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Abstract: Chronic hepatitis C virus (HCV) infections are a worldwide medical problem responsible
for diverse types of liver diseases. The NS5B polymerase enzyme has become a very interesting target
for the development of anti-HCV drugs owing to its fundamental role in viral replication. Here we
report the synthesis of a novel series of 1-substituted phenyl-4(1H)-quinazolinone and 2-methyl-1-
substituted phenyl-4(1H)-quinazolinone derivatives and evaluate their activity against HCV in HCV
subgenomic replicon assays. The biological data revealed that compound 11a showed the highest
activity against HCV GT1b at a micromolar concentration (EC50 = 0.984 µM) followed by compound
11b (EC50 = 1.38 µM). Both compounds 11a and 11b had high selectivity indices (SI = CC50/EC50),
160.71 and 71.75, respectively, which make them very interesting candidates for further development
of more potent and selective anti-HCV agents.

Keywords: 6-Aminoquinazolinone; molecular docking; Hepatitis C; Anti HCV; NS5B inhibitors; daclatasvir

1. Introduction

HCV is the main causative agent of chronic hepatitis [1–5]. Current HCV treat-
ment protocols focus on using combinations of two or more direct-acting antiviral drugs
(DAAs) [6–17]. Within the host cell, the single polyprotein produced after the viral RNA
translation is cleaved into structural proteins and nonstructural proteins (NS3/4A, NS4B,
NS5A, and NS5B), which are involved in viral replication and production [18–20]. NS5B,
an RNA-dependent RNA polymerase (RdRp), plays a very important role in viral syn-
thesis and replication [21,22]. The lack of a functional counterpart in mammalian cells
made it a very valuable target for the development of selective and non-toxic anti-HCV
drugs [23]. Similar to other RNA polymerase enzymes, HCV NS5B reveals a characteristic
right-hand topology with palm, finger, and thumb domains [24–27]. Regarding these
structural patterns, NS5B inhibitors are divided into two categories: Nucleoside inhibitors,
NIs (Sofosbuvir), which act as false substrates for the enzyme, thus blocking the elongation
of the RNA chain; and nonnucleoside inhibitors, NNIs (Beclabuvir, filibuvir, lomibuvir,
Dasabuvir, setrobuvir, and tegobuvir), which change the conformation of the active site
and stop the initiation of RNA replication processes upon binding to the different enzyme
allosteric sites [20,27–30]. Of these binding allosteric sites, the thumb pocket II (TP-2)
binding site has been intensely investigated in the last decade [31]. Crystal structures of
NNIs bound to this TP-2 binding site have been published [32–36].
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Studying these crystal structures revealed that most of the above NNIs have the same
conformational patterns and binding interactions with the NS5B TP-2 allosteric site. Two
direct or water-mediated hydrogen bonds between the inhibitor molecules and backbone
NHs of Ser476 and Tyr477 were observed. Furthermore, the inhibitor’s hydrophobic
moieties bind with two hydrophobic pockets of the enzyme via stacking with the side chain
of Leu419, Met423, Leu497, and Trp528 [34–36]. Recently reported NS5B TP-2 inhibitors
possessing micromolar inhibition potency in both enzymatic and cell-based replicon assays
are depicted in Figure 1 and Table 1, respectively [34,36–42].
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Figure 1. Some reported NS5B TP-2 inhibitors exhibiting promising HCV inhibition. The crystal
structure of compounds I, II, III, IV, V, VII, and VIII bound to TP-2 binding site of NS5B were reported;
PDB codes: 2D3Z, 4EO6, 2HWI, 2GIR, 4J08, 4JTW, and 4JU2, respectively.

All lead structures share similar motif features and properties required for successful
binding to the TP-2 allosteric site despite bearing different pharmacophoric elements.
Specifically, motifs in red provide a dual HB formation between substrates and protein
residues Ser476/Tyr477 (Figure 1). These key interactions are reported to be satisfied equally
by the carboxylate (i.e., compounds I, II, IV, V, and VI), thiazolone (i.e., compound III), and
quinazolinone (i.e., compound VII and VIII) moieties. Aryl substituents in blue (Figure 1)
are well occupied in a deep hydrophobic pocket stacking with the side chain of Leu419,
Arg422, and Trp528. The N-isopropyl group in green (Figure 1) in compounds II, IV, and VI
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points to the solvent and keeps the orientation of the cyclohexyl amide moiety toward the
deep lipophilic pocket. In the rest of the molecules, the left-hand-side moieties in pink also
make contact with the left-hand hydrophobic pocket of TP-2, stacking with the side chain of
Leu497 and Ilu482. However, these lead compounds exhibit many drawbacks. Compound
III has low potency in enzymatic assays (IC50 = 3 µm) [41]. Furthermore, compound V
showed no cellular potency during an HCV subgenomic replicon assay (EC50 > 30 µm) [37].
Although compounds I, II, VI, VII, and VIII exhibited potent in vitro anti-HCV activity in
both enzymatic and subgenomic cell replicon assays, they showed high lipophilic character
(Table 1). Moreover, even though NS5B polymerase inhibitors exhibit broad activity against
HCV genotypes, they have a low genetic barrier to resistance [29,43,44].

