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Abstract: Whole-genome sequencing of viral isolates is critical for informing transmission patterns
and for the ongoing evolution of pathogens, especially during a pandemic. However, when genomes
have low variability in the early stages of a pandemic, the impact of technical and/or sequenc-
ing errors increases. We quantitatively assessed inter-laboratory differences in consensus genome
assemblies of 72 matched SARS-CoV-2-positive specimens sequenced at different laboratories in
Sydney, Australia. Raw sequence data were assembled using two different bioinformatics pipelines
in parallel, and resulting consensus genomes were compared to detect laboratory-specific differences.
Matched genome sequences were predominantly concordant, with a median pairwise identity of
99.997%. Identified differences were predominantly driven by ambiguous site content. Ignoring
these produced differences in only 2.3% (5/216) of pairwise comparisons, each differing by a single
nucleotide. Matched samples were assigned the same Pango lineage in 98.2% (212/216) of pairwise
comparisons, and were mostly assigned to the same phylogenetic clade. However, epidemiological
inference based only on single nucleotide variant distances may lead to significant differences in the
number of defined clusters if variant allele frequency thresholds for consensus genome generation
differ between laboratories. These results underscore the need for a unified, best-practices approach
to bioinformatics between laboratories working on a common outbreak problem.

Viruses 2022, 14, 185. https://doi.org/10.3390/v14020185 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14020185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-6700-3746
https://orcid.org/0000-0003-3861-0472
https://orcid.org/0000-0002-9844-3744
https://orcid.org/0000-0001-9579-6408
https://orcid.org/0000-0003-0988-7827
https://doi.org/10.3390/v14020185
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14020185?type=check_update&version=2


Viruses 2022, 14, 185 2 of 14

Keywords: SARS-CoV-2; whole-genome sequencing; Pango lineage; bioinformatics

1. Introduction

The first genome sequences for severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the causative pathogen of coronavirus disease 2019 (COVID-19), were
released in January 2020 [1,2]. Subsequently, routine whole-genome sequencing (WGS) has
been adopted globally as infections of SARS-CoV-2 increase exponentially. As of April 2021,
more than a million SARS-CoV-2 genome sequences had been deposited in the GISAID
data repository (https://www.gisaid.org/, accessed on 13 April 2021).

Genomic data are useful for understanding the origins and spread of emerging
pathogens within the related fields of phylodynamics and molecular epidemiology [3],
such as during the 2013–2016 West African Ebola epidemic [4]. Accordingly, the rapidly
accumulating wealth of genomic data available for SARS-CoV-2 is crucial for real-time
research into the origins and ongoing evolution of the virus. For example, comparison
of SARS-CoV-2 genome sequences isolated from different patients can inform traditional
epidemiological methods and allow the reconstruction of transmission chains [5–9]. Addi-
tionally, mutations that have accumulated within SARS-CoV-2 genomes over time have
enabled successful typing of SARS-CoV-2 into ‘Pango’ lineages according to a hierarchical
nomenclature [10]. Classifying SARS-CoV-2 isolates into Pango lineages is important for
determining whether any diagnostic mutations, especially amino acid replacements, can be
linked to increased transmission and/or any differences in disease severity in patients with
COVID-19 [11], thereby allowing “variants of concern” to be designated.

Despite the many benefits of genomic epidemiological approaches for tracking the
spread of an emerging pathogen, there are many associated challenges. Initially, genome
sequences are not derived from a measurably evolving population, and, as a result, they
are not sufficiently informative to allow accurate or precise inferences of evolutionary
rates and time scales [12]. Rates of basecalling errors vary between different sequencing
technologies [13], and platform-specific biases can lead to different genomic regions being
more or less error prone depending on the choice of technology [14,15]. In the case of SARS-
CoV-2, inferred mutations at some genomic sites are problematic because they are highly
homoplastic or disproportionately associated with particular sequencing laboratories or
geographic locations [15]. Mutations that repeatedly occur upon duplicated sequencing
of a sample might be erroneously designated as passing QC metrics if these potential
external sources of errors are not considered [14,15]. Potentially incorporating erroneous
mutations into genome sequences can introduce errors in response to pandemic virus
spread given the role of diagnostic mutations in informing public health decisions. For
example, errors in the genome sequence of a given SARS-CoV-2 isolate could result in a
failure to designate the sequence as a variant of concern. This potential failure could, in
turn, negatively impact health outcomes for patients when certain mutations are linked to
more severe symptoms [16–18], or could increase the chances of an outbreak when a given
variant is known to be more transmissible [11].

