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Abstract: Chikungunya virus (CHIKV) belongs to the genus Alphaviridae, with a single-stranded
positive-sense RNA genome of 11.8 kbp encoding a polyprotein that generates both non-structural
proteins and structural proteins. The virus is transmitted by the Aedes aegypti and A. albopictus
mosquitoes, depending on the location. CHIKV infection leads to dengue-like musculoskeletal
symptoms and has been responsible for several outbreaks worldwide since its discovery in 1952.
Patients often experience fever, headache, muscle pain, joint swelling, and skin rashes. However, the
ultrastructural and mechanical properties of CHIKV have not been fully characterized. Thus, this
study aims to apply a physical approach to investigate CHIKV′s ultrastructural morphology and me-
chanical properties, using atomic force microscopy and Raman spectroscopy as the main tools. Using
nanomechanical assays of AFM and a gold nanoparticles substrate for Raman signal enhancement,
we explored the conformational plasticity, morphology, vibrational signature, and nanomechanical
properties of the chikungunya virus, providing new information on its ultrastructure at the nanoscale
and offering a novel understanding of the virus’ behavior upon mechanical disruptions besides its
molecular composition.

Keywords: CHIKV; physical virology; ultrastructure; AFM; Raman

1. Introduction

Chikungunya virus (CHIKV) is a single-stranded RNA alphavirus with a reported
diameter of approximately 70 nm [1]. These viruses have a monopartite positive-sense
RNA genome enclosed in an icosahedral symmetry capsid surrounded by an envelope with
spicules on the surface. Such spicules comprise heterodimers of E1 and E2 glycoproteins,
facilitating attachment to cell surfaces [2–4]. CHIKV infections have been responsible for
several outbreaks worldwide since their discovery [5]. Its transmission occurs mainly
through the bite of previously infected female A. albopictus or A. aegypti mosquitoes [6,7].
CHIKV represents a significant threat because it causes abrupt (acute) and prolonged
(chronic) symptoms of polyarthralgia and myalgia, which tend to be much more severe
than other arboviruses. Importantly, patients might experience long-term sequelae of
unclear pathophysiological explanations [7,8].
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Structural investigation of viruses supported by high-resolution microscopy tech-
niques has been a breakthrough in uncovering new aspects of viral structural components
and functions. Nevertheless, there are complexities related to the dynamic nature of viruses
that do not fit into static glimpses [9]. Still, significant advances can be achieved using
different approaches to broaden information about a particular virus [10,11]. The transi-
tion of viral particles from immature to mature particles, entry into the host cell through
interaction with the cell membrane, the replication process, movement during infection,
and evasion of the immune system are all processes closely associated with the physical
properties of a viral particle [12–15].

Therefore, studying mechanical properties could clarify the relationship between the
structure and function of viral particles. Atomic force microscopy (AFM) is a powerful tech-
nique that can be used to investigate these mechanical properties at the nanoscale [13,16]
and, together with Raman spectroscopy [17,18] analysis, can be employed to obtain the fin-
gerprint of molecular components. Scrutiny of mechanical characteristics such as stiffness,
elasticity, and adhesion of viruses, in addition to possible points of fatigue and breakage of
the viral capsid [10,11,19–21], could provide structural properties unique to different virus
particles. In this study, we aimed to characterize the mechanical properties of CHIKV and
map its ultrastructure using atomic force microscopy. In addition, we intended to design a
methodological approach to perform label-free surface-enhanced Raman spectroscopy to
record the vibrational signature of the CHIKV particle.

2. Materials and Methods
2.1. Virus Culture and Inactivation

A Brazilian isolate of the CHIKV ECSA strain (Genbank: KP164569) was propagated
in Vero E6 cells (ATCC, CRL-1586) in MEM medium (Gibco) (supplemented with 10%
fetal bovine serum (Gibco) and 1% (v/v) penicillin/streptomycin (Gibco)-M10) for 48 h.
Then, the supernatant of infected cells was collected, harvested, and titrated as previously
described. The virus was inactivated by thermal treatment at 56 ◦C for 1 h [22].