Table 1. Reported EC50 and calculated lipophilic and solubility parameters for compounds I–VIII.

Compound EC50 (µM) ClogP a Log S b

I - 6.67 −5.77
II 0.026 c 5.49 −5.88
III - 2.97 −4.35
IV - 5.68 −5.68
V >30 d 5.18 −5.10
VI 0.095 d 7.31 −6.00
VII 0.38 d 8.09 −6.02
VIII 0.31 d 9.15 −6.84

a Calculated by online Swiss ADME website application [45,46]. b ESOL calculated by online Swiss ADME website
application [45,46]. Solubility class: Log S scale (insoluble < −10 < poorly soluble < −6 < moderately soluble < −4
< soluble < −2 < very soluble < 0 < highly soluble) [47]. c HCV GT-1b replicon containing Huh-7 cells [36]. d HCV
GT-1b replicon luciferase reporter assay (n ≥ 2) [38].

Based on the aforementioned information, we became interested in designing new
potent NNIs against NS5B, able to bind the TP-2 allosteric site while fulfilling Lipinski’s
rule of five. Thus, in the present study, we report the synthesis and biological evaluation
of a novel series of 1-substituted phenyl-4(1H)-quinazolinone 7a–f and 2-methyl-1-aryl
substituted-4(1H)-quinazolinone derivatives 11a–f (Figure 2), which maintain the important
structural features of the lead compound VIII, but with ClogP value less than 5, molecular
weights less than 500, and improved water solubility properties (LogS). Most importantly,
the amide moiety of the quinazolinone ring was conserved in order to form the essential
hydrogen bonds with the protein residues Ser476 and Tyr477 (Figure 2). Nonetheless, the
challenge in our ligand design was whether the phenylquinazolinone scaffold could enter
and reside in the hydrophobic TP-2 pocket of the benzylquinazolinone analogues’ binding
mode. Although the volume of the TP-2 pocket is low as shown in the respective crystal
structures, this part consists of flexible side chains, which could move aside, given the
rigidity of the scaffold. Thus, there would be a potential of discovering new SAR, valuable
for the drug design of this biomolecular target. The four-atom linker was designed to reduce
both the molecular weight and ClogP values of the target compounds. R1 was carefully
selected as phenyl or m-tolyl to study their potential stacking in the deep hydrophobic
pocket of the enzyme and to increase the polarity of the compound. Although these groups
increase the rigidity of the whole molecule, prospective SAR in this specific region of the TP-
2 pocket has not been explored. The C-2 methyl group was placed as a means of increasing
the ligand volume near the phenyl ring, in an effort to facilitate the approachability of the
phenyl ring at N1 in the deep hydrophobic pocket by making it more accessible. Finally, R2
was carefully selected to yield the π–π interactions with the second hydrophobic pocket
of the enzyme. Finally, in this study, we also evaluate the antiviral activity of the target
compounds against different HCV genotypes.
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Figure 2. Rationale of the designed target compounds to act as NS5B inhibitors that fulfil Lipinski’s
rule of five.

