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Abstract: Rift Valley fever (RVF) is a zoonotic disease caused by RVF Phlebovirus (RVFV). The RVFV
MP-12 vaccine strain is known to exhibit residual virulence in the case of a deficient interferon type
1 response. The hypothesis of this study is that virus replication and severity of lesions induced by
the MP-12 strain in immunocompromised mice depend on the specific function of the disturbed
pathway. Therefore, 10 strains of mice with deficient innate immunity (B6-IFNARtmAgt, C.129S7(B6)-
Ifngtm1Ts/J, B6-TLR3tm1Flv, B6-TLR7tm1Aki, NOD/ShiLtJ), helper T-cell- (CD4tm1Mak), cytotoxic T-cell-
(CD8atm1Mak), B-cell- (Igh-Jtm1DhuN?+N2), combined T- and B-cell- (NU/J) and combined T-, B-,
natural killer (NK) cell- and macrophage-mediated immunity (NOD.Cg-PrkdcscidIl2rgtm1WjI/SzJ
(NSG) mice) were subcutaneously infected with RVFV MP-12. B6-IFNARtmAgt mice were the only
strain to develop fatal disease due to RVFV-induced severe hepatocellular necrosis and apoptosis.
Notably, no clinical disease and only mild multifocal hepatocellular necrosis and apoptosis were
observed in NSG mice, while immunohistochemistry detected the RVFV antigen in the liver and
the brain. No or low virus expression and no lesions were observed in the other mouse strains.
Conclusively, the interferon type 1 response is essential for early control of RVFV replication and
disease, whereas functional NK cells, macrophages and lymphocytes are essential for virus clearance.

Keywords: Rift Valley fever; immunodeficiency; innate immunity; adaptive immunity; virus persistence

1. Introduction

Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus (RVFV)
that is endemic in many regions of Africa and Arabia [1,2]. It poses a threat to many host
species including cattle, goats, sheep and humans [2–4].

RVFV infection causes massive abortion storms and high mortality rates in neonatal
ruminants, which are symptomatic of RVF and result in devastating economic losses of local
ruminants [5,6]. Furthermore, the disease affects humans, especially those in close contact
with animals [7,8]. While most human cases present as subclinical flu-like symptoms,
severe or even fatal complications may occur, and the estimated case-fatality rate varies
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between 0.5 and 2% [9]. These complications include severe hemorrhagic fever, jaundice or
a late-onset retinitis and encephalitis [3,4,9]. In addition to impactful outbreaks in Africa,
opportunities of RVF introduction into Europe and North America include accidental
emergence via animal trading, the spread of mosquito vectors during the course of global
warming or bioterrorist attack scenarios [2,4,10]. Because of these threats, RVFV has been
named an “agent of concern” by the United States Department of Agriculture (USDA) and
the Center for Disease Control and Prevention (CDC) [4]. It is under surveillance by the
International Organization for Animal Health (OIE) as well as being a subject of ongoing
scientific interest [11–13].

As with many viral diseases, the best countermeasure against RVF is an efficient
vaccination of susceptible hosts [14,15]. However, no human or veterinary vaccines have
been fully licensed in Europe and the United States so far, and there is only limited and
often unregulated use of live vaccines, including the RVFV strains MP-12, Clone13 or
Smithburn in endemic areas [14,15]. Thus, promising or already field-tested vaccines
represent an ongoing target of scientific investigations [14,15]. The development, improve-
ment and investigation of vaccines rely on the understanding of RVFV pathogenesis and
immunopathology [15–17]. Both are systemic processes and require detailed studies in
animal models [18,19]. Besides the traditional hosts such as ruminants, studies in rodents,
including susceptible mouse strains, and exotic animals such as non-human primates or
toads have been performed [18–22].

In susceptible mice, RVF exhibits a biphasic disease course; after an initial phase
characterized by a strong viremia and severe hepatitis, late-onset encephalitis may oc-
cur [20,21]. After infection of the host, RVFV is able to replicate within dendritic cells and
macrophages [23]. Following replication within macrophages and dendritic cells, RVFV
exhibits viremic spread and a strong tropism toward Kupffer cells and hepatocytes, in
which it causes multifocal apoptosis and necrosis [17,21,24]. After this acute course of the
disease, viral spread into the central nervous system (CNS), most likely along the olfactory
epithelium and ascending nerves, can occur as a secondary complication in mice [20,21,25].
The main protection against this course of RVFV infection is provided by the innate immune
response [16,26–28].

RVFV triggers the innate immune response by activation of different pattern recog-
nition receptors [23]. While the exact receptors are unknown, Toll-like-receptors (TLR)
3 and 7 are expressed within macrophages and dendritic cells, respectively, and detect viral
RNA [29]. They activate the TRIF/TRAM (TLR 3)- or MyD88 (TLR 7)-dependent pathways
and thereby induce the type I interferon (IFN) response [29]. Thus, they play a key role
as pattern recognition receptors in many viral infections, e.g., the RVFV-related Punta
Toro virus for which was shown that TLR 3 could even induce detrimental effects due to
overstimulation [30–32]. Furthermore, it has been shown that genetic polymorphisms of
TLR 7 correlate with RVF severity in humans; thus, it can be assumed that TLR 3 and 7 are
relevant elements of RVFV recognition [33,34]. The interferon response is counteracted
by RVFV via its major pathogenicity factors, the non-structural proteins s (NSs) and m
(NSm) [24,35–42]. If successfully mobilized, the IFN type I system, consisting of IFN α