2.2. Atomic Force Microscopy (AFM)

AFM measurements were performed according to the methodology employed by
Cardoso-Lima et al. [10], where 3 µL of solution with viral particle suspensions were
deposited on glass slides (13 mm diameter). The slides were analyzed by a Multimode 8
(Bruker, Santa Barbara, CA, USA), and the probes used were SNL (Bruker) with a 0.24 N/m
nominal spring constant and a nominal tip radius of 2 nm in the peak force quantitative
nanomechanics (QNM) mode. Viral particle indentation experiments were performed on
six viral particles, each undergoing 30 to 70 indentation cycles. For the indentation analysis,
measurements were performed on the QNM Ramp Mode following the same procedure
used by Cardoso-Lima et al. [10]. We applied a force setpoint of 25 nN and a tip velocity
of 100 nm/s. AFM data were analyzed, and the maps were obtained using Nanoscope
Analysis software.

2.3. Raman Spectroscopy (RS)

The Raman scattering measurements were performed on a micro-Raman system,
model T64000 (Horiba/Jobin-Yvon), operating in the single mode. A 2 mW diode laser
operating at 785 nm was used as the excitation source. A neutral density filter (1%) was used
to avoid laser-induced damage to the sample. The light was focused on the sample using a
microscope model BX41 (Olympus), with a 100× objective lens (NA = 0.9, WD = 0.21 mm),
and the Raman signal was dispersed in an 1800 gr/mm grid and detected in a liquid-
nitrogen-cooled CCD. The slits of the spectrometer were adjusted to obtain a spectral
resolution of 2 cm−1. A substrate with gold nanorods deposited was used for surface-
enhanced Raman scattering (SERS). The spectrum was acquired after three acquisitions of
30 s in each dispersion band of the spectral grid [23,24].
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3. Results and Discussion

This study investigated the plasticity, morphology, and adhesion properties of CHIKV
providing new information on its ultrastructure at the nanoscale and offering an un-
derstanding of the virus’ behavior upon mechanical disruptions. The high-resolution
topographic maps revealed the structures of the viral surface and its protein distribution
(Figure 1A). It is possible to observe the dispersion and calculate the size of the particles,
which were 52.04 nm ± 7.6 nm (Figure 1A,C). The topographic analysis revealed that the
viral particle has an icosahedral shape, with surface bumps due to protein organization on
the particle’s surface (E1 and E2 glycoproteins). This fact is exemplified in Figure 1D, with a
superposition of a simulated model of protein organization [25] over the topographic map.
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Figure 1. Structure of CHIKV. (A) Height image of several viral particles (VPs). The average diameter
of the particles is 52.04 nm ± 7.6 nm. (B) Height image of an individual CHIKV viral particle.
(C) Cross-section of a single VP, corresponding to the dotted line in (D). (D) Correlation between
Chikungunya virus modeling [25] and AFM height image.

Viral particles are not rigid solids, although CHIKV mainly comprises closely packed
glycoproteins that form the icosahedral capsid. As an enveloped virus, there is a lipidic layer
involving the protein capsid in which the surface proteins are anchored [26]. Physically,
this means that the protein capsid is enclosed by a lipidic outer layer that will fall over,
underlining the particle’s internal, more rigid structures [27,28]. It was possible to observe
the triangular organization of proteins that form the capsid characteristic of icosahedral
viruses. In Figure 2A, we demonstrate the topographic map of two adsorbed particles
highlighting the triangular shape of the upward viral particles, while in Figure 2B, we
depict their respective 3D map.
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Figure 2. Adsorption patterns. (A) Height image of two VPs. Different adsorption patterns evidence
the icosahedral geometry of the virus. (B) Three-dimensional visualization of image (A). The blue
dotted triangle highlights the relationship with the inset image, representing virus’ icosahedral
geometry.

Figure 3A shows a viral particle before the indentation cycles with its corresponding
adhesion forces map shown in Figure 3B. Interestingly, we could observe the small triangle
facet on the top of the virion (Figure 3B, purple arrow). In addition to topographical
characterization, nanoindentation experiments were performed to evaluate the stiffness
and resistance of the viral particles. These experiments revealed that CHIKV particles could
withstand a peak force of up to 25 nN, which is higher than what is supported by ZIKV [11]
and SARS-CoV-2 [10]. After 30 loading cycles of indentation, CHIKV particles did not
collapse, suffering only local damage (Figure 3C). This fact could be related to the nature of
the protein capsid and the tight package of the proteins composing the structural CHIKV
particles [26]. This structure could confer a high mechanical resistance and stability to the
virion, offering a more plastic response to mechanical stimuli rather than a more compliant
one. During infection, viral particles are subjected to forces exerted by different target cells
and tissues [29]. Ozden and collaborators [30] showed that CHIKV replicates in the muscle
tissue cells of infected subjects. Muscle tissue is extremely resistant, and in this regard,
CHIKV particles have an advantage: high mechanical resistance to local disturbances. The
functional relevance of these mechanical properties should be explored in the future.