2. Materials and Methods
2.1. Chemistry

Starting materials, solvents, and reagents were purchased from Sigma Aldrich (St.
Louis, MO, USA), Acros Organics (Thermo Fisher Scientific, Bridgewater, NJ, USA), and
Alfa Aesar (Kandel, Germany). Melting points were determined on a Stuart melting
point apparatus (Stuart Scientific, Redhill, UK) using open capillary tubes and were uncor-
rected. Analytical thin-layer chromatography (TLC) was employed routinely to monitor
the progress of the reactions and check the purity of the products using thin layer (0.2 mm)
aluminum sheets (20 × 20 cm) coated with silica gel F254 (Merck, Darmstadt, Germany).
Spots were visualized using a UV lamp at λmax 254 nm. The eluent was a hexane/ethyl
acetate mixture (2:1). Column chromatography was performed using silica gel (pore size
60 Å, 230–400 mesh particle size, Merck, Darmstadt, Germany); elution was conducted
using a hexane/ethyl acetate mixture (2:1). All evaporations were performed under re-
duced pressure at 40 ◦C. IR spectra (KBr disk) were recorded on an FT-IR spectrometer
(Perkin Elmer, Waltham, MA, USA). NMR spectra were obtained using a Bruker NMR
spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany) operating at 400 MHz for
1H NMR and 100 MHz for 13C NMR at the Center for Drug Discovery Research and De-
velopment, Faculty of Pharmacy, Ain Shams University. Chemical shifts are expressed in
δ values (ppm) relative to TMS as an internal standard using DMSO-d6 as solvent. Ele-
mental analyses were obtained using the Thermo Scientific Flash 2000 elemental analyzer
(Thermo Fisher Scientific Inc., Waltham, MA, USA) at the Regional Center for Mycology and
Biotechnology, Al-Azhar University. Electrospray ionization mass (ESI-MS) was obtained
using a Thermo Scientific mass spectrometer LC-MS (Thermo Scientific Inc., Waltham, MA,
USA) at the Center for Drug Discovery Research and Development, Faculty of Pharmacy,
Ain Shams University. The analytical purity of target compounds was determined by
reverse-phase HPLC in conjunction with product analysis by ESI-MS. UV absorption was
detected from 200 to 800 nm using a diode array detector. Elution was achieved on a
UPLC RP-C18 column (150 mm × 2 mm; 2.7 µm) maintained at an ambient temperature
with 70% acetonitrile in water as a mobile phase. The purity of the compounds was de-
termined at 254 nm, and we observed a pure peak for each compound attributed to its
mass. The purity of the compounds was found to be more than 95%. Compounds 5-nitro-
2-(phenylamino)-benzoic acid 1a [48], 5-nitro-2-(m-tolylamino)benzoic acid 1b [49], and
5-nitro-2-(phenylamino)benzamide 3a [50,51] were synthesized according to the reported
procedures.

General procedure for the synthesis of 5-nitro-2-(substituted phenyla-mino)benzamide
derivatives (3a,b).
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A mixture of 5-nitro-2-(phenylamino)-benzoic acid 1a (2 g, 7.75 mmol) or 5-nitro-2-
(m-tolylamino)benzoic acid 1b (2 g, 7.35 mmol) and phosphorus pentachloride PCl5 (8 g,
38.75 mmol) in methylene chloride (20 mL) was refluxed for 6 h and monitored by TLC
until the reaction was complete. The crude solution of 5-nitro-2-(phenylamino)benzoyl
chloride 2a or 5-nitro-2-(m-tolylamino)benzoyl chloride 2b in methylene chloride without
separation was added dropwise to 25% aq ammonium hydroxide (20 mL). The reaction
was stirred at room temperature for one hour, and the reaction was monitored by TLC until
completed. Then the solvents were removed under a vacuum, and ice water (100 mL) was
added to the residue to precipitate the target compounds. The precipitate was filtrated off,
washed with water, and recrystallized from ethyl acetate affording the desired products.

5-Nitro-2-(m-tolylamino) benzamide (3b).

Yellow powder, yield 80%, mp 188–190 ◦C; IR (KBr) νmax/cm−1: 3437, 3344, 3194
(NH2 and NH), 3089 (CH-Ar), 2916 (CH-sp3), 1685 (C=O), 1539, 1330 (NO2); 1H NMR
(400 MHz, DMSO-d6) δ 2.31 (s, 3H, CH3), 7.17–7.33 (m, 4H, Ar-H), 7.43 (d, J = 12 Hz, 1H,
Ar-H), 7.75 (brs, 1H, NH2, exchangeable by D2O), 8.12 (d, J = 8 Hz, 1H, Ar-H), 8.51 (brs, 1H,
NH2, exchangeable by D2O), 8.67 (s, 1H, Ar-H), 10.89 (brs, 1H, NH, exchangeable by D2O);
13C NMR (100 MHz, DMSO) δ 20.0 (CH3), 113.7, 115.1, 120.4, 122.3, 123.9, 125.8, 128.5, 130.3,
137.4, 138.8, 139.8, 151.5, 170.4; C14H13N3O3; LC-ESI-MS (m/z): 272.1 [M+H]+; purity was
confirmed by HPLC-UV (254 nm)-ESI-MS.

General procedure for the synthesis of 6-nitro-1-(substitutedphenyl)quinazolin-4(1H)-
one (4a, 4b).

To a stirring mixture of compound 3a or 3b (5 mmol) and triethyl orthoformate (10 mL)
in ice path, sulfuric acid (2.5 mL) was added dropwise over 15 min. Then, the mixture was
refluxed for 8 h (monitored by TLC). After the reaction’s completion, it was poured into ice
water. The product was separated. The precipitated solid was filtrated off, washed with
hot hexane, and dried in vacuo.

6-Nitro-1-phenylquinazolin-4(1H)-one (4a).