Even in situations where one can be confident in the reliability of sequencing data, the
optimal way to incorporate mutations from a virus sample into a representative consensus
genome is uncertain. In the most simple form, a consensus genome represents the most
common allele found at each position in an alignment, such as the alignment gained by
mapping sequencing reads against a reference genome. Any minor alleles are generally
not reflected in the consensus genome. However, in a positive-sense single-stranded
RNA virus such as SARS-CoV-2 [2], any inferred minor alleles that are not erroneous in
origin (sequencing errors, artifacts of partial RNA degradation) actually represent intra-
host diversity. RNA viruses act as a ‘quasispecies’, with a diverse, dynamically evolving
population of viruses being found within a given host [19,20]. Host-to-host transmission
of SARS-CoV-2 intra-host single-nucleotide variants (iSNVs) can occur, with some iSNVs

https://www.gisaid.org/
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restricted to different Pango lineages, consistent with iSNVs potentially influencing the
epidemiology of the virus [21]. In these situations, solely incorporating the most common
nucleotide at each genomic site into the consensus genome does not reflect the diversity of
the quasispecies within patients. Alternative bioinformatic strategies include representing
the diversity of variants at genomic sites in consensus genomes using IUPAC ambiguity
codes based on variant allele frequency thresholds [22].

Caution is warranted in determining whether inferred mutations are real or are the
result of sequencing errors or other biases when using genomic epidemiological approaches.
Careful consideration of how the breadth of viral diversity within a patient is represented is
also necessary. However, differences in both wet laboratory and bioinformatics approaches
can differentially introduce biases and/or differences in sample consensus genomes. Sev-
eral studies have evaluated the analytical validity of different sequencing technologies
and approaches for WGS analysis of SARS-CoV-2 [14,23]. Nevertheless, far less attention
has been paid to assessing the consistency in sequencing between different laboratories.
In this study, we compared sequencing results of 72 SARS-CoV-2 isolates carried out in
two laboratories in Sydney, New South Wales, Australia, generated using two analogous
bioinformatic workflows, by experienced sequencing teams. We investigated differences in
the resulting matched consensus genomes, and their downstream consequences on Pango
lineage typing and phylogenetic inference.

2. Materials and Methods
2.1. SARS-CoV-2 Matched Samples

Extracts from SARS-CoV-2-positive nasopharyngeal swabs of patients tested at NSW
Health Pathology East Serology and Virology Division (SAViD) were routinely sequenced
according to established WGS protocols [14]. Each SARS-CoV-2-positive extract was also
sent to the Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health
Pathology-West, NSW, Australia, for WGS according to their established protocols [8].
Accordingly, the same positive sample was sequenced at both SAViD and ICPMR. Here,
we compared the resulting consensus sequences of 72 samples sequenced at ICPMR with
their corresponding consensus sequences generated within SAViD. We refer to these corre-
sponding samples as ‘matched samples’.

All samples were collected between early March 2020 and late November 2020. For
all samples collected after 1 July 2020, both SAViD and ICPMR worked with the same
primary extract, but prior to this date ICPMR were sent secondary extractions from the
same positive SARS-CoV-2 swab. Clinical specimens were routinely processed at SAViD
for diagnostic purposes. Viral sequence data was identified as exempt from ethics by NSW
Health, as no human isolate or clinical data was analysed specifically for research purposes
in this study. All work carried out by ICPMR was done in accordance with governance
regulations from the Human Research Ethics Committees of the Western Sydney Local
Health District (2020/ETH00287).

Primary extracts were sequenced and assembled into consensus genomes at SAViD
(henceforth: Lab1) according to a custom pipeline (see below). Additionally, ICPMR
(henceforth: Lab2) provided raw sequencing reads for matched samples, and these were
then assembled into consensus genomes at SAViD according to the same pipeline. Finally,
primary assemblies from ICPMR for each of these samples, assembled using the bioinfor-
matics pipeline used by ICPMR [8] (see below), were downloaded from GISAID for the
purposes of comparison (Supplementary Table S1). Therefore, each isolate was represented
in the dataset three times, once for each assembly. This allows three possible pairwise
comparisons per isolate.

