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Abstract: Human immunodeficiency virus-1 (HIV-1)-associated neurodegenerative disorder (HAND)
is frequently reported in HIV-infected individuals. The gp120 envelope viral protein has been impli-
cated in the pathogenesis of HAND in HIV-1-infected patients; however, its pathogenic mechanism
remains unclear. In this study, we first overexpressed gp120 proteins in pc12 cells and used PI staining,
a CCK8 assay, a TUNEL assay, and caspase-9/caspase-3-induced apoptosis to ascertain the mediated
cell death. Subsequently, the gp120-overexpressed cells were subjected to RNA transcriptomics
and mass spectrometry. The obtained results were integrated and validated using a quantitative
polymerase chain reaction (qPCR) and the postmortem brain samples with HIV-associated dementia
were analyzed against the normal control (using the GSE35864 data set on gene ontology omnibus
repository). Upon the integration of the RNA transcriptomic and proteomic results, 78 upregulated
genes were revealed. Fut8, Unc13c, Cdk1, Loc100359539, and Hspa2 were the top five upregulated
genes. Upon the analysis of the GSE35864 data set, the results indicate that Cdk1 was upregulated in
HIV-associated dementia in comparison to the normal control. Moreover, the protein expression of
Cdk1 was significantly higher in the gp120 transfected group compared to the normal control and
decreased significantly upon inhibition using Roscovitine (a known Cdk1 inhibitor). Taken together,
our results provide a possible molecular signature of the neurological impairment secondary to HIV
glycoprotein 120.

Keywords: HIV-1; gp120; HAND; cell death; apoptosis

1. Introduction

HIV-1 is a lentivirus of the Retroviridae family [1] and the causative agent of acquired
immune deficiency syndrome (AIDS) [2]. HIV-1 infection induces a neurocognitive disorder,
known as the AIDS dementia complex [3], as well as HIV-1-associated neurocognitive
disorder (HAND). These two disorders occur in more than 50% of all HIV-1-infected
individuals [4–6]. HIV-1 invades the brain cells soon after systemic infection via three basic
methods: transport by infected cells (“Trojan horse” hypothesis); transfer of cell-free virus
into the brain; and viral release into the brain by infected endothelial cells [7]. HIV-1 infected
astrocytes may spread the HIV infection in the brain and induce damage via a gap-junction-
mediated mechanism [8]. Newly infected cells continue to release viral proteins and lead
to inflammation [9]. Despite the presence of surface receptors on neurons, HIV-1 does
not infect them [10]. There is limited evidence that HIV-1 can directly infect neurons [11];
however, evidence from several studies support HIV-1′s indirect effects on neurons [11,12].
Several reports show the presence of HIV-1 nucleic acids in neurons extracted from a subset
of AIDS patients [11,13]. Cytokines and chemokines derived from host cells are released by
infected non-neuronal cells, and likely affect a diverse range of neuronal populations in the
Central Nervous System (CNS) [14]. HIV-1 causes neuronal damage, cell death, and CNS
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dysfunction via soluble viral proteins rather than by a productive viral infection [11]. The
resulting neuronal damage occurs through apoptosis and the loss of dendritic structures,
and finally hastens the onset of HAND [12]. Structural proteins (Pol, Gag, and Envelope
for example gp120), essential regulatory proteins (Tat and Rev), and accessory proteins (Vif,
Vpr, Vpu, and Nef) constitute the HIV-1 proteins [15]. These proteins have been linked to
HIV-1-associated dementia and encephalitis [16]. To cause apoptosis, HIV-1 viral proteins,
including Tat, Vpr, Nef and gp120, disrupt multiple CNS functions, including chemokine
synthesis, glutamate transport, and cellular pathways [17–19].