Greenish yellow powder, yield 85%, mp 246–248 ◦C; IR (KBr) νmax/cm−1: 3059
(CH-Ar), 2989 (CH-sp3), 1699 (C=O), 1550, 1334 (NO2); 1H NMR (400 MHz, DMSO-d6):
δppm = 7.11 (d, 1H, J = 6 Hz, Ar-H), 7.71–7.79 (m, 5H, Ar-H), 8.48 (dd, 1H, J = 9.2 Hz and
4.8 Hz, Ar-H), 8.66 (s, 1H, Ar-H), 8.82 (d, 1H, J = 4 Hz, Ar-H); 13C NMR (100 MHz, DMSO)
δ 108.1, 119.3, 119.6, 123.7, 128.3 (2C), 128.7, 130.9, 131.0 (2C), 137.8, 145.1, 155.3, 167.9 (CO);
MS m/z (%): 267.08 (M+, 74), 77 (100); Anal. Calcd. for C14H9N3O3 (267.08): C, 62.92%; H,
3.39%; N, 15.72%; Found: C, 63.15%; H, 3.61%; N, 15.92%.

6-Nitro-1-(m-tolyl)quinazolin-4(1H)-one (4b).

Green powder, yield 85%, mp 185 ◦C; IR (KBr) νmax/cm−1: 3055 (CH-Ar), 2989
(CH-sp3), 1670 (C=O), 1527, 1334 (NO2); 1H NMR (400 MHz, DMSO-d6): δppm = 2.44 (s,
3H, CH3), 7.14 (d, 1H, J = 6 Hz, Ar-H), 7.51–7.79 (m, 4H, Ar-H), 8.48 (d, 1H, J = 12 Hz,
Ar-H), 8.64 (s, 1H, Ar-H), 8.81 (s, 1H, Ar-H); 13C NMR (100 MHz, DMSO) δ 21.3 (CH3),
119.4, 119.50, 123.7, 125.3, 128.6, 128.7, 130.7, 131.2, 137.7, 140.8, 145.0, 145.1, 155.3, 167.9
(CO); C15H11N3O3; LC-ESI-MS (m/z): 282 [M+H]+; purity was confirmed by HPLC-UV
(254 nm)-ESI-MS.

General procedure for the synthesis of 6-amino-1-(substituted phenyl)quinazolin-4(1H)-
one (5a, 5b).

A mixture of compound 4a or 4b (5 mmol), stannous chloride dihydrate (5.6 g,
25 mmol), and conc. HCl (5 mL) in 15 mL ethyl acetate was stirred at room tempera-
ture for 2 h. The reaction was monitored with TLC. After the reaction was complete, the
reaction mixture was diluted with a mixture of ethyl acetate and methanol (3:1) (200 mL)
and the pH was adjusted to 7 through the addition of sodium carbonate powder. The
solution mixture was filtered, and the organic filtrate was dried over sodium sulphate.
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Filtration of sodium sulphate was carried out, and the filtrate was evaporated under a
vacuum to afford the crude products. The obtained residue was purified by silica gel
chromatography using a hexane/ethyl acetate mixture (2:1) to give the desired compounds.

6-Amino-1-phenylquinazolin-4(1H)-one (5a).

White powder, 67%, mp 293–295 ◦C; IR (KBr) νmax/cm−1: 3425, 3336 (NH2), 3055
(CH-Ar), 2885 (CH-sp3), 1635 (C=O); 1H NMR (400 MHz, DMSO-d6) δ 5.61 (s, 2H, NH2,
exchangeable by D2O), 6.66 (d, J = 6.4 Hz, 1H, Ar-H), 7.00 (d, J = 12 Hz, 1H, Ar-H), 7.26
(s, 1H, Ar-H), 7.55–7.65 (m, 5H, Ar-H), 8.24 (s, 1H, Ar-H); 13C NMR (100 MHz, DMSO)
δ 108.1, 118.2, 121.3, 122.2, 128.0 (2C), 130.4, 130.7 (2C), 131.9, 138.1, 148.2, 151.0, 169.0
(CO); C14H11N3O; LC-ESI-MS (m/z): 238 [M+H]+; purity was confirmed by HPLC-UV
(254 nm)-ESI-MS.

6-Amino-1-(m-tolyl)quinazolin-4(1H)-one (5b).