2.2. Wet-Lab Protocols

At Lab1, automated extraction of total nucleic acid extraction from samples was carried
out using the Roche MagNA pure 96 with the Roche MagNA Pure DNA and total NA kit.
The superscript IV VILO Master Mix (Thermo Fisher, Waltham, MA, USA) was used for
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reverse-transcription of RNA extracts. Prepared cDNA was then amplified separately with
each of 14 × ~2.5-kb amplicons tiling the SARS-CoV-2 genome [24] using the Platinum
SuperFi Green PCR Mastermix (Thermo Fisher) with 1.5 µL of cDNA per reaction. PCR
products were cleaned using AMPure XP beads (0.8× bead ratio), and quantified using
the PicoGreen dsDNA Assay (Thermo Fisher). All 14× amplicon products from a given
sample were then pooled at equal abundance, and prepped for short-read sequencing
using the Illumina DNA Prep Kit according to the manufacturer’s protocol. Samples were
multiplexed using Nextera DNA CD Indexes and sequenced using 150 bp paired-end
sequencing on an Illumina MiSeq.

At Lab2, all steps up to and including amplicon generation were the same as at
Lab1. Library preparation was carried out using an Illumina Nextera XT Kit, followed by
sequencing on an Illumina iSeq or MiniSeq (150 cycles).

2.3. Bioinformatics Protocols

Sequencing reads for each sample derived from Lab1, as well as reads for matched
samples provided by Lab2, were processed through a custom bioinformatics pipeline.
Briefly, raw reads were processed with fastp v0.20.1 [25] to remove any residual sequencing
adapters, carry out light quality trimming (-q 20), and only retain reads that pass a minimum
length filter (-l 50). Clean reads were then mapped to the NCBI RefSeq assembly of SARS-
CoV-2 (NC_045512.2) using bwa mem v0.7.17-r1188 [26], with unmapped reads discarded,
and primer sequences were soft-clipped from the alignment using ivar trim v.1.3 [22]
discarding reads that were <30 length. Alignments were converted to pileup format
using samtools mpileup v1.10 [27] without discarding anomalous read pairs (-A), per-base
alignment quality disabled (-B), and no minimum PHRED quality for bases (-Q 0). Using
the mpileup result, variants were called using ivar variants, with a minimum quality score
threshold filter (-q 20), a minimum depth of 10 (-m 10) and a minimum variant frequency
threshold of 0.1 (-t 0.1). Additionally, consensus genomes were assembled using ivar
consensus, with a minimum variant frequency threshold of 0.9 (-t 0.9), a minimum quality
score of 20 (-q 20), and a minimum depth of 10 (-m 10). This frequency threshold allows
any potential intrahost diversity, as reflected by multiple alleles per site, to be represented
in resulting consensus genomes as IUPAC ambiguity codes. Any inferred indels were
manually inspected in igv v2.8.13 [28] to see whether they were well supported by the read
evidence and did not occur within homopolymeric regions. Spurious indels were ignored
in comparative analyses.

Demultiplexed raw sequencing data from Lab2 were quality trimmed using Trim-
momatic (v0.36, sliding window of 4, minimum read quality score of 20, leading/trailing
quality of 5) [29]. The taxonomic identification of samples as predominantly ‘Betacoronavirus’
was checked with Centrifuge v1.0.4 [30] using a database containing human, prokaryotic
and viral sequences. Quality controlled reads were then mapped to the SARS-CoV-2 ref-
erence genome using bwa mem v0.7.17, with unmapped reads discarded, followed by
soft-clipping of reads with ivar trim, discarding reads <20 length. Consensus genomes
were called using ivar consensus, with a minimum depth threshold of 10, minimum quality
threshold of 20, and minimum frequency threshold of 0.1. Finally, the 5′ and 3′ untranslated
regions were masked from consensus genomes.