and IFN β that bind to the IFN-α/β receptor (IFNAR), induces a wider immune reaction
by recruiting effector cells such as lymphocytes to virus-infected cells, which also results
in further apoptosis of infected hepatocytes [26,27]. The effector cells lead to an adaptive
immune response, with T-lymphocytes adding IFN γ to the interleukin environment and
thereby recruiting more macrophages [43]. Moreover, CD4+ T lymphocytes and antigen-
presenting cells, including dendritic cells and macrophages, prime B-lymphocytes lead to
the production of immunoglobulins (Ig) and, in the case of survival, the development of
memory cells [44]. This development of antibodies and the immunological memory against
RVFV leads to successful control and elimination of the virus and a long-term immune
competence to re-infection [45]. Besides these mechanisms, CD8+ T-lymphocytes add to
the cellular immunity by eliminating infected cells [46].
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While some of the aforementioned aspects, e.g., the role of dendritic cells and macrophages
as the first location of viral replication, are well-known, other aspects, e.g., the contribution
of the different T-cell subtypes within the adaptive immune response, require further investi-
gations; current research efforts focus on the detailed understanding of RVFV pathogenesis
and immunogenesis [13]. The hypothesis of this study is that virus replication and severity
of lesions induced by the MP-12 strain in immunocompromised mice depend on the specific
function of the disturbed pathway. Therefore, the aim is to investigate the clinical disease, viral
spread and lesion profile in mouse strains deficient in IFN type 1 signaling (B6-IFNARtmAgt),
IFN type 2 signaling (C.129S7(B6)-Ifngtm1Ts/J) Toll-like receptor 3 and 7 mediated innate im-
munity (B6-TLR3tm1Flv, B6-TLR7tm1Aki), defective natural killer (NK) cells and macrophages
(NOD/ShiLtJ), helper T lymphocytes (CD4tm1Mak), cytotoxic T lymphocytes (CD8atm1Mak), B
lymphocytes (Igh-Jtm1DhuN?+N2), T- and B lymphocytes (Foxn1nu-/-) and combined NK-cells,
macrophages and T and B lymphocytes (NOD.Cg-PrkdcscidIl2rgtm1WjI/SzJ). These differ-
ently impaired mice were chosen to evaluate single aspects of the immune response during
RVFV infection.

2. Materials and Methods
2.1. Virus

RVFV strain MP-12 propagation follows previously published protocols [47]. Briefly, it
was propagated on Vero-76 cells in Dulbecco’s Modified Eagle’s Medium (DMEM, #DMEM-
HXA, Capricorn Scientific GmbH, Ebsdorfergrund, Germany)/2% fetal bovine serum
(FBS; #FBS-HI-12A FBS, Capricorn Scientific GmbH, Ebsdorfergrund, Germany) under
environmental conditions of 37 ◦C and a CO2 content of 5%. Supernatant of infected
cells was harvested after three days, with cells showing a cytopathic effect in 80% of cells,
and titers were evaluated in a TCID50 assay and calculated according to Spearman and
Kaerber [48,49].

2.2. Mice

All mice (Table 1) were female and five to seven weeks of age. Homozygous B6-
IFNARtmAgt, C.129S7(B6)-lfngtm1/s/J, B6-TLR3tm1Flv, B6-TLR7tm1Aki, B6-CD4tm1Mak, B6-
CD8atm1Mak, C57Bl/6 and BALB/c were bred and provided by the mouse stock of the
FLI, Riems, Germany. Foxn1nu-/- (NUDE) mice as well as heterozygous Foxn1nu+/- control
animals from the same stock were obtained from Jackson Laboratory (Sulzfeld, Germany),
homozygous Igh-Jtm1DhuN?+N2 mice were obtained from Taconic Biosciences GmbH
(Leverkusen, Germany), and homozygous NOD.Cg-PrkdcscidIl2rgtm1WjI/SzJ (NSG) as well
as homozygous NOD/ShiLtJ (NOD) from Charles River Laboratories, Research Models
and Services GmbH (Sulzfeld, Germany), respectively.

Table 1. Various mouse strains used for the present investigation and their relevant characteristics.

No. Designation Immunological Trait Number of
Infected/Placebo Animals Origin References

1 B6-IFNARtmAgt No IFNAR expression 6/6 FLI [50]

2 C.129S7(B6)-
Ifngtm1/s/J

Impaired Interferon γ response and
therefore decreased activity of

macrophage function
12/6 FLI [51]

3 B6-TLR3tm1Flv TLR 3 deficiency 12/6 FLI [52]

4 B6-TLR7tm1Aki TLR 7 deficiency 12/6 FLI [52]

5 B6-CD4tm1Mak
Block of CD4+ T-Lymphocyte
development and restricted

T-helper-cell response
6/6 FLI [53]

6 B6-CD8atm1Mak Deficient in functional cytotoxic
T-Lymphocytes 6/6 FLI [54]
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Table 1. Cont.