White powder, 65%, mp 288–290 ◦C; IR (KBr) νmax/cm−1: 3425, 3336 (NH2), 3059
(CH-Ar), 2981 (CH-sp3), 1631 (C=O); 1H NMR (400 MHz, DMSO-d6) δ 2.41 (s, 3H, CH3),
5.60 (s, 2H, NH2, exchangeable by D2O), 6.67–6.72 (dd, J = 11.2 Hz and 9.6 Hz, 1H, Ar-H),
6.98 (d, J = 8 Hz, 1H, Ar-H), 7.62 (s, 1H, Ar-H), 7.23– 7.68 (m, 4H, Ar-H), 8.22 (d, J = 7.2 Hz,
1H, Ar-H); 13C NMR (100 MHz, DMSO) δ 21.2, 108.0, 118.2, 121.3, 122.1, 127.3, 128.3,
130.4, 130.8, 130.9, 131.9, 138.1, 148.2, 150.9, 169.0(CO); C15H13N3O; LC-ESI-MS (m/z): 252
[M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

General procedure for the synthesis of 2-chloro-N-(4-oxo-1-substituted phenyl-1,4-
dihydroquinazolin-6-yl)acetamide (6a, 6b).

Chloroacetyl chloride (0.5 mL, 6.3 mmol) was slowly added to a magnetically stirred
mixture of compound 5a or 5b (4.2 mmol) and K2CO3 (0.873 g, 6.3 mmol) in CH2Cl2 (10 mL).
The reaction mixture was stirred at room temperature and monitored by TLC. After the
reaction was complete, the solvents were evaporated, and ice water (100 mL) was added to
the residue. The precipitate was filtered, washed with water, and left to dry in vacuo.

2-Chloro-N-(4-oxo-1-phenyl-1,4-dihydroquinazolin-6-yl)acetamide (6a).

Reddish white powder, 82%, mp < 300 ◦C; IR (KBr) νmax/cm−1: 3275 (NH), 3070
(CH-Ar), 2958 (CH-sp3), 1689 (C=O); 1H NMR (400 MHz, DMSO-d6) δ 4.28 (s, 2H, CH2),
6.94 (d, J = 8 Hz, Ar-H), 7.62–7.70 (m, 5H, Ar-H), 7.84 (d, J = 8 Hz, 1H, Ar-H), 8.44–8.45
(m, 2H, Ar-H), 10.69 (s, 1H, NH, exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ
43.8, 116.8, 118.3, 120.3, 126.5, 128.1 (2C), 130.6 (2C), 130.8, 137.1, 137.2, 137.7, 153.0, 165.6
(CO); C16H12ClN3O2; LC-ESI-MS (m/z): 314 [M+H]+; purity was confirmed by HPLC-UV
(254 nm)-ESI-MS.

2-Chloro-N-(4-oxo-1-(m-tolyl)-1,4-dihydroquinazolin-6-yl)acetamide (6b).

Reddish white powder, 84%, mp 290 ◦C; IR (KBr) νmax/cm−1: 3294 (NH), 3070 (CH-
Ar), 2954 (CH-sp3), 1693 (C=O); 1H NMR (400 MHz, DMSO-d6) δ 2.40 (s, 3H, CH3), 4.31 (s,
2H, CH2), 6.94–7.00 (m, 1H, Ar-H), 7.38–7.74 (m, 4H, Ar-H), 7.86 (d, J = 12 Hz, 1H, Ar-H),
8.42 (s, 1H, Ar-H), 8.47 (s, 1H, Ar-H), 10.85 (s, 1H, NH, exchangeable by D2O); 13C NMR
(100 MHz, DMSO) δ 20.1 (CH3), 43.8 (CH2), 116.7, 118.5, 120.3, 126.7, 127.2, 128.3, 130.6,
131.0, 131.4, 137.4, 137.5, 138.5, 152.8, 165.8 (CO), 167.5 (CO); C17H14ClN3O2; LC-ESI-MS
(m/z): 328 [M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

General procedure for the synthesis of 2-substituted phenoxy-N-(4-oxo-1-(substituted
phenyl)-1,4-dihydro quinazolin-6-yl)acetamide (7a–f).

A mixture of substituted phenol (2.4 mmol), K2CO3 (2.4 mmol), and compound 6a
or 6b (1.6 mmol) in CH3CN (50 mL) was refluxed for 8 h. The reaction was monitored by
TLC. After the reaction was complete, the solvent was evaporated and a 4% NaOH solution
(60 mL) was added to the residue to remove any remaining excess phenol as water-soluble
sodium phenoxide salt. The product was separated and the precipitate was filtered, washed
with water, and recrystallized to form methanol.
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N-(4-Oxo-1-phenyl-1,4-dihydroquinazolin-6-yl)-2-(p-tolyloxy)acetamide (7a).