For the adhesion map, the lighter regions (Figure 3B,D) are associated with a positive
charge distribution on the particle’s surface [31], using the AFM probe as a reference. It
is possible to observe contrasts in force related to the different protein domains (E1 and
E2 glycoproteins) of the CHIKV virion. Correlating the topography and adhesion maps in
Figure 3D, it is possible to observe changes in the charge distribution of the forces on the
viral surface caused by the indentations performed. Such indentations caused a disturbance
in the protein organization in these regions, exposing internal portions of the particle.

Adhesion maps are related to the probe and sample surface interaction forces. It could
also detect interactions between the different structures of the particle itself. These adhesive
interactions are electrostatic, van der Waals and capillary forces, and forces promoted by
chemical bond breakage [31]. Usually, AFM results of adhesion are treated as non-specific
interactions because of the difficulty in determining the amount of each interaction covered
on the measurement, aside from the measurements performed using functionalized probes,
which is not the case for the methodology used in this study. The probes we used to analyze
all samples have the same composition (Si3N4) with well-defined specifications, such as
geometry and tip radius, and the same conditions for all the assays performed, including
temperature and air humidity.
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Figure 3. Indentation experiments. (A) Height image of a viral particle (VP) and (B) its respective
adhesion map. At the top of the particle, it is possible to observe differences in charge due to different
protein domains. After 30 cycles of indentation, the viral particle shown in image (C) reveals the
damage caused to the surface of the VP, as evidenced by the blue arrow. It is even possible to observe
the pyramidal pattern of the AFM probe geometry. This is associated with the nature of the protein
coat of CHIKV, which confers greater rigidity and plasticity. In (D), it is possible to observe changes
in the distribution of adhesion forces on the VP after indentation, with the purple arrow indicating
the site of more positive charge and the pink arrow indicating the site where the indentation occurred,
leaving a more negative surface charged location. (E) Representative AFM force curve. Force curve
showing viral shell rupture (yellow circle). The first event occurs at ~1.4 nN and the second at ~4.1
nN. The insert shows rupture ramps that reveal two layers approximately 10 nm thick (green arrow).
The retraction curve (red curve) shows the adhesion force with a Velcro-like pattern, characteristic of
protein bond breaks.

Previous literature [31] on the subject reports that the variations on the distribution of
adhesion forces on the maps are mostly associated with van der Waals and electrostatic
interactions, in this case especially because we used a non-modified probe in low humid-
ity conditions, with a conical sharp probe, which makes unfeasible the contributions of
chemical or capillary forces for the adhesion. Moreover, for the frequency of the peak force
measurements (1 kHz) in low humidity air medium, some triboelectrification of the probe
is expected because of the absence of charge dissipation. So, the accumulation of charges on
the sample surface, related to the sample’s composition, even for non-conductive samples,
results from this variance in electrostatic forces between the probe, air, and the sample.
Regarding the contribution of van der Waals forces, they have components of orientation,
induction, and dispersion forces, the latter being a dipole/dipole-induced interaction that
contributes more significantly. The van der Waals forces experienced by the AFM probe
depend on the geometric parameters of the tip, in addition to being directly proportional to
the Hamaker constant, which includes physicochemical parameters of the probe-sample
interaction. Thus, changes in the contributions of van der Waals forces can only be provided
by changes in the potential of the probe-sample interaction, and, in this case, it must come
from the heterogeneity of the sample, as the probe atoms are always the same for all the
measurements [10,32–34].

For each indentation cycle, a force curve was obtained as a result of the approximation
and retraction movement of the probe relative to the sample. In Figure 3E, we have a
representation of a single force curve that shows the rupture events that occurred over this
cycle of indentation on the top of the CHIKV virion. In the yellow portion, it is possible
to notice two rupture events in the approximation curve (in blue) that were reported by
previous literature as signs of breakage caused by mechanical load [13,35]. The first event
occurs at about 1.4 nN, and the second occurs around 4.1 nN, indicating that at least two
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different layers are present and were broken, summing to 10 nm thickness. The negative
portion of the retraction curve (in red) is characteristic of adhesive/attractive interactions.
Indeed, it is possible to notice a pattern of Velcro-like events [36]. This pattern is observed
when protein bonds are broken, confirming the rupture events during the exit of the tip
from the virion surface.