Glycoprotein 120 (gp120) is a component of the HIV-1 outer envelope and is essential
for viral infection as it enables the entry of HIV-1 into host cells [18]. It is a major HIV-1
protein that causes neuronal damage and death in individuals with HAND [17,18]. The
mechanism underlying the role of gp120 in the pathogenesis of HAND has been previously
reported, yet seems to be perplexing. Ankit et al. revealed that gp120 viral proteins cause
programmed cell death via endoplasmic reticulum stress [19,20]. Furthermore, gp120
causes neuronal apoptosis via RNA-activated protein kinase signaling, and stimulates IL-6
and IL-8 expression via a nuclear factor-kappa B-dependent pathway [21]. Here, we have
explored the possible molecular signature whereby gp120 induces programmed neuronal
cell death and validated this using the available data set of postmortem human brain
samples. Our results reveal genes that possibly mediate the neuronal death in individuals
with HIV presenting with neurocognitive disorders. Upon validation using postmortem
human brain samples, CDK1 tended to be upregulated in individuals with HIV-associated
dementia in comparison to the normal control. On CDK1 inhibition, the mediated markers
of apoptosis decreased significantly compared to non-inhibited group.

2. Materials and Methods
2.1. Cell Cultivation

The PC12 cells were purchased from the American Type Culture Collection (ATCC),
cultured in Dulbecco’s modified Eagle medium (DMEM) and supplemented with 1%
penicillin–streptomycin and 10% fetal bovine serum ((FBS); Thermo Fisher Scientific, Carls-
bad, CA, USA), and maintained at 37 ◦C in a humidified atmosphere of 5% CO2.

2.2. Cell Transfection

Two plasmids, HIV-1gp120 and an empty vector that was used as a negative control,
were produced by the Zorin Biotechnology Co., Ltd., Shanghai, China. The HIV-1gp120
plasmid was transfected into PC12 cells, in strict accordance with the polyethylenimine
(PEI) guidelines (Taipei, Taiwan, China). The cells (triplicate or quadruplicate wells) were
transfected with HIV-1gp120 for 0–48 h (1, 2, or 3 µg/µL) in six-well plates. The same
concentrations and incubation conditions were applied for the control group. All of the
disposable plastic ware was procured from Thermo Fisher Scientific, Carlsbad, CA, USA.

2.3. CCK8 Assay

The Cell Counting Kit 8 (CCK-8 kit; Beyotime Biotechnology Co., Ltd., Shanghai,
China) was used to determine cell viability. The PC12 cells were seeded at 5× 103 cells/well
onto a 96-well plate and transfected with gp120 as per the PEI protocol. At 48 h post
transfection, a mixture of CCK-8 reagent and DMEM (1:10) v/v was added to the cells and
incubated for 30 min. Optical density (OD) was measured at 450 nm and the cell survival
rate was calculated.

2.4. TUNEL Assay

The cultured neurons, treated with gp120, were washed in phosphate-buffered saline
(PBS) and then fixed in 4% paraformaldehyde on a cover slip; 1 µL TdT enzyme, 10 µL
buffer, and 5 µL Bright red dye from a TUNEL kit (Vazyme biotech company limited
Nanjing China) were added to the cover slip and incubated for 1 h at 37 ◦C. The reaction
was terminated by adding PBS to the plate and was then washed with PBS through
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mechanical shacking, three times, for 30 min at room temperature. To determine their
nuclear morphology, the cells were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI; Bio-Rad, Hercules, CA, USA) and examined under a fluorescence microscope.

2.5. Western Blotting Analysis

The protein content was determined by BCA-assay (Thermo Fisher Scientific, Waltham,
MA, USA); 20 µg total protein were resolved on 4–10% Bis-Tris gels. Standard Western
blotting techniques were used with antibodies, including Flag (1:1000), Bax (1:2000), bcl2
(1:1000), and caspase 3 (1:500) (all from Proteintech, Wuhan, People’s Republic of China).
Semi-quantitative analysis was performed with Image J.

2.6. RNA Preparation and Transcriptomics Libraries

According to the manufacturer’s instructions, the total RNA was extracted with
TRIzol. A nano Drop 2000 spectrophotometer was used to measure the RNA purity and
quantity (Thermo Fisher Scientific, USA). The Agilent 2100 Bio analyzer was used to test
the RNA integrity (Agilent Technologies, Santa Clara, CA, USA). The libraries were created
using Illumina’s TruSeq Stranded mRNA LT Sample Prep Kit (San Diego, CA, USA). The
sequencing and analysis were performed by Shanghai Oe Biotech Co., Ltd., China. The
detailed protocol for RNA extraction and all transcriptomics that were followed by the
company are provided in Supplementary File S1.