Off-white powder, yield 80%; mp 220 ◦C; IR (KBr) νmax/cm−1: 3271 (NH), 3032
(CH-Ar), 2920 (CH-sp3), 1643 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.25 (s, 3H, CH3), 4.69
(S, 2H, CH2), 6.92 (s, 3H, Ar-H), 7.11 (s, 2H, Ar-H), 7.27–7.66 (m, 5H, Ar-H), 7.96 (s, 1H,
Ar-H), 8.43 (s, 1H, Ar-H), 8.51 (s, 1H, Ar-H), 10.44 (s, 1H, NH, exchangeable by D2O); 13C
NMR (100 MHz, DMSO) δ 20.6 (CH3), 67.8 (CH2), 112.0, 115.1 (2C), 117.2, 117.9, 126.6, 128.3,
130.3 (2C), 130.4, 130.8 (2C), 137.1, 138.1, 146.5, 147.9, 153.1, 156.2, 167.6 (CO); C23H19N3O3;
LC-ESI-MS (m/z): 386 [M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

2-(4-Chlorophenoxy)-N-(4-oxo-1-phenyl-1,4-dihydroquinazolin-6-yl)acetamide (7b).

Off-white powder, yield 80%, mp 262 ◦C; IR (KBr) νmax/cm−1: 3278 (NH), 3066
(CH-Ar), 2843 (CH-sp3), 1705 (CO), 1643 (CO); 1H NMR (400 MHz, DMSO-d6) δ 4.76 (s,
2H, CH2), 6.95 (s, 1H, Ar-H), 7.05 (s, 2H, Ar-H), 7.37 (s, 2H, Ar-H), 7.65 (s, 5H, Ar-H), 7.97
(s, 1H, Ar-H), 8.43 (s, 1H, Ar-H), 8.51 (s, 1H, Ar-H), 10.41 (s, 1H, NH, exchangeable by
D2O); 13C NMR (100 MHz, DMSO) δ 67.7 (CH2), 117.0 (2C), 117.2, 117.9, 120.2, 125.5, 126.7,
128.2 (2C), 129.7 (2C), 130.5, 130.8 (2C), 137.0, 137.2, 137.9, 153.1, 157.0, 167.2 (CO), 168.7
(CO); C22H16ClN3O3; LC-ESI-MS (m/z): 406 [M+H]+; purity was confirmed by HPLC-UV
(254 nm)-ESI-MS.

2-(4-Chloro-3-methylphenoxy)-N-(4-oxo-1-phenyl-1,4-dihydroquinazolin-6-yl)acetamide (7c).

White powder, yield 85%, mp 255 ◦C; IR (KBr) νmax/cm−1: 3275 (NH), 3066 (CH-Ar),
2978 (CH-sp3), 1685 (CO), 1643 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.31 (s, 3H, CH3),
4.73 (s, 2H, CH2), 6.89 (d, J = 12 Hz, 1H, Ar-H), 6.93 (d, J = 8 Hz, 1H, Ar-H), 7.05 (s, 1H, Ar-
H), 7.33 (d, J = 8 Hz, 1H, Ar-H), 7.63–7.74 (m, 5H, Ar-H), 7.94 (d, J = 8 Hz, 1H, Ar-H), 8.45 (s,
1H, Ar-H), 8.50 (s, 1H, Ar-H), 10.42 (s, 1H, NH, exchangeable by D2O); 13C NMR (100 MHz,
DMSO) δ 20.2 (CH3), 67.6 (CH2), 114.2, 117.2, 118.0, 120.2, 125.8, 126.7, 128.2 (2C), 130.0,
130.5, 130.8 (2C), 137.0, 137.2, 137.9, 153.1, 156.9, 167.3 (CO), 168.7 (CO); C23H18ClN3O3;
LC-ESI-MS (m/z): 420 [M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

N-(4-oxo-1-(m-tolyl)-1,4-dihydroquinazolin-6-yl)-2-(p-tolyloxy)acetamide (7d).

Brown powder, 82%, mp 206 ◦C; IR (KBr) νmax/cm−1: 3282 (NH), 3062 (CH-Ar), 2958
(CH-sp3), 1705 (C=O); 1H NMR (400 MHz, DMSO-d6) δ 2.23 (s, 3H, CH3), 2.42 (s, 3H, CH3),
4.7 (s, 2H, CH2), 6.91 (d, J = 8 Hz, 2H, Ar-H), 6.95–6.99 (m, 1H, Ar-H), 7.11 (d, J = 8. Hz, 2H,
Ar-H), 7.41–7.73 (m, 4H, Ar-H), 7.96 (d, J = 8 Hz, 1H, Ar-H), 8.43 (d, J = 4 Hz, Ar-H), 8.52 (s,
1H, Ar-H), 10.64 (s, 1H, NH, exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ 20.1
(CH3), 20.5 (CH3), 67.8 (CH2), 115.0 (2C), 117.1, 118.0, 120.2, 126.6, 127.5, 128.6, 130.3 (2C),
130.5, 131.0 (2C), 135.2, 136.8, 137.1, 138.3, 153.0, 156.1, 167.6(CO), 168.5 (CO); C24H21N3O3;
LC-ESI-MS (m/z): 400 [M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

2-(4-Chlorophenoxy)-N-(4-oxo-1-(m-tolyl)-1,4-dihydroquinazolin-6-yl)acetamide (7e).

