (B), leaf 6 (C), and leaf 7 (D). By
default, ODE solver in python is initialized by the first time point provided in the data which is day 3 in
the data set. We overrode the default by forcing the solver to start infection at day 0.
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Supplemental Figure S3: The difference between the best performing alternative model 1 (eqn. (4))
and the worst-performing, alternative model 7 (eqn. (15)) is visually small. We fitted the two models
using the least-squares method with a log transformation where zeros were replaced with a limit of detec-
tion model (LOD) value, in this case 5.12 · 10−4. The parameters for Alt Model 1 with 95% confidence
intervals are: I0 = 0.0008 (0.0002, 0.0017), β = 0.744 (0.554, 1.308), χ5 = 0.059 (0.033, 0.119), χ6 =
8.201 (4.151, 13.206), χ7 = 0.073 (0.052, 0.152), ψ3 = 0.083 (0.059, 0.117), ψ5 = 0.006 (0.005, 0.013), ψ6 =
0.204 (0.186, 0.227), ψ7 = 0.228 (0.081, 0.699). The parameters for Alt. Model 7 with 95% confidence
intervals are: I0 = 0.0005 (2 · 10−6, 1 · 10−5), β = 1.159 (0.973, 1.898), χ3 = 0.286 (0.117, 0.645), χ5 =
0.050 (0.023, 20), χ6 = 3.263 (2.365, 5.890), ψ3 = 0.051 (0.041, 0.069), ψ5 = 0.005 (0.003, 0.008), ψ6 =
0.184 (0.143, 0.226), ψ7 = 0.209 (0.081, 0.415). The goodness of fit metrics for Alt. Model 1 are: SSRLog =
51.991 and AICSSRLog

= −16, and for comparison the Alt. Model 7’s metrics are: SSRLog = 56.309 and
AICSSRLog

= −10, giving ∆AIC = 6.
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Supplemental Figure S4: The simplest 1-alpha coinfection model does not adequately describe coin-
fection data. The 1-alpha coinfection model (given by eqns. (18)–(19) and eqn. (21)) assumes that coin-
fection of individual cells by two different strains occurs independently (α = 1) or coinfection may be
more (α > 1) or less (0 < α < 1) likely that infection of an uninfected cell (Figure 2A). Other graph
details are similar to those given in Figure 6. The parameters and 95% confidence intervals for this
model are: V0 = .0006 (.0003, .001), B0 = .0003 (0.3 × 10−5, .001), M0 = .0001 (.0004, .001), βV =
.744 (.443, 6.178)/day, βB = .666 (.260, 6.580)/day, χ5 = .269 (.034, 8.76)/day, χ6 = .939 (.395, 2.292)/day,
χ7 = .044 (.015, 2.107)/day, ψ3 = .078 (.044, .954), ψ5 = .016 (.006, .028), ψ6 = .201 (.156, .267),
ψ7 = .254 (.100, .449), α = 2.332 (.103, 5.772).
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Supplemental Figure S5: A python-based tool to study the impact of parameters of a given mathematical
model on the infection rate of a given leaf. By using a function Slider from pylab in python we visualized
the dynamics of cell infection by individual viruses (Venus and BFP) and coinfection of cells by the two
viruses according to the Probabilistic Analytic Model. Parameters of the model can be changed using sliders
resulting in the changed kinetics of virus infection (shown in the left panel), or changes in the predicted
relationships between the degree of coinfection of cells by two viruses (denoted as “Mixed”) and singly
infected cells (Venus or BFP for middle and right panels, respectively). The example shown is for infection
of leaf 6; the code allows to chose any individual leaf for visualization. In all panels data are shown by markers
and predictions of the model by lines. Additional parameters shown are i) the negative log-likelihood (nll,
see eqns. (30)–(33)); ii) the average ratio of the frequency of coinfected cells to singly-infected cells (secant);
iii) the values of the expressions mM

V
and mM

B
evaluated at the rightmost timepoint in the leftmost panel,

in this case t=12 (mM
V

and mM
B

).
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Expansion of the Tromas et al. [14] model

dI3
dt

= βI3S3, (S1)

dI5
dt

= βI5S5 + χ5S5I3, (S2)

dI6
dt

= βI6S6 + χ6S6(I3 + I5), (S3)

dI7
dt

= βI7S7 + χ7S7(I3 + I5 + I6). (S4)

Alternative formulations of coinfection models

Expansion of the 1-alpha coinfection model (eqns. (18)–(20) and eqn. (21)):

dV3
dt

= βV V3S3, (S5)

dB3

dt
= βBB3S3, (S6)

dM3

dt
= α(βBV3B3 + βV V3B3), (S7)

dV5
dt

= βV V5S5 + χ5S5V3, (S8)

dB5

dt
= βBB5S5 + χ5S5B3, (S9)

dM5

dt
= α(βBV5B5 + βV V5B5), (S10)

dV6
dt

= βV V6S6 + χ6S6(V3 + V5), (S11)

dB6

dt
= βBB6S6 + χ6S6(B3 + V5), (S12)

dM6

dt
= α(βBV6B6 + βV V6B6), (S13)

dV7
dt

= βV V7S7 + χ7S7(V3 + V5 + V6), (S14)

dB7

dt
= βBB7S7 + χ7S7(B3 +B5 +B6), (S15)

dM7

dt
= α(βBV7B7 + βV V7B7). (S16)

Expansion of the 2-alpha coinfection model (eqns. (18)–(20) and eqn. (22)):
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dV3
dt