No. Designation Immunological Trait Number of
Infected/Placebo Animals Origin References

7 Foxn1nu-/- (NUDE)
Lack of thymus and therefore absence

of T-Lymphocytes, partial defect in
B-cell development

6/6 JAX [55]

8 Igh-Jtm1DhuN?+N2
No B-cell maturation, therefore no IgM

or IgG production 6/6 TAC [56]

9
NOD.Cg-Prkdcscid

Il2rgtm1WjI/SzJ
(NSG)

No lymphocyte maturation (B and T
cells), therefore no IgG and extremely
low cytotoxic T-cells, deficiency of NK
cells, macrophages and dendritic cells,

absence of complement C5

12/6 CRL [54,56–59]

10 C57Bl/6 Wildtype, background of strain 1, 3-6 9/6 FLI [20]

11 BALB/c Wildtype, background of strain 2 and 8 12/6 FLI [20]

12 Foxn1nu+/- (NUDE
heterozygous)

Heterozygous control for strain 7 6/6 JAX [55]

13 NOD/ShiLtJ
(NOD)

Background of strain 9 (NSG),
late-onset spontaneous Autoimmune
diabetes mellitus, deficient NK cells,

macrophages, dendritic cells and
complement component C5

12/6 CRL [56,58–60]

No.: Continuing number for better readability; IFNAR: interferon-α/β receptor; TLR: Toll-like receptor; CD: clus-
ter of differentiation; Ig: immunoglobulin; FLI: Friedrich–Loeffler Institute; NK: natural killer; JAX: Jackson
Laboratories; TAC: Taconic biosciences; Wildtype: no genetic alterations; CRL: Charles River Laboratories.

2.3. Infection and Study Design

All animal experiments were conducted in accordance with German animal welfare
laws and authorized by the responsible authority (Landesamt für Landwirtschaft, Lebensmit-
telsicherheit und Fischerei Mecklenburg-Vorpommern, permission LALLF 7221.3-1-038/17).

Group size was determined using a Cox’s proportional hazards model superiority by a
margin analysis employing literature-based a priori estimates of the median survival of the
different strains [61,62]. Infection groups of six, nine or twelve specific pathogen-free mice
as well as placebo groups of six mice of the same strain were randomly divided into three
mice per cage (two to four cages per infection group, Table 1). They were kept in ventilated
isocages (Tecniplast S.p.A., Buguggiate, Italy) and provided food (Ssniff Spezialdiäten
GmbH, Soest, Germany) and water ad libitum. High caloric food from the same supplier
was given to the NUDE mice, as they require increased energy intake due to their lack
of fur.

After 14 days of acclimatization, the mice were infected subcutaneously in the neck
with RVFV MP-12 (TCID50: 1.43 × 103, 100 µL DMEM), while placebo groups were mock
infected following the same inoculation route with the same amount of virus-free DMEM.
All mice were observed for 14 days and daily body weight and clinical signs (Table 2)
were noted.

If the animals developed severe clinical signs, defined as a score of 3 in one category
or a score of 2 in all categories, or after reaching 14 days post infection (dpi), they were
euthanized by isoflurane anesthesia and subsequent cardiac puncture and blood collection.
Necropsy was performed and organ samples were collected, including the brain, spleen,
thymus (if applicable), liver, heart, kidney and lungs.
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Table 2. Clinical score scheme.

Category Description of Signs Score

Posture and appearance

Normal posture, smooth fur 0
Normal posture, ruffled fur 1

Mildly hunched back, ruffled fur 2
Severely hunched back, ruffled fur, lack of cleaning 3

Behavior and activity

Curious and alert 0
Calm, mildly reduced spontaneous movement 1

Apathy, moderately reduced spontaneous movement, mildly reduced induced movement 2
Stupor, no spontaneous movement, severely reduced induced movement 3

Body weight

No change >5% 0
Decrease of 5–15% 1

Decrease of 15–25% 2
Decrease of >25% 3

Mice were euthanized after reaching a score of 3 in one category or a score of 2 in all categories.

2.4. RNA Isolation and Reverse Transcription Quantitative Polymerase Chain Reaction

Mouse tissue samples of 3–78 µg (mean 30 µg) liver, spleen and brain were lysed in cell
culture medium using the QIAGEN TissueLyser II® (QIAGEN GmbH, Hilden, Germany)
and after centrifugation, RNA was isolated using the NucleoMag® VET Kit (Machery
& Nagel GmbH & Co. KG, Düren, Germany) and the automated KingFisher™ Flex Pu-
rification System (Thermo Scientific, Inc., Waltham, MA, USA). As internal extraction
control, an MS2 bacteriophage was added to each sample [63]. The presence of RVFV-
and MS2-derived RNA was verified using a primer-probe based quantitative real-time
RT-PCR (qRT-PCR), with a detection limit of five copies per reaction [64]. A synthetic RNA
calibrator was utilized for quantification [65].

2.5. Serum Neutralization Test

Blood samples from mice were centrifuged and serum was tested for its neutralization
ability in decreasing dilutions (serum neutralization test, SNT) as described previously [66].
Briefly, 100 TCID50 of MP-12 were added to duplicates of serial two-fold diluted (from
1:10 to 1:120) and heat inactivated sera. Following an incubation of 30 min at 37 ◦C and 5%
CO2, Vero-76 cells were added to each well. Plates were incubated at 37 ◦C, 5% CO2 for
six days. Neutralizing doses of 50%(ND50) were expressed as the reciprocal of the serum
dilution that still inhibited > 50% of cytopathogenic effect and calculated as described by
Spearman and Kaerber [43,44]. The cytopathogenic effect was macroscopically evaluated
after fixation with 4% paraformaldehyde and staining with 1% crystal violet.