2.7. Sample Preparation and Mass Spectrometry

Following the transfection of gp120 into PC12 cells for 48 h, the medium was pipetted
off from the adherent cells. The surface of the culture dish was lightly scraped with sterile
PBS, and the cells were then gently rinsed for 1 min before the entire solution was removed.
Using a clean scraper, the cells were removed from one side of the dish and quickly
transferred to the centrifuge tube. The remaining cells were cleaned with PBS before being
moved to the centrifuge tube, and the precipitate was collected after centrifugation. The
cellular precipitate was placed in −80 ◦C storage after being submerged for 5 min in liquid
nitrogen. On the following day, the cells were transferred on dry ice for mass spectrometry
at OE Biotech Co., Ltd. in Shanghai, People’s Republic of China. The detailed protocol for
protein extraction and proteomics is provided in Supplementary File S2.

2.8. Selection of the Candidate Reference Genes

Venn software (https://bioinfogp.cnb.csic.es/tools/venny/index.html; accessed on
1 August 2022) was used to identify significantly upregulated overlapping genes (can-
didate genes) between the transcriptomics and proteomics. Panther software (http://
pantherdb.org/; accessed on 1 August 2022) was used to categorize these genes based on
their pathways. Five upregulated genes with FC ≥ 1.2 (Fut8, Unc13c, Cdk1, LOC100359539,
and Hspa2) were identified as candidate genes that are associated with neurodegenera-
tion. After selection, a quantitative polymerase chain reaction (qPCR) was performed for
gene validation.

2.9. Isolation of RNA and cDNA Synthesis

TRIzol Reagent was used to isolate and purify the RNA from the cultured PC12 cells
that express HIV-1gp120. Accordingly, using the Hifair® III 1st Strand cDNA Synthesis
Kit (gDNA digester plus) from Yeasted Biotechnology in Shanghai, People’s Republic of
China, 3 µg total RNA were reverse-transcribed to produce cDNA. The Novo Start® SYBR
qPCR Super Mix plus (Novo protein, Shanghai, People’s Republic of China) was used
for quantitative real-time PCR, according to the manufacturer’s protocol. With GAPDH
as an internal reference, the 2−44Ct method technique was used to compute the relative
gene mRNA levels for each target gene. The list of all genes and their respective primer’s
sequence are provided in Table 1.

https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://pantherdb.org/
http://pantherdb.org/
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Table 1. Primers used for qPCR.

GENE Sequences Product Size (bp)

HIV-1gp120 F TAGAGCTAGCGAATTCATGAGAGTGACGGGGATCAGG 37
HIV-1gp120 R CACCTCCACCGGATCCGCGCTTTTCTCTCTCCACC 35
Fut8 F ACGTGGTTCGTTGACAGACA 20
Fut8 R TACTGTGCATGGGCTTGAGG 20
Unc13c F GACTGCCTACACCCCTGTTC 20
Unc13c R CCCGCAGTTGTTGGATGTTG 20
Cdk1 F CCGGTTGACATCTGGAGCAT 20
Cdk1 R TAAACGCCACGATCTTCCCC 20
LOC100359539 F GCAGCCCCATTCAGAGTCTT 20
LOC100359539 R GTGAACTACCCCAGGGAACG 20
Hspa2 F CCATCGCTTATGGCCTGGAT 20
Hspa2 R TGCTGGAGGGATCCCAGTTA 20
Gapdh F CGTCCCGTAGACAAAATGGTGAA 23
Gapdh R GCCGTGAGTGGAGTCATACTGGAACA 26