White powder, 79%, mp 255 ◦C; IR (KBr) νmax/cm−1: 3228 (NH), 3070 (CH-Ar), 2927
(CH-sp3), 1701 (C=O), 1643 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.42 (s, 3H, CH3), 4.80
(s, 2H, CH2), 6.94 (d, J = 16 Hz, 1H, Ar-H), 7.04 (d, J = 8 Hz, 2H, Ar-H), 7.35 (d, J = 8 Hz, 2H,
Ar-H), 7.41–7.74 (m, 4H, Ar-H), 7.97 (s, 1H, Ar-H), 8.42 (s, 1H, Ar-H), 8.52 (s, 1H, Ar-H),
10.86 (s, 1H, NH, exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ 21.3 (CH3), 67.7
(CH2), 117.0, 117.1, 118.0, 120.2, 125.2, 125.4, 126.6, 127.5, 128.6, 129.7, 130.5, 131.0, 135.2,
136.8, 137.0, 137.1, 138.3, 152.9, 157.1, 167.1 (CO), 168.5 (CO); C23H18ClN3O3; LC-ESI-MS
(m/z): 420 [M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

2-(4-Chloro-3-methylphenoxy)-N-(4-oxo-1-(m-tolyl)-1,4-dihydroquinazolin-6-yl)acetamide (7f).

Pale yellow powder, yield 85%, mp = 269 ◦C; IR (KBr) νmax/cm−1: 3278(NH), 3066
(CH-Ar), 2970 (CH-sp3), 1705 (CO), 1643 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.32 (s, 3H,
CH3), 2.42 (s, 3H, CH3), 4.73 (s, 2H, CH2), 6.89 (d, J = 4 Hz, 1H, Ar-H), 6.97 (m, 1H, Ar-H),
7.05 (s, 1H, Ar-H), 7.33 (d, J = 8 Hz, 1H, Ar-H), 7.42–7.73 (m, 4H, Ar-H), 7.95 (d, J = 12 Hz,
1H, Ar-H), 8.44 (d, J = 4 Hz, 1H, Ar-H), 8.49 (s, 1H, Ar-H), 10.43 (s, 1H, NH, exchangeable
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by D2O); 13C NMR (100 MHz, DMSO) δ 20.2 (CH3), 21.2 (CH3), 67.6 (CH2), 114.2, 117.2,
118.0, 118.1, 120.1, 125.1, 125.8, 126.8, 127.4, 128.4, 130.0, 130.6, 131.2, 136.9, 137.1, 137.8,
140.7, 153.0, 156.8, 167.4 (CO), 168.8 (CO); C24H20ClN3O3; LC-ESI-MS (m/z): 434 [M+H]+;
purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

General procedure for the synthesis of 2-methyl-6-nitro-1-(substituted phenyl)quinazolin-4(1H)-
one (8a, 8b).

A mixture of compound 3a or 3b (5 mmol), acetic anhydride (10 mL) and sulfuric acid
(1 mL) was refluxed for 8 h (monitored by TLC). After the reaction was complete, it was
poured into ice water. The product was separated out. The precipitated solid was filtrated
off, washed with hot hexane, and dried in vacuo.

2-Methyl-6-nitro-1-phenylquinazolin-4(1H)-one (8a).

Greenish yellow powder, yield 80%, mp 260–262 ◦C; IR (KBr) νmax/cm−1: 3062
(CH-Ar), 1651 (CO), 1543, 1330 (NO2); 1H NMR (400 MHz, DMSO-d6): δppm = 2.18 (s, 3H,
CH3), 6.77 (d, J = 12 Hz, 1H, Ar-H), 7.66–7.82 (m, 5H, Ar-H), 8.40 (s, 1H, Ar-H), 8.80 (s, 1H,
Ar-H); 13C NMR (100 MHz, DMSO) δ 24.9 (CH3), 118.9, 119.2, 122.6, 123.3, 128.5, 128.9,
129.9, 131.0, 131.4, 137.9, 144.6, 146.6, 163.5, 167.55 (CO); C15H11N3O3; LC-ESI-MS (m/z):
282 [M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

2-Methyl-6-nitro-1-(m-tolyl)quinazolin-4(1H)-one (8b).