2.6. Histology and Immunohistochemistry

Mouse tissue samples of brain, spleen, liver, heart, kidney and lungs were fixed in 4%
neutral buffered paraformaldehyde for 21 days, were cut according to Registry of Industrial
Toxicology Animal-data (RITA) trimming guides and were subsequently embedded in
paraffin wax [67]. Four µm thick sections were stained with hematoxylin and eosin (HE)
stain. In addition, immunohistochemistry (IHC) with a primary antibody targeting RVFV
nucleoprotein (Np) was performed on 2 µm sections. Briefly, slides were dewaxed and
rehydrated, microwaved in citrate buffer (700 Watt, 20 min, pH: 6.01) and blocked by 1 h
incubation with rabbit serum. Thereafter, heat-inactivated serum from a RVFV-infected
sheep was applied overnight at 4 ◦C as a primary antibody, followed by biotinylated
rabbit anti-sheep secondary antibodies. ABC Kit Vectastain (PK 6100 Biozol Diagnostica
Vertrieb GmbH, Eching, Germany) and AEC Substrat Chromogen Ready to use (K3464
Dako Denmark A/S, Glostrup, Denmark) were applied according to the manufacturer’s
instructions, followed by hematoxylin counterstain. RVFV-infected and non-infected cell
pellets were used as positive and negative controls, respectively. Details of the staining
protocols have been published previously [47,68,69].
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Sections were evaluated by qualitative description of HE stained lesions and manual cell
count of immunohistochemically labeled cells per 30 high power fields (1 HPF = 0.159 mm2;
using a Zeiss standard light microscope (Carl Zeiss AG, Oberkochen, Germany) with a Zeiss
Kpl-W10x/18 ocular and a Zeiss 40/0.65 objective). Semi-quantification of immunohisto-
chemistry was counted as follows: −: no findings; +: up to five positive cells per HPF; ++:
five to 20 positive cells per HPF; +++: over 20 positive cells per HPF/diffuse expression
of RVFV Np. Pictures were taken with an Olympus BX51 microscope and a DP72 Camera
using the manufacturer‘s operating software cellSens, version 1.18 (Olympus Solutions Inc.,
Tokyo, Japan).

2.7. Statistical Analysis

The assumption of normal distribution of RT-qPCR results was rejected using Shapiro–
Wilks’ test and visual assessment of the qq plots of the model residuals. For descriptive
statistics, measures of location and statistical dispersion were depicted as median and
range with min and max values. The survival rate of all RVFV-infected mouse strains and
placebo groups was calculated and depicted using the Kaplan–Meier analysis. SNT data
were tested for differences between the infected groups and the placebo controls using
a Kruskal–Wallis test for independent samples followed by bilateral multiple pairwise
comparisons (Dwass, Steel, Critchlow–Fligner method). Figures and statistical workup of
the gathered data were performed using the commercially available software Graphpad
Prism (GraphPad Software, Inc., San Diego, CA, USA, version 9.0.0) and SAS 9.4 (SAS
Institute, Inc. Cary, NC, USA).

3. Results
3.1. Survival and Clinical Signs

The RVFV-infected B6-IFNARtmAgt mice died or had to be euthanized 3 dpi (Figure 1)
due to severe clinical signs of disease, including lack of spontaneous or provoked move-
ment, apathy, labored breathing, ruffled fur, hunched posture and final weight loss of over
15% of the original body weight. Furthermore, one RVFV-infected NSG mouse had to be
euthanized at 11 dpi due to similar severe clinical signs. All other animals in this group
and in the other mouse strains survived until the end of the experiment at 14 dpi and did
not show any clinical signs besides mild weight loss (<15%).

Figure 1. Kaplan–Meier survival curve of all mouse strains infected with RVFV and placebo groups:
B6-IFNARtmAgt mice died or were euthanized three days after subcutaneous RVFV infection. Except
for 1/12 (8%) of the NSG mouse, all other mice survived until the end of the study after subcutaneous
RVFV infection. The surviving groups are summarized for better readability. RVFV: Rift Valley
fever virus.
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3.2. Reverse Transcription Quantitative Polymerase Chain Reaction

Detailed RT-qPCR results are presented in Table 3.

Table 3. RT-qPCR detection of RVFV RNA shown as positive animals/mouse strain and copies/µL
RNA in liver, spleen and brain.

Mouse Strain Liver Spleen Brain

B6-IFNARtmAgt 6/6 (7.08 × 105–6.54 × 106) 6/6 (1.6 × 105–3.02 × 106) 6/6 (8.03 × 102–4.76 × 103)
C.129S7(B6)-Ifngtm1/s/J n.d. 3/12 (4.4 × 10−1–2.54 × 101) n.d.

B6-TLR3tm1Flv n.d. n.d. n.d.
B6-TLR7tm1Aki n.d. 5/12 (6.28 × 10−1–5.94 × 100) n.d.
B6-CD4tm1Mak n.d. n.d. n.d.