2.10. Bioinformatics Analysis of HIV-Associated Dementia against the Normal Control in
GSE35864 Data Set

In order to achieve this, we searched for HIV patients with neurological impairment
from the gene expression omnibus (GEO) database using the search term ‘Dementia in
patients with HIV’ [22]. Thirteen results were obtained. After filtering these results by
selecting only humans, eight results remained. After a thorough check, only one study fit
the criteria (GSE35864). The GSE35864 data set was deposited by Jessica Winkler, and it
contains 72 samples from different brain regions. To analyze these data, we used GEOR
(https://www.ncbi.nlm.nih.gov/geo/geo2r/; accessed on 1 October 2022), an online tool
that leverages the Limma package in R to compute the differentially expressed genes. The
genes that were differentially expressed between HIV-associated dementia and the normal
control were identified. Positive (+) log2FC genes were regarded as upregulated, while
negative (−) log2FC genes were considered downregulated. The results were visualized
in a Uniform Manifold Approximation and Projection plot (UMAP), Volcano plot, and
mean-difference plot.

2.11. Pharmacological Inhibition of CDKI-Gene

After 48 h, the PC12 cells were transfected with gp120 and plated in a six-well plate.
Following two washes with sterile PBS, the cells were replaced with fresh media. The
cells were treated with 10 µM and 50 µM of Roscovitine [23] (Tocris Bioscience, Bristol,
united Kingdom). Cells expressing gp120 without inhibitor were regarded as the con-
trol. After 12 h of treatment with CDK1 inhibitor, the cells were collected and lysed for
Western blotting.

2.12. Statistical Analysis

Each experiment was carried out at least three times. All findings were presented
as the mean ± SD. The unpaired, two-tailed Student’s t-test was used to compare two
independent groups, and Ordinary one-way ANOVA was performed to compare multiple
groups. Graph Pad Prism 7.04 was used for all statistical analyses. p < 0.05 was considered
statistically significant.

3. Results
3.1. Transfection of HIV-1 gp120 into PC12 Cells

To establish the model for the subsequent experiments, gp120 was transfected into
the PC12 cell line, which is a prominent cell line used to explore CNS diseases [24]. We
transfected PC12 cells with different concentrations of plasmid overexpressing gp120
(1, 2, and 3 µg) and detected the result at 24 and 48 h post transfection, with successful
transfection indicated by GFP-positive PC12 cells. The highest transfection efficiency can be

https://www.ncbi.nlm.nih.gov/geo/geo2r/
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obtained with 3 µg plasmid transfection for 48 h (Figure 1A). We isolated and extracted the
RNA from the cells and performed qPCR quantification. There was significant expression of
gp120 mRNA in the PC12 cell-overexpressed gp120 group (Figure 1B). The Flag expression,
which is integrated with gp120-overexpressing plasmid, was measured using Western
blotting in the gp120-overexpressing- and empty plasmid-transfected PC12 cell group. The
Western blot results revealed significant gp120 expression in the PC12 cells (Figure 1C,D).
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Figure 1. (A) Fluorescence microscope images of the PC12 cells displaying Green Fluorescence Plas-
mid (GFP)-gp120 protein. After 48 h, the PC12 cells were exposed to various doses (1 µg, 2 µg, 3 µg)
of the gp120 protein coupled with the matching empty vector as a gp120 negative control (gp120NC).
GFP was expressed more strongly in PC12 cells transfected with the 3 µg concentration of gp120
than with the other concentrations. (B) After immunofluorescence, the expression of 3 µg gp120,
which was transfected in the PC12 cell line, the same batch of samples were harvested extracted for
mRNA and revealed significant expression by qPCR in comparison to the gp120 negative control
(gp120NC). (C) Again, samples with similar conditions were lysed for Western blotting in order to
measure the expressed protein levels between the control group and the treatment group. (D) the
treatment group showed significantly increased gp120 protein expression than the control group,
gp120NC = glycoprotein 120 Negative control, with p = 0.0038. B-actin was used as loading control.
** p < 0.01, t-test, n = 3.
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3.2. HIV-1 gp120 Induced Apoptosis of PC12 Cells