2.4. Sequence Comparisons

Each consensus genome sequence was first individually aligned to the NC_045512.2
reference genome using mafft v7.475 (–thread 1 –quiet –add $seqfile $reference) [31], before
being combined into a full alignment. Stochastic wet-lab failures (e.g., amplicon drop
out) can lead to regions of the genome not having sufficient depth to call a base, resulting
in an N being inserted into the consensus genome. While missing regions of genomes
because of low coverage can be problematic for phylogenetic or other clustering analyses,
here we instead choose to focus on any differences that occur at high-depth, high-quality
bases, since these differences potentially represent systematic biases rather than stochastic
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sequencing dropouts. Therefore, we did not consider differences between sequences where
one base was called as an N and the other base was not. Instead, we focused on comparing
sites of the genome where bases were either confidently called as a ‘standard’ base (‘A’, ‘T’,
‘G’, ‘C’) or as an ‘ambiguous’ base (any of the IUPAC ambiguity codes).

To calculate differences between matched samples, we used a custom program written
in python3 (available from https://github.com/charlesfoster/pairwise_comparisons, ac-
cessed on 18 August 2021) that sequentially compares the consensus genomes of matched
samples and calculates both the total numbers of differences between samples, and reports
the differences themselves. The program takes optional command-line arguments to calcu-
late differences using all sites in the alignment, or instead after ignoring (a) runs of ‘N’ or ‘-’
from the ends of consensus sequences (–trim_ends), common in primary assemblies and
GISAID uploads, respectively, (b) sites where either, or both, sequences being compared
have a gap (‘N’ or ‘-’) (–ignore_gaps), (c) sites where one sequence has an indel and the
other does not (–ignore_indels), and/or (d) sites where either, or both, sequences have an
ambiguous base (as per IUPAC ambiguity codes) (–ignore_ambiguous).

We chose to compare the similarity of sequences after ignoring the effect of stochastic
amplicon drop outs (–ignore_gaps). Additionally, we trimmed the alignment to ensure that
both sequences being compared were the same length by removing runs of ‘N’ or ‘-’ from
the ends of the alignment (–trim_ends), with the exact number of bases that are trimmed
depending on each pair of sequences being compared. Manual investigation of the few
insertions in samples relative to the reference genome showed that the insertions occurred in
error-prone, homopolymeric runs of bases with spurious evidence provided by sequencing
reads. Accordingly, we chose to exclude indel sites from further analyses (–ignore_indels).
Implementing different variant frequency thresholds during consensus genome generation
can lead to the introduction of ambiguous bases. Therefore, we compared matched samples
both with ambiguous bases taken into account, and after ignoring sites in alignments with
ambiguous bases (–ignore_ambiguous). We also replicated our analyses after masking sites
that are known to be problematic for SARS-CoV-2 sequencing [15].

To compare the effect of any differences on downstream molecular epidemiological
inference, we estimated pangolin lineages for each sequence using pangolin v2.3.6 (https://
github.com/cov-lineages/pangolin, accessed on 13 August 2021), and determined whether
matched samples were assigned the same lineage. Another common goal of molecular
epidemiological studies is to place sequences under investigation in a phylogenetic tree.
When building a tree including the three assemblies per matched samples, we would
expect all three matched samples (henceforth, ‘sample triplets’) to group together in a clade.
However, differences in sequence content might prevent this from occurring. Therefore,
we inferred a tree using maximum likelihood with iqtree2 with branch support estimated
with ultrafast bootstraps, rooting on the Wuhan-Hu-1 reference genome (parameters: -o
NC_045512.2 -s $alignment -mset HKY, TIM2, GTR -mfreq F -mrate G, R -bb 1000 -nt auto
–keep-ident) [32,33]. The input alignment contained 29,513 constant sites and 598 distinct
site patterns, of which 388 were parsimony-informative. The iqtree2 command ensures
that 99 starting trees are inferred using parsimony, one starting tree is inferred using a
neighbour-joining algorithm, and then a candidate set of best trees are optimised with
maximum likelihood nearest neighbour interchange. We then used a custom R function to
test whether the clade comprising all sample triplets and their most recent ancestor included
a total of three tips. We use the number of tips in this clade as a crude proxy for distance
between tips in tree space. However, we acknowledge that a lack of divergence between all
sequences in the alignment might lead to identical samples from other patients preventing
matched samples from forming sequence triplets in our inferred phylogeny. Likewise, a
lack of information in multiple sequence alignments might prevent relationships among
sequences from being estimated with robust support. These issues are pertinent to the
challenges faced early in the investigation of an emerging pathogen.