B6-CD8atm1Mak n.d. 1/6 (1 × 102) n.d.
Foxn1nu-/- (NUDE) n.d. n.d. n.d.
Igh-Jtm1DhuN?+N2 2/6 (4.08 × 10−3–8.38 × 10−2) n.d. n.d.
NOD.Cg-Prkdcscid

Il2rgtm1WjI/SzJ (NSG)
6/12 (4.74 × 10−1–1.41 × 104) 4/12 (3.53 × 10−1–3.03 × 102) 6/12 (2.87 × 10−2–3.29 × 105)

C57Bl/6 n.d. 2/9 (5.41 × 10−1–4.06 × 100) 1/9 (2.37 × 101)
BALB/c n.d. 3/12 (1.41 × 100–7.05 × 100) n.d.

Foxn1nu+/- (heterozygous
NUDE)

n.d. n.d. n.d.

NOD/ShiLtJ (NOD) n.d. 2/12 (1.47 × 100–5.43 × 100) n.d.

Data are presented as follows: number of positive animals/group size (x/x) with range of RVFV RNA copies
per µL isolate from the respective organ. IFNAR: interferon-α/β receptor; TLR: Toll-like receptor; CD: cluster of
differentiation; n.d.: not detected.

Briefly, all samples from RVFV-infected B6-IFNARtmAgt mice (6/6; 100%) that were
obtained at 3 dpi yielded high loads of viral RNA with values between 8.03 × 102 to
4.76 × 103 copies/µL RNA (brain), 1.6 × 105 to 3.02 × 106 copies/µL RNA (spleen) and
7.08 × 105 to 6.54 × 106 copies/µL RNA (liver), respectively (Table 3, Figure 2). The group
of RVFV-infected NSG mice showed inconsistent results: seven out of twelve (58%) animals
exhibited viral RNA in at least one of the three organ samples, and these results ranged
from 3.53 × 10−1 to 3.29 × 105 copies/µL RNA (Table 3, Figure 2). No viral RNA was
found in the remaining animals 5/12 (42%) of this group.

Figure 2. Comparisons of PCR results in B6-IFNARtmAgt and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice:
RT-qPCR results of both mouse strains show significant viral loads in liver, spleen and brain when
compared to RVFV-infected wildtype controls (C57Bl/6 or NOD/ShiLtJ mice, respectively).

Five of twelve (42%) RVFV-infected B6-TLR7tm1Aki and three of twelve (25%) RVFV-infected
C.129S7(B6)-lfngtm1/s/J mice, respectively, exhibited small (4.4 × 10−1–2.54 × 101 copies/µL
RNA) amounts of viral RNA in the spleen, and two of twelve (17%) RVFV-infected Igh-
Jtm1DhuN?+N2 mice exhibited small amounts of viral RNA (<0.1 × 100 copies/µL RNA) in
the liver. One of twelve (8%) RVFV-infected B6-CD8atm1Mak mice, 2/12 (17%) RVFV-infected
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NOD mice and 3/12 (25%) RVFV-infected BALB/c mice exhibited low viral loads in the spleen
(1.47 × 100 to 1 × 102 copies/µL RNA). Furthermore, 3/12 (25%) RVFV-infected C57Bl/6 mice
showed viral RNA within the spleen or the brain, respectively (5.41 × 10−1 to
2.37 × 101 copies/µL RNA). No viral RNA was found in the other infected mice or the
placebo mice.

3.3. Serum Neutralization Test

Regarding the SNT results, only a subset of mouse strains survived for 14 days and
provided a functional antigen-presenting-cell, T-helper and B-lymphocyte axis (C.129S7(B6)-
Ifngtm1/s/J, B6-TLR3tm1Flv, B6-TLR7tm1Aki, B6-CD8atm1Mak, C57Bl/6, BALB/c and het-
erozygous NUDE). These mouse groups included single or multiple animals showing
serum neutralizing activity in dilutions > 1:10 (Figure 3). Statistical analyses revealed a
significant difference between the groups (Kruskal–Wallis test p < 0.0001). However, the
post hoc pairwise comparisons revealed a significant difference only for B6-TLR7tm1Aki

versus placebo controls. No seroconversion was observed in the IFNARtmAgt, NOD, B6-
CD4tm1Mak, Igh-Jtm1DhuN?+N2, NUDE or NSG mice.

Figure 3. Serum neutralization test results of all mouse strains infected with RVFV and placebo
groups: detectable antibody titers in serum samples were measured between 1:10 and 1:120 dilutions.
The placebo groups of all mouse strains are summarized for better readability. The detection range is
shown as punctuated lines. RVFV: Rift Valley fever virus.

3.4. Histology and Immunohistochemistry

Histology and immunohistochemistry results of B6-IFNARtmAgt and NSG mice are
presented in Table 4.

RVFV-infected B6-IFNARtmAgt mice exhibited a severe, diffuse, hepatocellular necro-
sis characterized by hypereosinophilic cellular debris and nuclear pyknosis as well as
karyorhexis. Apoptosis was also present as shown by swollen, eosinophilic hepatocytes
(resembling Councilman bodies). Furthermore, multifocal hemorrhages were detected.
The same hepatic changes were found to a lesser (mild) degree in two RVFV-infected NSG
mice (Figure 4, Table 4). In addition to the liver findings, B6-IFNARtmAgt mice showed
moderate lymphocytolysis in the red pulp of the spleen and mild lymphocytolysis in
splenic follicles (Figure 4, Table 4). All other mice, including placebo controls, did not show
any lesions. Moreover, the CNS, lung, heart and kidney lacked significant microscopic
lesions in all groups.
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Table 4. Summary of histology and immunohistochemistry results of B6-IFNARtmAgt and NSG mice.