The PC12 cells were transfected with 3 µg gp120-overexpressing plasmid and the
CCK8 assay was performed 48 h later. The results indicate that, compared with the
negative control group, the cell proliferation in the experimental group was profoundly
reduced (Figure 2A). Subsequently, to detect whether gp120 overexpression in PC12 cells
induces apoptosis, we performed a TUNEL assay in the two study groups. The results
showed that 48 h after treatment, the 3 µg gp120 plasmid treatment induced PC12 cell
apoptosis (Figure 2D). Subsequently, Western blotting was performed to further detect the
expression level of apoptosis-related proteins. Compared with the control group, the levels
of pro-apoptotic proteins, including cleaved caspase-3 (Figure 2D) and Bax (Figure 2E),
increased, and the levels of the anti-apoptosis protein Bcl2(Figure 2F) decreased in the
experimental group. This indicate that HIV-1 gp120 induces apoptosis in PC12 cells.
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Figure 2. (A) After 48 h of PC12 transfection with gp120 plasmid and its co-corresponding empty
vector, CCK8 was carried out; the statistical analysis between treatment and control group was
** p < 0.01, t-test. (B) TUNEL assay and DAPI stains were used to detect apoptotic cells, as shown in
the immunofluorescence images. DAPI labeling of nucleic acids was used to observe the intact cell
nuclei, while TUNEL staining of fragmented DNA was used to mark apoptotic cells. (C) Expression
of Cleaved caspase-3, Bax, and Bcl2 levels mediated by gp120 were measured and the protein levels
were normalized by GAPDH and quantified by Image J. (D–F) The expression level was statistically
assessed using t-test, *** p < 0.001, n = 3.
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3.3. RNA Transcriptomics Reveals Genes Linked to Neurodegenerative Diseases

To determine the role of gp120 in PC12 cells, RNA transcriptomics were conducted.
The cells were transfected with gp120; subsequently, the RNA was extracted for the tran-
scriptomics experiment. Figure 3A depicts the volcano plot of the upregulated and down-
regulated transcriptomes. In the gene ontology analysis, many genes were enriched in
cell division, mitotic cell cycle, kinetochore, chromosome centriometric region, and micro-
tubule binding (Figure 3B). In the KEGG analysis, many genes were found to be enriched
in the cell cycle, cellular senescence, DNA replication, glioma, Parkinson’s disease, and
steroid biosynthesis (Figure 3C). The majority of the genes were involved in cholesterol
metabolism, Hedgehog signaling, Spinal cord injury, and Wnt signaling on Wiki pathway
analysis (Figure 3D).
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Figure 3. Volcano plot of DEG, GO functional analysis of DEG, KEGG pathway and wiki path-
ways enrichment analysis of transcriptomics PC12 cells samples overexpressing gp120. (A) Volcano
plot of differentially expressed genes, genes with significant differences in expression are shown
in red (upregulated) or dark blue (downregulated). Genes with differential expression but that
could not reach the significant level are shown in light red (upregulated) or light green (down-
regulated). Genes with no significant differential expression are shown in grey. The vertical lines
represent 2.0-fold up- and down-regulation. The horizontal lines indicate an adjusted p value of 0.05.
(Q-value = adjusted p-value). (B) Top 30 GO terms were identified in the Transcriptomics and were
displayed in the biological process (green), cellular component (orange), and molecular function
sections (light blue). The adjusted statistically significant values for all of the variables were negative
10-base log transformed. DEGs are abbreviation for differentially expressed genes, while GO is
abbreviation for gene ontology. (C) The top 20 KEGG enriched gene pathway-related disorders were
examined using a KEGG pathway analysis. Low q-values are highlighted in red, while high q-values
are highlighted in blue; the size of the circle is proportional to the number of enriched genes. (KEGG),
stands for Kyoto Encyclopedia of Genes and Genomes, (DEG) stands for Differential Expressed Genes.
(D) Wiki Pathways enrichment analysis top 20 (p < 0.05).
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3.4. Proteomics Analysis of HIV-1gp120-Expressing Cells