https://github.com/charlesfoster/pairwise_comparisons
https://github.com/cov-lineages/pangolin
https://github.com/cov-lineages/pangolin
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3. Results
3.1. Pairwise Differences

There was a strong concordance in consensus sequences of matched samples generated
at Lab1 and Lab2, with a median pairwise identity of 99.996% (SD: 0.011) from 216 pairwise
sequence comparisons (Supplementary Table S2). Most matched pairs were identical,
with the majority of differences driven by the presence of IUPAC ambiguities in one
sequence or the other (Figure 1). However, five out of 216 comparisons (comprising three
different samples) possessed differences at a site in the genome where both sequences were
confidently assigned a standard nucleotide base (A, T, G, C) (Figure 2; Supplementary
Table S2). These strongly supported differential base calls did not occur in primer-binding
regions or at known problematic sites in the SARS-CoV-2 genome [15].
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where either or both sequences being compared had an IUPAC ambiguity code at a given site;
(c) number of differences where both sequences being compared had a standard nucleotide base
(A, T, G, C) at a given site. Within each panel, results are represented based on three classes of
analyses: (1) Sequence derived from Lab1 vs. sequence derived from Lab2, both assembled with the
bioinformatics protocol of Lab1 (Lab1 vs. Lab2-New); (2) Sequence derived from Lab1 assembled with
the bioinformatics protocol of Lab1 vs. sequence derived from Lab2 assembled with the bioinformatics
protocol of Lab2 (Lab1 vs. Lab2-Original); (3) Sequence derived from Lab2 assembled with the
bioinformatics protocol of Lab1 vs. sequence derived from Lab2 assembled with the bioinformatics
protocol of Lab2 (Lab2-New vs. Lab2−Original).

For further analysis, comparisons between sequences were designated into different
‘classes’:

1. Lab1 vs. Lab2-New: Lab1 sample assembled with Lab1 bioinformatics pipeline; Lab2
sample assembled with Lab1 bioinformatics pipeline

2. Lab1 vs. Lab2-Original: Lab1 sample assembled with Lab1 bioinformatics pipeline;
Lab2 sample assembled with Lab2 bioinformatics pipeline

3. Lab2-New vs. Lab2-Original: Lab2 sample assembled with Lab1 bioinformatics
pipeline; Lab2 sample assembled with Lab2 bioinformatics pipeline

When investigating the number of differences (SNVs) between each class of sequence
pair, the number of differences with and without ambiguous sites included were assessed
(Figure 2; Table 1). Comparing the same sequencing reads assembled with different
bioinformatics pipelines (class 3: Lab2-New vs. Lab2-Original) revealed a number of
differences in matched samples when ambiguous sites were included, but, when excluding
ambiguous sites, no differences were found. In both other classes of analyses, nearly all
differences were able to be attributed to IUPAC ambiguities (Figure 2; Table 1).

Table 1. Summary statistics comparing the number of differences in pairwise sequence compar-
isons between matched samples from the same patient that were sequenced at different lab sites
with/without using the same bioinformatics pipeline. Abbreviations: IQR = interquartile range; Lab1:
Lab1 sequence assembled with Lab1 bioinformatics pipeline; Lab2-New: Lab2 sequence assembled
with Lab1 bioinformatics pipeline; Lab2-Original: Lab2 sequence assembled with Lab2 bioinformatics
pipeline.

IUPAC Ambiguities Included IUPAC Ambiguities Excluded

Pair Mean Median IQR Range Mean Median IQR Range

Lab1 vs. Lab2-New 1.97 0 2 0–27 0.03 0 0 0–1
Lab1 vs. Lab2-Original 1.32 1 2 0–14 0.04 0 0 0–1