Mouse Strain Histology IHC Liver IHC Spleen IHC Brain IHC Heart IHC
Lung IHC Kidney

B6-
IFNARtmAgt

Severe, diffuse, hepatocellular
necrosis and apoptosis;

Mild to moderate
lymphocytolysis in the spleen

+++ +++ + (3/6)
- (3/6) - + (1/6)

-(5/6)
+(2/6)
-(4/6)

NOD.Cg-
Prkdcscid

Il2rgtm1WjI/SzJ
(NSG)

Mild, multifocal,
hepatocellular necrosis and

apoptosis (2/12);
No findings (10/12)

++ - +++ - +(2/12)
-(10/12)

++(3/12)
-(9/12)

RVFV: Rift Valley fever virus. IHC: immunohistochemistry against RVFV Nucleoprotein (Np). -: no findings. +:
up to five positive cells per HPF. ++: up to 20 positive cells per HPF. +++: over 20 positive cells per HPF/diffuse
expression of RVFV Np. HPF: high power field (0.159 mm2). Negative results from other groups are not shown.
Animal numbers are given in groups with inconsistent findings.

Figure 4. Histology (HE staining, 200x magnification) of RVFV-infected IFNAR mice (3 dpi) and
NSG mice (14 dpi): IFNAR mice exhibit severe, multifocal to coalescing hepatocellular necrosis
(arrowheads, (A)) and apoptosis (arrows, (A)) as well as mild lymphocytolysis in the white pulp
(arrowheads, (B)) and moderate, multifocal necrosis in the red pulp of the spleen (arrow, (B)). No
lesions were observed in the brain (C) and placebo-infected control mice (D–F). Likewise, no lesions
were present in the majority of RVFV-infected (G–I) or any placebo (J–L) NSG mice. RVFV: Rift
Valley fever virus; dpi: days post infection; IFNAR: B6-IFNARtmAgt mice. NSG; NOD.Cg-Prkdcscid

Il2rgtm1WjI/SzJ mice.

Immunohistochemistry revealed RVFV Np in a multifocal to diffuse pattern through-
out the liver tissue of RVFV-infected B6-IFNARtmAgt mice (Figure 5, Table 4). Furthermore,
there were abundant amounts of RVFV antigen present within the cytoplasm of sinusoidal
macrophages in the spleen, and there were single neurons labeled positive in 3/6 (50%)
mice (Figure 5, Table 4). In contrast, RVFV-infected NSG mice exhibited RVFV antigen
within the cytoplasm of neurons and small groups of hepatocytes (Figure 5, Table 4). Two
and three animals from the RVFV-infected B6-IFNARtmAgt and NSG mice, respectively,
exhibited immunohistochemical labeling of RVFV Np in epithelial cells of kidney tubules
and lung bronchioles (Figure 6). However, no histological lesion was associated with
these signals. The remaining groups and tissues, including the placebo controls, lacked
expression of RVFV Np.
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Figure 5. Immunohistochemistry (against RVFV Np, 200x magnification) of RVFV-infected IFNAR
mice (3 dpi) and NSG mice (14 dpi): IFNAR mice exhibit multifocal to diffuse expression of RVFV Np
in the liver (star (A)) and the spleen (star (B)) while 3/6 (50%) animals did not show any expression
of RVFV Np in the brain (C). Control animals are negative for RVFV antigen (D–F). NSG mice reveal
small nests of immunolabeled hepatocytes (arrowhead, (G)), no signal in the spleen (H) and diffuse
expression of RVFV Np in neurons (arrowheads, (I)). Control animals are negative (J–L). RVFV: Rift
Valley fever virus; Np: nucleoprotein; dpi: days post infection; IFNAR: B6-IFNARtmAgt mice; NSG:
NOD.Cg-Prkdcscid Il2rgtm1WjI/SzJ mice.

Figure 6. Graphic summary of the semi-quantitative immunohistochemistry evaluation: Each point
represents one individual animal and mean values are given (black bars). While B6-IFNARtmAgt

mice exhibit high scores in liver and spleen, NOD.Cg-PrkdcscidIl2rgtm1WjI/SzJ mice show RVFV Np
expression within the CNS in a subset of animals. Furthermore, a single C.129S7(B6)-Ifngtm1/s/J
mouse exhibited viral antigen expression in the kidney.
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4. Discussion

The aim of the present study was to investigate clinical disease, viral spread and lesion
profile in mouse strains that are deficient in IFN type 1 signaling (B6-IFNARtmAgt), IFN
type 2 signaling (C.129S7(B6)-Ifngtm1Ts/J) Toll-like receptor 3 and 7 mediated innate immu-
nity (B6-TLR3tm1Flv, B6-TLR7tm1Aki), defective natural killer (NK) cells and macrophages
(NOD/ShiLtJ), helper T lymphocytes (CD4tm1Mak), cytotoxic T lymphocytes (CD8atm1Mak),
B lymphocytes (Igh-Jtm1DhuN?+N2), T- and B lymphocytes (Foxn1nu-/-) and combined
NK-cells, macrophages and T and B lymphocytes (NOD.Cg-PrkdcscidIl2rgtm1WjI/SzJ). Sur-
prisingly, no clinical signs, development of virus neutralizing antibodies or associated
pathological changes were noticed in NSG mice. Except for B6-IFNARtmAgt mice, all
other investigated knockout mice with impaired innate immunity, such as TLR-deficient
B6-TLR7tm1Aki and B6-TLR3tm1Flv mice, or adaptive immunity such as T-cell deficient B6-
CD4tm1Mak and B6-CD8atm1Mak as well as B cell deficient Igh-Jtm1DhuN?+N2 mice, were
able to control and eliminate RVFV.