Protein analysis of the gp120-transfected PC12 cells with their corresponding con-
trols was undertaken to identify the proteins that were activated. Our results reveal 142
upregulated and 51 downregulated proteins. Figure 4A shows the volcano plot of differen-
tially expressed proteins. On annotation, most of the differentially expressed upregulated
proteins were enriched in processes related to iron binding, sterol biosynthesis, collagen
fibril organization, and biosynthesis of unsaturated fatty acid (Figure 4B). KEGG analysis
of the upregulated proteins revealed that the most enriched pathways were identified in
unsaturated fatty acid biosynthesis, the cell cycle, the Fanconi anemia pathway, FOXO
signaling, glutathione metabolism, and steroid biosynthesis (Figure 4C).
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3.5. Data Integration and Validation of Transcriptomics and Proteomics

To establish and validate the molecular mechanism of gp120 action in PC12 cells,
the transcriptomics and proteomics data were integrated, and revealed 78 overlapping
upregulated genes and 26 overlapping downregulated genes (Figure 5A,B). Next, we
validated five genes through a quantitative polymerase chain reaction, Table 1 contains
a list of these genes. The results indicate the significant expression of Fut8, Unc13c, Cdk1,
LOC100359539, and Hspa2 in the gp120-transfected cells, relative to the control.
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3.6. CDK1 Is Differentially Upregulated in HIV-Associated Dementia

In order to ascertain the glimmer involvement of CDK1 in patients with neurological
impairment secondary to HIV, we performed bioinformatics analysis. The UMAP plot
indicates a cluster of both groups; unexpectedly, however, two clusters were found in a
normal control group (Figure 6A). The upregulated and downregulated genes (padj < 0.05)
are denoted by red and blue color, consecutively (Figure 6B,C). Figure 6D indicate the
p-value and Log2FC of CDK1.
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3.7. A Pharmacological Inhibition of Cdk1 May Attenuate the gp120 Overexpression-Induced
Cell Death

In order to explore the expression of CDK1 in gp120-expressing cells, we performed
Western blotting analysis. The CDK1 protein expression level was higher in gp120-expressing
cells than the cells transfected with normal control. Subsequently, Roscovitine (CDK1 inhibitor)
was used to inhibit the expression of Cdk1. The results indicate that a group treated with
50 µM of Roscovitine showed a significant decrease in CDK1 in the gp120 transfected cells
(Figure 7A–D). Similarly, when we examined the expression of apoptosis-related markers,
we found that the inhibition of Cdk1 by Roscovitine affected cleavage caspase 3 and BAX
(decreased significantly at 50 µM), while BCL2 increased moderately (Figure 7E–H).
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Western blotting, the Cdk1 protein expression in PC12 cells expressing gp120 was compared to that
in untreated cells. (B) The gp120 treatment group showed a significant increase in CDK1 protein
expression than the untreated group. (C) Western blotting shows that Roscovitine inhibits CDK1
protein expression in gp120-expressing cells. (D) After 12 h, the administration of Roscovitine
dramatically decreased CDK1 expression at the concentration of 50 µM. (E–H) Apoptosis-related
proteins expression (Cleaved caspase-3, Bax, and Bcl2) in PC12- cells expressing gp120 treated with
inhibitor as compared to untreated cells. Each Western blotting was loaded with control, B-Actin,
n = 3. t-test, ** p < 0.01, ordinary one-way ANOVA **** p < 0.0001.