Lab2-New vs. Lab2-Original 1.72 1 2 0–14 0 0 0 0–0

3.2. Impact on Pango Lineage Assignment

Out of all 216 pairwise comparisons, the two lineages being compared were assigned
the same Pango lineage in 212 cases (Supplementary Table S2). The only differences arose
in (a) Sample 34, where the Lab2-New sequence (B.1.2) was assigned a different lineage to
both Lab1 and Lab2-Original (B.1.596), and (b) Sample 39, where the Lab1 sequence (B.1.1)
was assigned a different lineage to both Lab2-New and Lab2-Original (B.1.1.70). Notably,
the only differences among these sequences occurred at sites where either sequence had an
IUPAC ambiguity code, demonstrating that incorporation of IUPAC ambiguities or not can
impact Pango lineage assignment. However, for the most part differences among matched
sequences had no significant impact on Pango lineage assignment, which is crucial for
ongoing genomic surveillance efforts.
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3.3. Impact on Placement in Phylogenetic Tree

A maximum-likelihood tree for all samples was inferred, with support for nodes
estimated through ultrafast bootstraps (UFboot). Despite the relatively low sequence
divergence within the alignment, many nodes within the tree had moderate (UFboot 80–
94%) to strong (UFboot ≥ 95%) support (Supplementary Figure S1). We then assessed
whether all three samples associated with a given patient formed a triplet clade within the
tree (see Methods). Out of 72 possible matched-sample triplets, 62 (86%) formed triplet
clades in the phylogenetic tree. Each of these triplet clades received strong UFboot support
(range: 97–100%; median: 100%) (Supplementary Table S3). Those samples that did not
form triplet clades were generally within slightly larger clades of ~6 sequences (range:
4–15, Supplementary Table S3), representing a lack of divergence between patients with
very similar SARS-CoV-2 sequences. Repeating the analyses using an alignment with
problematic sites masked (see Methods) largely did not change the results. That is, the
same triplet clades from the unmasked alignment were recovered, with the exception of
one poorly supported node for one sample (results not presented). Overall, differences
between matches samples did not impact their expected placement within the phylogenetic
tree in most cases.

4. Discussion

Molecular epidemiology is vital for investigating the origin of SARS-CoV-2 and track-
ing its spread during the COVID-19 pandemic. An obvious requirement of molecular
epidemiological techniques is that inferences are accurate, and that any uncertainty is
adequately reported. Most assessments of the reliability and accuracy of molecular epidemi-
ological inference in SARS-CoV-2 research focuses on phylogenetic analysis of SARS-CoV-2
genomes, such as the impact of masking problematic sites on phylogenetic inference [15].
Here, we investigated the impact of differences in processing and assembly of raw data for
consensus genome generation, which has obvious impacts on downstream bioinformatics
analyses. While this study focused on the processing of sequencing reads, any differences
in wet lab protocols prior to sequencing may also introduce biases that can propagate
through to the stage of bioinformatic analyses.

The extent of differences between matched sequences depended on whether sites
with IUPAC ambiguity codes were included in analyses. When these ambiguous sites
were excluded, we observed no differences between matched samples in the majority of
comparisons. If the bases in the consensus genomes had been purely assigned based on the
most common SNV at a given site in the genome, rather than as a function of the frequency
of different SNVs at a given position (see Methods), the resulting consensus genomes for
matched samples across different laboratories would have been essentially 100% concordant.
However, when including ambiguous sites, comparisons between sequences from Lab1
and Lab2 revealed at least one difference between matched samples in 53% of the pairwise
comparisons, even when both sequences were assembled using the same bioinformatics
pipeline (Table 1; Supplementary Table S2).

In a non-haploid organism, IUPAC ambiguity codes are used to represent heterozy-
gous positions in a consensus contig. Given that SARS-CoV-2 is a positive-sense single-
stranded RNA virus [2], nucleotide diversity at a particular genomic site does not demon-
strate that a virus is heterozygous at that site. Although some sequencing errors are
inevitable, nucleotide diversity at a given genomic site more likely represents intra-host
diversity [19,20]. Possible causes for intra-host diversity are a given host being infected
by SARS-CoV-2 multiple times, or mutations accumulating within different copies of the
SARS-CoV-2 genome throughout the course of infection of an individual.

The number of differences in each sample relative to the SARS-CoV-2 reference genome
was expected to differ between samples, based on date of collection and time within the
host. Some samples were collected early in the COVID-19 pandemic (March 2020), whereas
others were collected many months later (up to the end of November 2020). Accordingly,
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samples with a greater number of mutations relative to the reference genome also had a
greater number of sites at which intra-host diversity could be observed.