In all host species, innate immunity is a key component of early RVFV detection and
activation of further effector cells, e.g., macrophages, via release of cellular mediators
including IFNs [24,27,34,45,70]. The B6-IFNARtmAgt mice lack the IFN type I receptor
(IFNAR) and showed severe RVF characterized by severe clinical signs, necrotizing hep-
atitis and virus spread to various organs as described previously [37,50]. However, other
knockout mice strains with a deficient innate immunity, including lack of TLR 3, TLR 7 and
IFN γ activity, respectively, were characterized by absence of clinical disease, virus antigen
expression and lesion development in the investigated organs [52,70,71]. These results
show the pathogenicity of the RVFV MP-12 strain in an IFN type 1 deficient immune sys-
tem [37]. Clinical signs, pathological lesions, immunohistochemistry results and RT-qPCR
detection of high amounts of viral RNA in the B6-IFNARtmAgt mice resemble previously
published descriptions of severe RVF in susceptible mice, infected with different RVFV
strains including MP-12, and due to their resemblance to human RVF courses, mice have
been used as a model species [18–21,72]. The effect of the other knockouts of the innate
immune system, however, appears to be compensated by other mechanisms. IFN γ is the
main activator of macrophages, which together with other antigen-presenting cells, initiate
the adaptive immune response [73]. However, activation of macrophages can be obtained
by other stimuli, e.g., tumor necrosis factor (TNF), which is a substantial component of
the interleukin pathway produced by Th17 helper cells [73]. TLR 3 and 7 are pivotal
components for RNA detection, and their contributions to the early immune response
within viral infection have been shown for multiple viral diseases, e.g., dengue fever [29,74].
TLR activation is another initial step in the immune response triggering cascade, as both
receptors recognize double-strained or single-stranded RNA, respectively, and therefore
initiate antiviral immune responses [29]. As neither B6-TLR3tm1Flv nor B6-TLR7tm1Aki mice
developed clinical RVF, initial recognition of the virus seems to be sufficiently achieved by
one of the TLR or another intracellular receptor of viral RNA. Alongside TLR 3 and 7, other
receptors of viral RNA, e.g., RIG-I, have been shown to be associated with severe RVF in
humans [33]. Therefore, other RNA receptors might represent promising targets of future
investigations [13]. RT-qPCR results indicate that mice lacking TLR 7 may require more
time for successful virus elimination, as shown by 5/12 mice that exhibited small loads of
viral genetic material in the spleen at 14 dpi indicating a less efficient activation of virus
clearance mechanisms, e.g., macrophage activation, when lacking TLR 7. This difference
in receptor efficacy might be explained by the respective triggered pathways. While TLR
3 triggers an IFN response via a TRIF/TRAM-dependent pathway, TLR 7 achieves this
by activating the MyD88/TIRAP pathway [29]. Furthermore, different virus infections
highlight the different roles of TLR 3 and 7. Although TLR 3 signaling appears crucial to
the immune response against some infections, e.g., herpes simplex virus, the importance of
TLR 7 was shown for others, e.g., avian influenza [30,75,76].

In most viral diseases including RVF, the key aspect of the adaptive immunity is the
lymphocyte response that includes the production of antibodies and the development
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of a long-lasting immunity after virus clearance [45]. This protection by RVFV-targeted
antibodies has been shown in several studies evaluating RVF vaccination attempts in ru-
minants [77–79]. CD4+, CD8+, T lymphocyte or B lymphocyte impaired mice were able
to control the disease and developed neither clinical disease nor significant viral loads as
determined by RT-qPCR and immunohistochemistry. This shows that a full elimination can
be achieved by an intact IFN response followed by effector cells, e.g., macrophage activity,
the role of which during RVF development was already studied with regard to initial virus
spread [80,81]. Furthermore, as the adaptive immune response plays a crucial role in the
later course of RVF, a successful elimination of the virus may even be achieved predomi-
nantly by the innate immune response as RVFV strain MP-12 is viewed as widely attenuated
in IFN competent mice [20,37]. Over and above the deficiency in T- and B-cell-mediated
adaptive immunity shared with NUDE mice, NSG mice are also deficient in innate immune
pathways; namely, they are deficient in NK cells and their macrophages exhibit functional
defects, leading to defective antigen presentation and altered immunoregulation [57–59].
They neither develop follicles in spleen and lymph nodes, nor Natural Killer cells, B-cells
nor detectable antibody titers in serum samples [54,57]. These mice can be used for cancer
or xenograft research studies as they are resistant to lymphoma development and do not
show inflammatory responses to xenograft implants [54,57,82]. It seems reasonable, that
the combination of defective innate pathways and lacking adaptive immunity in NSG mice
as compared to NOD and NUDE mice is responsible for the lack of host control of ongoing
virus replication in the NSG mice. Concerning the molecular pathway responsible for
reduced or lacking function of NK-cells, the Il2rgtm1Wjl null mutation in NSG mice, which
results in the loss of most of the extracellular domain and all of the transmembrane and
cytoplasmic domains of the protein, is different from their background strain NOD, which
exhibits an Il2m1 hypoactive polymorphism [83]. This difference may be the reason for a
more profound deficiency in functional NK cells in NSG mice compared to the NOD strain.
An increased activation of and a suggested alleviating effect on the early stage of viral
infections by NK cells has been shown for various viral infections such as dengue virus,
Zika virus, hantavirus or tick-borne encephalitis virus [84]. While their role in systemic
RVFV infection remains unclear in detail, a rise of NK cells in liver and lymph nodes of
RVFV-infected mice has been observed previously [44]. Therefore, a lack of NK cells could
be a contributing factor for the lack of virus clearance in NSG mice and therefore warrants
further investigations.