= βV V3S3, (S17)

dB3

dt
= βBB3S3, (S18)

dM3

dt
= αBβBV3B3 + αV βV V3B3, (S19)

dV5
dt

= βV V5S5 + χ5S5V3, (S20)

dB5

dt
= βBB5S5 + χ5S5B3, (S21)

dM5

dt
= αBβBV5B5 + αV βV V5B5, (S22)

dV6
dt

= βV V6S6 + χ6S6(V3 + V5), (S23)

dB6

dt
= βBB6S6 + χ6S6(B3 + V5), (S24)

dM6

dt
= αBβBV6B6 + αV βV V6B6, (S25)

dV7
dt

= βV V7S7 + χ7S7(V3 + V5 + V6), (S26)

dB7

dt
= βBB7S7 + χ7S7(B3 +B5 +B6), (S27)

dM7

dt
= αBβBV7B7 + αV βV V7B7. (S28)

Expansion of the 1-alpha probabilistic model (eqns. (18)–(20) and eqn. (24)):
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dV3
dt

= βV V3S3, (S29)

dB3

dt
= βBB3S3, (S30)

dM3

dt
= α[S3V3B3(βB + βV )], (S31)

dV5
dt

= βV V5S5 + χ5S5V3, (S32)

dB5

dt
= βBB5S5 + χ5S5B3, (S33)

dM5

dt
= α[S5B5V5(βB + βV ) + χ5S5(B5V3 + V5B3)], (S34)

dV6
dt

= βV V6S6 + χ6S6(V3 + V5), (S35)

dB6

dt
= βBB6S6 + χ6S6(B3 +B5), (S36)

dM6

dt
= α[(S6V6B6(βV + βB) + χ6S6(B6(V3 + V5) + V6(B3 +B5))], (S37)

dV7
dt

= βV V7S7 + χ7S7(V3 + V5 + V6), (S38)

dB7

dt
= βBB7S7 + χ7S7(B3 +B5 +B6), (S39)

dM7

dt
= α[(S7V7B7(βV + βB) + χ7S7(B7(V3 + V5 + V6) + V7(B3 +B5 +B6))]. (S40)

Deriving relationship between coinfected and single-infected cells

We found that the relationship between the frequency of coinfected cells and of singly infected cells
is approximately linear (e.g., Figure 7). To understand this we performed the following analyses.
Specifically, we aim at calculating asymptotic behavior of dMk

dVk
and dMk

dBk
.

Derivation of the “Vk” case

Using basic calculus and eqn. (18), eqn. (19), and eqn. (23) we find:

dMk

dVk
=

dMk

dt
dVk
dt

=
α[BkV

′
k + VkB

′
k]

V ′k
= α

[
Bk +

VkB
′
k

V ′k

]
. (S41)

where ′ denotes derivative in time. The key to the behavior of the relationship between coinfected
and single-infected cells thus lies in understanding the behavior of

VkB
′
k

V ′k
. (S42)
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Leaf 3. We first consider the leaf 3 as it is the simplest and provides a method we can use to
understand patterns for higher leaves. Simplifying eqn. (S42) gives:

V3B
′
3

V ′3
=
V3(βBS3B3)

βV S3V3
=
βB
βV
B3. (S43)

Using this, we can find the expression for the original equation.

dMk

dVk
= α

[
B3 +

βB
βV
B3

]
= α

(
1 +

βB
βV

)
B3 = cB3. (S44)

Further leaves. In the cases where k > 3 we have:

VkB
′
k

V ′k
=
Vk(βBSkBk + χkSk

∑k−1
i=3 Bi)

βV SkVk + χkSk
∑k−1

i=3 Vi
. (S45)

This expression is much more difficult to simply than the k = 3 case. However, if we take a linear
combination between V3, V5, etc. we can proceed. For simplicity, we can use the average:

V =
1

n+ 1

(
Vk +

k−1∑
i=3

Vi

)
, B =

1

n+ 1

(
Bk +

k−1∑
i=3

Bi

)
, (S46)

where n is the number of proper leaves below the kth leaf. Using this eqn. (S45) becomes:

V (βBSkB + χkSkB)

βV SkV + χkSkV
= B

βB + χk
βV + χk

. (S47)

And thus we have:

dMk

dVk
= α

[
B +B

βB + χk
βV + χk

]
= α

(
1 +

βB + χk
βV + χk

)
B = cB. (S48)

Because V and B are linear functions of Vk and Bk, we can conclude that indeed dMk

dVk
is propor-

tional to Bk, and by inference, dMk

dBk
is proportional to Vk.

Derivation of the “Bk” case

Proceeding similarly as with eqn. (S41) we find
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dMk

dt
dBk

dt

=
α[BkV

′
k + VkB

′
k]

B′k
= α

[
BkV

′
k

B′k
+ Vk

]
. (S49)

Leaf 3.

B3V
′
3

B′3
=
B3(βV S3V3)

βBS3B3

=
βV
βB
V3 =⇒

dMk

dt
dVk
dt

= α

[
βV
βB
V3 + V3

]
= α

(
βV
βB

+ 1

)
V3 = cV3. (S50)

Further leaves. In the cases where k > 3 we have:

BkV
′
k

B′k
=
Vk(βV SkVk + χkSk

∑k−1
i=3 Vi)

βBSkBk + χkSk
∑k−1

i=3 Bi

. (S51)

Let

V =
1

n+ 1

(
Vk +

k−1∑
i=3

Vi

)
, B =

1

n+ 1

(
Bk +

k−1∑
i=3

Bi

)
, (S52)

where n is the number of proper leaves below the kth leaf.

BkV
′
k

B′k
−→ B(βV SkV + χkSkV )

βBSkB + χkSkB
= V

βV + χk
βB + χk

. (S53)

And thus we have:

dMk

dBk

= α

[
V
βV + χk
βB + χk

+ V

]
= α

(
βB + χk
βV + χk

+ 1

)
V = cV . (S54)
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