There is no threshold beyond which the number of ambiguous bases becomes prob-
lematic. However, in practice, any samples that have large numbers of ambiguous sites can
be flagged for further investigation and review. For example, an overabundance of sites in
a given genome with a roughly 50/50 split of alternate nucleotides can indicate a mixed
sample. Our results suggest that most matched samples in our study were highly similar,
with a small number of sequences contributing to elevated pairwise differences among
matched samples (Table 1). Closer inspection of the sample with the greatest number of
differences between laboratories demonstrated extensive intra-host diversity (Sample6, 27
differences, Supplementary Table S2). The majority of differences between laboratories
were due to variants occurring at a very low frequency that falls close to our threshold
for variant allele frequency, suggesting that only minor differences in sequencing could
cause these minor variants to be detected or missed. However, one difference between
Lab1 and Lab2 occurs at a non-ambiguous site, and at some positions there are variants
at moderate variant allele frequencies (~0.25–0.5) in the sample from one laboratory, but
with no support for a variant in the corresponding sample from the other lab (results not
presented). Therefore, ‘Sample6’ from Lab1 might not actually be from the same patient
as ‘Sample6’ from Lab2. This investigation demonstrates that (a) incorporating IUPAC
ambiguities into consensus genomes is beneficial for quality control, but also that (b) a
strict variant allele frequency threshold for IUPAC ambiguity code incorporation (e.g., 0.9)
might disproportionately inflate the apparent difference between samples at the consensus
level when many minor variants occur at a very low frequency.

Not all bioinformatic software handle ambiguous bases in the same way [34]. The
tool for Pango lineage designation for molecular epidemiological inference of SARS-CoV-2
genomes is pangolin (https://github.com/cov-lineages/pangolin, accessed on 13 August
2021). Pangolin can assign lineages using the pangoLEARN machine learning algorithm.
Currently, sites with ambiguous data (either ‘N’ or IUPAC ambiguity codes) are ignored by
pangolin when assigning lineages using the decision-tree algorithm of pangoLEARN. Ver-
sions of pangolin≥3.0 can also designate lineages to samples using an ultrafast, parsimony-
based tool to place samples in a phylogenetic tree (UShER) [35]. The UShER tool replaces
ambiguous sites with any one of the most parsimonious nucleotides at that position giving
preference, when possible, given to the reference base. Version of pangolin≥3.0 can identify
lineages as variants of concern by considering diagnostic constellations of SNVs (scorpio,
https://github.com/cov-lineages/scorpio, accessed on 13 August 2021). If there is an
ambiguous base at a site in the SARS-CoV-2 genome that is key for assigning lineages,
it is possible that an incorrect lineage will be assigned by either skipping that key site
(pangoLEARN), or falsely assigning the reference base to that site (UShER). Typing lineages
using scorpio should be relatively more robust than strictly using pangoLEARN or UShER,
but the method (a) could still fail if IUPAC ambiguities are found at multiple diagnostic
SNV locations, and (b) is restricted to designating a set of variants of concern.

Accordingly, we expected that observed differences in the content of ambiguous sites
between the sequences of matched samples would result in different Pango lineage assign-
ments, especially when many such differences were observed. However, encouragingly,
all but four pairwise comparisons between matched samples revealed an identical lineage
assignment. This result most likely occurred because the sites that differ between samples
occur in positions of the SARS-CoV-2 genome that are not important for Pango lineage
assignment at this stage of the COVID-19 pandemic. As the COVID-19 pandemic continues
and more sites become diagnostic for different Pango lineages, the potential issue of base
ambiguity will likely become more pronounced if relying on the decision tree approach of
pangoLEARN.

Another common use of SARS-CoV-2 genomes is to infer the relationships among
samples using a phylogenetic tree. Different phylogenetics software account for IUPAC
ambiguity codes in different ways: BEAST, one of the most commonly used Bayesian

https://github.com/cov-lineages/pangolin
https://github.com/cov-lineages/scorpio
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phylogenetic inference software packages, treats IUPAC ambiguity codes as missing data
by default [36], whereas the popular maximum-likelihood program iqtree accounts for
IUPAC ambiguities [33]. Therefore, if these programs are used naively, there is a possibility
that differences in inferred trees could be caused by IUPAC ambiguity content, either
by conflicting phylogenetic signal or a loss of phylogenetic signal. Overall, the extent to
which IUPAC ambiguities affect inferred phylogenies is unclear, with conflicting results
depending on the taxonomic scale of study organisms and the type of genetic data [34,37].