Throughout our AFM analyses, we observed the formation of fibers (Figure 4) in
different CHIKV samples. These fibers were 561 ± 87 nm in length and 15.68 ± 3.6 nm
in diameter and could be RNA- or protein-related formations. We found no literature on
similar structures being identified in CHIKV samples. In Figure 4A, there is a 3D height
map; in Figure 4B, the cross-section represents the measurement of the diameters, with an
inset map showing a dotted line in the exact position of the section. For Figure 4C,D, the
maps showcase the mechanical signature of these fibers. The adhesion map in Figure 4C
outlines the charge distribution of the fiber compared to the substrate in reference to the tip.
The difference in contrasts on the map is a consequence of a greater or lesser accumulation of
charge on the surface, which is associated with the fiber’s composition and/or structure [31].
Unlike viral particles, the fibers present a more negative surface charge. Figure 4D shows
the energy dissipation map, which is associated with the viscoelastic nature of a solid object.
In both mechanical maps, it is possible to observe that the fibers are composed of some
repeating building blocks, demonstrating a periodicity size of about 36.47 nm ± 3.03 nm.
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Figure 4. Protein fiber formation: (A) 3D height map of the fibers. (B) Cross section representing the
diameter measurements. The blue dotted line in the inset shows the region from which the cross
section was taken. (C) Adhesion map demonstrating the contrasts of surface charge of the fibers
compared to the substrate, and (D) the energy dissipation to assess the viscoelasticity.

As for a reason for the appearance of these fibers, it is possible that some CHIKV
particles have collapsed, and the genetic content from inside the capsid has spilled out and
formed these fiber-like structures. Another feasible explanation is that, upon collapsing,
E1 and E2 glycoproteins in the CHIKV capsid can re-arrange together with the genetic
content to form these fiber structures. Literature reports similar structures related to protein
self-assembly [37] and some even with RNA and DNA structures [38]. Another possible
association with the knowingly negatively charged RNA [39] is the also negative surface
charge of the fibers, as demonstrated by the adhesion map in Figure 4C.

It is worth noting that we did not observe the formation of these fiber-like structures
when analyzing other viruses [10,11], despite some of these being RNA viruses. Moreover,
the experiment was performed multiple times using different slides, and even comparing
substrates (mica and glass). The appearance of fiber formation was present in all of them.
One key difference between CHIKV and other viruses previously studied by our group is
the presence of E1 and E2 glycoproteins in CHIKV. Therefore, it is reasonable to speculate
that these glycoproteins may be related to forming these fiber-like structures. Indeed, these
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fibers resemble collagen fibrils in shape and length [40], while type I collagen was identified
as a binding partner of the E2 glycoprotein [41]. However, the functional consequences of
such interactions are unclear. Suppose these fiber-like structures are indeed composed of
E2 glycoprotein. In that case, CHIKV likely forms these fibers to facilitate the adhesion
of collagen-producing cells, which might help to explain why CHIKV infection leads to
prominent musculoskeletal symptoms. These CHIKV fibers could also be involved in
long-term sequelae and, therefore, will be further characterized in forthcoming studies.

To identify molecular compositions and provide a vibrational signature of CHIKV
particles and these newly identified fiber-like structures, we performed SERS measurements.
In the spectra obtained (Figure 5), it was possible to locate bands distinguishing RNA
nucleic and lipidic groups, amino acids, and others. All four RNA bases had outstanding
signals, with a medium-to-strong intensity of the peak for Adenine and Guanine and
medium-to-weak for Cytosine and Uracil peaks. The exact wavelength numbers for each
of the bases are stated in Table 1.
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Figure 5. Vibrational signature. Raman spectra were obtained on the solution of viral particles
adsorbed on the SERS substrate. Colored bands identify vibrational modes present in the sample.

Table 1. Assignments of each band are presented on the SERS spectrum of CHIKV particles.