4. Discussion

Despite advances in HIV-1 management, HAND constitutes a persistent complica-
tion. Glycoprotein 120 is one of the HIV-1 neurotoxins associated with neurodegeneration,
although the mechanism of this neuropathology remains perplexing. Thus, it is vital to
identify the possible mechanisms of gp120-associated neuronal death. In this study, we first
established that gp120 expression in PC12 induces cell death and apoptosis. Our results
are concordant with the previous findings, showing that gp120 might induce apoptosis.
Additionally, it has been documented that gp120 triggers neuronal death through the acti-
vation of caspase-3 and NMDAR [25,26]. However, the present study identified previously
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unreported genes that are likely linked to gp120-associated cell death and apoptosis. The
gene ontology and KEGG enrichment analysis of the top 20 differentially overlapping
upregulated genes reveal that the preponderances are involved in cell division. Cell-cycle
dysregulation induces neuronal cell death and apoptosis [27]. Previous research has estab-
lished a relationship between cell-cycle events and neuronal cell death [28]. Furthermore,
HIV-1 dysregulates the cell cycle and generates cells that produce viral envelopes, which
are linked with contagious apoptosis that spreads to other uninfected cells [29]. However,
the underlying molecular mechanism is unknown. Our study revealed that gp120 protein
upregulates cell-cycle signaling and induces cell death and apoptosis. This effect of gp120
may constitute the potential pathogenic mechanism of HAND. Finally, we identified the
overlapping upregulated genes in RNA and protein sequencing as Fut8, Unc13c, Cdk1,
Loc100359539, and Hspa2. However, Cyclin-dependent kinase 1(Cdk1) was the most upreg-
ulated gene. Cdk1 is a key protein kinase that directs cells into normal mitosis [30,31], its
upregulation promotes cell death and apoptosis [32,33]. Our findings show that gp120 up-
regulated Cdk1 and induced cellular apoptosis. More importantly, in vivo and vitro HIV-1
clinical experiments demonstrated the unique existence of a Cdk1-linked proapoptotic path-
way [20]. To support the involvement of cyclins in HIV proteins, it has been reported that
HIV-1 Tat increases the calpain-1 cleavage of p35 to p25 via calcium dysregulation, which
hyper activates CDK5, resulting in the aberrant phosphorylation of downstream targets
such as Tau, CRMP2, DCX, and MEF2. Moreover, Tat disrupts CDK5’s nuclear-cytoplasmic
transport, which eventually leads to a buildup of aberrantly phosphorylated cytoplasmic
targets [Tau, CRMP2, DCX], and ultimately impairs the neuronal function and, hence, leads
to cell death [34]. The aberrant activation of Cdk1 is thought to be involved in apoptosis
associated with HIV-1 infection and neurodegenerative illness [35]. Cdk1, mTOR, and p53
play sequential roles in apoptosis caused by the HIV-1 envelope [36].

The present work is also supported by bioinformatics analysis, which we performed on
postmortem brain samples from individuals with HIV-associated dementia and compared
to the normal control. This analysis proved that CDK1 is upregulated in the HIV-associated
dementia group (which is linked with the expression of gp120 protein) compared to the nor-
mal control. Our work provides further evidence that gp120 upregulates Cdk1, a mechanism
that may trigger apoptosis and cell death. We also demonstrate that the pharmacological
targeting of Cdk1 signaling in cells that express gp120 may protect neurons. Roscovitine,
a selective Cdk inhibitor that targets Cdk1, reduces neuronal death in accordance with
this [37] Roscovitine and numerous other small chemical inhibitors of CDKs have been
widely researched, having been utilized in both in vitro and in vivo models of neuroprotec-
tion [37,38]. Our findings show that 50 µM of Roscovitine suppresses Cdk1, which could be
an alternative way to protect neurons from gp120-induced death.

5. Conclusions

Despite decades of HIV-1 studies that have yielded important advances in infection
management and treatment, there remains a long fight against this virus. HAND has
become more contagious, and HIV-1 viral proteins, specifically gp120, are potentially
associated with neurodegeneration, although the exact mechanism remains unclear. Our
research revealed that gp120 causes apoptosis and cell death and upregulates the cell-
cycle pathway, suggesting a potential relationship to neurodegeneration. Furthermore, we
discovered Cdk1 as the key upregulated gene associated with cell death and apoptosis. This
was validated through analysis of postmortem brain samples and the pharmacological
inhibition of Cdk1. This study provides insight into the molecular mechanisms associated
with gp120-associated neuronal apoptosis and death, as the hallmarks of HAND. This could
facilitate the diagnosis and development of therapeutic targets to help combat the disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v14122793/s1, Supplementary File S1: The detailed protocol for RNA extraction and all
transcriptomics; Supplementary File S2: The detailed protocol for protein extraction and proteomics.
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