The impact of inferred ambiguity codes on placing SARS-CoV-2 sequences in a phy-
logeny was assessed by estimating a phylogenetic tree using iqtree2. Three matched
consensus sequences were included per sample (see Section 2), for a total of 216 sequences.
If IUPAC ambiguity codes had a negligible impact on phylogenetic inferences, all matched
sequences from a given RNA extract should form a monophyletic clade of three sequences
(‘triplet clades’). The vast majority of matched samples did form strongly supported triplet
clades (Supplementary Table S3), and those that were not recovered in triplet clades were
in regions of the tree with poor support. Any differences in placement could also have
been caused by relatively large amounts of missing data originating from amplicon drop
out during sequencing. Therefore, any site-by-site differences in sequence content between
matched samples, which largely comprise IUPAC ambiguity codes, generally did not affect
the placement of a given sample in a phylogenetic tree. In general, these results are con-
sistent with molecular epidemiological inference not being affected by which laboratory a
sample is sequenced in.

5. Conclusions

Despite recovering some differences between matched samples, these differences
constituted only a small fraction of the SARS-CoV-2 genomes. Furthermore, these small
differences had no impact on Pango lineage assignment or on placement of samples in
a phylogenetic tree in the vast majority of cases. These findings demonstrate that: (a)
SARS-CoV-2 nucleic acid extracts are relatively robust to transport on dry ice between
laboratories given proper handling, which is promising for laboratories that have the
capacity to test for SARS-CoV-2 positivity, but do not have WGS capacity; and (b) any
minor differences between sequencing laboratories will likely have a negligible impact
on molecular epidemiological inferences based on Pango lineage calls or placement in a
phylogenetic tree. However, most of the differences recovered between sequences are only
apparent because of our use of a bioinformatics pipeline with strict consensus genome
assembly parameters leading to IUPAC ambiguity codes within genomes. Any molecular
epidemiological clustering analyses based on pure SNV differences between samples will
be vastly different if genomic sites with IUPAC ambiguities are included and different
sequencing facilities use different consensus generation thresholds. Therefore, justification
and reporting of the parameters used during consensus genome assembly is important,
and depends on the intended purpose of the consensus sequence. For example, is the
intention to have the sequence represent the most common base at each position in the
genome, irrespective of any variation? Or is the sequence intended to represent all variation
within a sample, which, in the case of SARS-CoV-2, likely reflects intra-host variation?
The latter approach is arguably more biologically realistic and conveys more information,
assuming true heterogeneity is represented rather than methodological artifacts, but results
in a higher proportion of ambiguous bases in the consensus genome. Overall, we showed
that a small number of differences among consensus genomes of matched samples could
occur, even when they were assembled using the same bioinformatic pipeline. Careful use
of appropriate, comparable pipelines allows appropriate assignment of lineage for use in
public health responses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14020185/s1, Figure S1: Phylogenetic tree inferred using maxi-
mum likelihood analysis with IQTREE2. Support for nodes is represented with ultrafast bootstrap
support; scale bar is in substitutions per site. Abbreviations: samples ending with “_L1” = primary
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assembly from Lab1, samples ending with “_L2-O” = primary assembly from Lab2, samples ending
with “_L2-N” = secondary assembly of sequencing reads from Lab2. Table S1: Accessions for all
sequences sourced from GISAID, as well as the sample numbers designated in this study. Table
S2: Results of pairwise comparisons between matched samples, with and without ambiguous sites
included in the analysis. Pango lineages were inferred using the pangoLEARN algorithm of pan-
golin v2.3.6. Differences between sequences are provided in the form of <Sequence1_Nucleotide>
<GenomicPosition> <Sequence2_Nucleotide>. Table S3: Table depicting whether all three sequences
from matched samples formed a monophyletic clade of three tips (‘triplet clade’), as well as ultrafast
bootstrap node support for the clade.
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