Wavenumber
(cm−1) RNA related Amino acid/

Protein
Lipid/

Carbohydrate Reference

793 O-P-O [42]
812 O-P-O [43]
851 Tyrosine [43,44]
837 Proline [44]
950 Polysaccharides [42,44]
974 Ribose [44]
991 Cytosine [45]

1030 Adenine [46]
1104 Uracil [46]
1124 Lipids [44]
1140 Adenine [46]
1200 L-Tyrosine [45]
1210 Guanine [46]

1230–1260 Amide III [43]
1288 Cytosine [47]
1305 Lipids [48]
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Table 1. Cont.

Wavenumber
(cm−1) RNA related Amino acid/

Protein
Lipid/

Carbohydrate Reference

1325 Guanine [43]
1334 L-Proline [45]
1351 Guanine [46]
1383 Guanine [46]
1394 Uracil [45]

1420–1430 Adenine,
Guanine [43]

1445–1456 Phospholipids,
Lipids [42,44]

1512 Adenine [49]
1563 Guanine [46]
1583 Guanine [43,47]

The two peaks of phosphodiester (O-P-O) around 800 cm-1 are related to the RNA
backbone, which links the nuclear bases [46]. In addition, there is the presence of the
amino acids that make up the proteins, such as tyrosine (850 cm−1), proline (937 cm−1),
and L-tyrosine (1200 nm−1) that can be related to the glycoproteins [43] on the surface of
the virion. Moreover, there are bands for polysaccharides (950 cm−1) and lipids (1305 cm−1

and 1450 cm−1) that relate to the composition of the viral membrane [42,44]. In the interval
from 1230 cm−1 to 1260 cm−1, there is the presence of the amide III band assignment.
The amide group is associated with the functional group CONH (carbon-oxygen-nitrogen-
hydrogen), which essentially creates linkages for protein formation, conferring structural
rigidity [45,47]. The amide group can be divided into subgroups referred to as amide
A, amide B, and amide I to VII, where amides I, II, and III are of most interest for the
documentation of different protein structural conformations. The spectrum of CHIKV
presented most prominently the band for the amide III group, which can be comprised of
enzymes, antibodies, transport or membrane proteins, and viral coats [47].

The non-appearance of the amide I band is noteworthy in the spectra obtained, which
is representative of protein domains in Raman spectroscopy results. This absence is related
to the length of the amino acid side chain. The side chains increase the distance between
the peptide bond and the metallic nanoparticles, preventing them from coming into direct
contact. However, it is also possible that the lack of the viral amide spike is also related to
the virus, an inactivation program that breaks down amino acids [50].

It is important to point out that, for label-free SERS measurements, it is virtually
impossible to know whether the laser hits a virus particle since the positioning of the laser
is performed with the use of an optical microscope that is not even near the necessary
resolution to spot a viral particle. A solution for this could be using a tip-enhanced Raman
spectroscopy (TERS) measurement as performed by Dou and collaborators [51], where the
probe can give the exact location of a single viral particle in the slide. Then the positioning
of the laser is more accurate.

4. Conclusions

This study provides findings regarding the chikungunya virion diameter (~52 nm), the
stiffness of the particle, and the amount of force one viral particle can withstand when sub-
jected to mechanical loads, which is about 25 nN, demonstrating a strong and stiff behavior
compared to previous tested viral particles in same conditions. Additionally, a unique fiber
formation was found in the viral sample, with lengths over 500 nm and a building block
periodicity of around 37 nm. The CHIKV particle demonstrates a plasticity behavior upon
mechanical stress and a positive charge distribution around most of its surface, besides
some negative spots that are probably related to interactions between the surface proteins.
Moreover, the SERS measurements provide viral particle composition and a vibrational
signature. In the spectra, it was possible to identify the main bands related to RNA bases,
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as well as protein-related bands. The finding of the fiber-like structures can shed light on
the relationship between CHIKV infection and pathologies related to collagen-rich sites in
the body. These results and the analysis of the biomechanical characterization of this virus
can aid in better understanding its pathophysiology, adding new data in the description
of the physical and structural properties of CHIKV, corroborating models shown in the
literature, and providing new insights that can be useful in designing strategies to fight this
infectious agent. The findings presented here are of pronounced importance because once
we understand these mechanisms, we can find specific drugs or biomolecules that could
weaken this viral particle, which is extremely resistant. Moreover, based on the properties
observed, such as vibrational modes and adhesion forces, we might be able to understand
more about the target sites and the mechanisms of action of the Chikungunya virus.
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