Clinical disease was observed in only one of six NSG mice, although all six animals
exhibited viral loads in the RT-qPCR analysis and in four animals, viral loads were detected
in the liver, spleen and brain, indicating a viremic phase and infection of the CNS as
described during the course of RVF [3,4]. However, RVFV antigen was found in hepatocytes
and neurons, while no CNS lesions and only small foci of hepatocellular damage were
observed. These results suggest that NSG mice are unable to control viral spread, but at the
same time do not regularly succumb to or even develop clinical disease. The IL15-receptor
is a heterodimer of the IL-2/IL-15 receptor beta chain (CD122) and the common gamma
chain (gamma-C, CD132), the latter being the target of the null mutant in NSG mice [83].
There are no studies on the importance of NK cells in human or ruminant RVF pathogenesis.
However, it has been shown that clinically ill Puumala hantavirus-infected humans exhibit
a marked increase and activation of NK cells due to an IL15-mediated mechanism [85,86].
This NK overactivation has been suggested to be a factor involved in the pathogenesis
of Puumala hanta virus-induced disease, leading to collateral damage on surrounding
host cells regardless of their infection status [85,86]. Therefore, it seems reasonable that
the lack of NK cells in NSG mice is mediated by a lack of IL2rg-function and may be the
reason for both, the lack of MP-12 RVFV clearance as well as an explanation for the lack of
lesions and clinical disease in the current study. Further studies are needed to unravel the
role of NK-cell mediated mechanisms in the pathogenesis of RVFV-induced hepatitis and
encephalitis in other host species such as humans and cattle.
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Regarding the applicability of the present results and its conclusions to other host
species, two limiting factors must be mentioned. Although mice are an established animal
model of RVF and widely used, the present mouse strains are genetically modified and lack
certain aspects of their immune responses [18,19,87]. Although the variety of investigated
knockout and background strains within the present study allows scientifically sound
conclusions with respect to the murine immune system, the importance of different cell
types of the immune response, including the NK cell response, may differs in other species,
especially humans and ruminants. These aspects still require detailed investigations [13].
Furthermore, the RVFV strain used in the present study is not a wild-type RVFV strain.
RVFV MP-12 is attenuated by its heat sensitivity and a combination of several mutations
in all three segments of its genome [20,88]. These multiple mutations were derived by
repeated mutagenic passages in 5-fluorouracil [89]. However, the main pathogenicity factor,
NSs, is only partially attenuated in RVFV MP-12 and retains some of its virulence [90].
Moreover, RVFV MP-12 still has been shown to be lethal to certain, susceptible mouse
strains, e.g., IFNAR-/- or STAT1-/- mice [20,37]. Furthermore, its use is allowed under
biosafety level (BSL) 2 conditions, and it is even conditionally licensed as a vaccine in the
United States [20,37,88]. A non-attenuated wild-type isolate of RVFV may be less likely to
show similar results as RVFV MP-12 did in the present study, due to its increased virulence.

During its evaluation as a RVF vaccine, RVFV MP12 was shown to induce serocon-
version and protection against re-infection within ruminants and primates [91,92]. The
seroconversion was measured in the present study, and although no statistical significance
was yielded, a trend toward successful seroconversion in a subset of infected mouse strains
was observed. B-cell deficient mice and mice lacking CD4+ T-helper cells are naturally
unable to produce neutralizing antibodies, and the B6-IFNARtmAgt succumbed to disease
too quickly to develop a detectable adaptive immune response [93]. The remaining mouse
strains exhibited inconsistent results ranging from no to high antibody titers with exception
of the NOD mice that did not show seroconversion at all, most likely due to their deficiency
in antigen presentation and immune regulation [57–59].

In summary, the present study shows that a deficiency of IFN type 1 signaling results
in fatal RFV disease in mice, whereas a lack of functional NK-cells and combined lack of T-
and B-cells as well as defective macrophages is associated with continuous viral replication
without development of clinical disease and lesions in the liver and CNS in NSG mice.
However, as mice are an established model species but do not represent a natural host
to RVF and as an attenuated RVFV strain was used, the results must be interpreted with
caution and warrant further investigation regarding their relevance and applicability to
humans and ruminants.
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