Greenish yellow powder, 83%, mp 258–260 ◦C IR (KBr) νmax/cm−1: 3059 (CH-Ar),
2993 (CH-sp3), 1658 (C=O), 1543, 1334 (NO2); 1H NMR (400 MHz, DMSO-d6) δ 2.18 (s,
3H, CH3), 2.44 (s, 3H, CH3), 6.82 (dd, J = 17.2 Hz and 10.8 Hz, 1H, Ar-H), 7.45–7.82 (m,
4H, Ar-H), 8.35–8.40 (m, 1H, Ar-H), 8.71 (s, 1H, Ar-H); 13C NMR (100 MHz, DMSO) δ
21.3(CH3), 24.9(CH3), 118.7, 119.3, 123.2, 125.8, 128.1, 128.4, 129.1, 131.1, 131.6, 137.8, 141.3,
144.5, 146.5, 163.6 (CO); C16H13N3O3, LC-ESI-MS (m/z): 296 [M+H]+; purity was confirmed
by HPLC-UV (254 nm)-ESI-MS.

General procedure for the synthesis of 6-amino-2-methyl-1-(substituted phenyl)quinazolin-
4(1H)-one (9a, 9b).

A mixture of compound 8a or 8b (5 mmol), stannous chloride dihydrate (5.6 g,
25 mmol), and conc. HCl (5 mL) in 15 mL ethyl acetate was stirred at room tempera-
ture for 2 h. The reaction was monitored with TLC. After the reaction was complete, the
reaction mixture was diluted with a mixture of ethyl acetate and methanol (3:1) (200 mL)
and pH was adjusted to 7 through the addition of sodium carbonate powder. The solution
mixture was filtered, and the organic filtrate was dried over sodium sulphate. The filtra-
tion of sodium sulphate and the evaporation of the solvent under a vacuum afforded the
crude products. The obtained residue was purified by silica gel chromatography using a
hexane/ethyl acetate mixture (2:1) to produce the desired compounds.

6-Amino-2-methyl-1-phenylquinazolin-4(1H)-one (9a).

White powder, 69%, mp 268–270 ◦C; IR (KBr) νmax/cm−1: 3417, 3332 (NH2), 1708
(C=O); 1H NMR (400 MHz, DMSO-d6) δ 2.07 (s, 3H, CH3), 5.51(brs, 2H, NH2, exchangeable
by D2O), 6.28 (d, J = 8 Hz, 1H, Ar-H), 6.89 (s, 1H, Ar-H), 7.22 (s, 1H, Ar-H), 7.52 –7.73 (m,
5H, Ar-H); 13C NMR (100 MHz, DMSO) δ 24.0 (CH3), 107.8, 118.1, 120.4, 121.9, 128.8, 130.4,
131.1, 134.0, 138.3, 147.5, 158.8, 159.5, 168.8, 175.4 (CO); C15H13N3O; LC-ESI-MS (m/z): 252
[M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

6-Amino-2-methyl-1-(m-tolyl)quinazolin-4(1H)-one (9b).

Yellow powder, 67%, mp 270–273 ◦C IR (KBr) νmax/cm−1: 3402, 3321 (NH2), 3066
(CH-Ar), 2978 (CH-sp3), 1635 (C=O); 1H NMR (400 MHz, DMSO-d6) δ 2.08 (s, 3H, CH3),
2.40 (s, 3H, CH3), 5.52 (brs, 2H, NH2, exchangeable by D2O), 6.35 (d, J = 8 Hz, 1H, Ar-H),
6.91 (d, J = 8 Hz, 1H, Ar-H), 7.21 (s, 1H, Ar-H), 7.38 (d, J = 8 Hz, 1H, Ar-H), 7.54 (s, 1H,
Ar-H), 7.00 (d, J = 12 Hz, 1H, Ar-H); 13C NMR (100 MHz, DMSO) δ 20.1 (CH3), 24.1 (CH3),
107.9, 118.1, 120.5, 121.8, 128.1, 131.3, 133.8, 135.2, 137.2, 138.7, 147.5, 158.6, 168.6, 175.9
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(C=O); C16H15N3O; LC-ESI-MS (m/z): 266 [M+H]+; purity was confirmed by HPLC-UV
(254 nm)-ESI-MS.

General procedure for the synthesis of 2-chloro-N-(2-methyl-4-oxo-1-(substituted phenyl)-1,4-
dihydroquinazolin-6-yl)acetamide derivatives (10a, 10b).

Chloroacetyl chloride (0.5 mL, 6.3 mmol) was slowly added to a magnetically stirred
solution of compound 9a or 9b (4.2 mmol) and K2CO3 (0.873 g, 6.3 mmol) in CH2Cl2
(10 mL). The reaction mixture was stirred at room temperature and monitored by TLC.
After the reaction was complete, the solvents were evaporated, and ice water (100 mL) was
added to the residue. The product was separated out. The precipitate was filtered, washed
with water, and left to dry in vacuo.

2-Chloro-N-(2-methyl-4-oxo-1-phenyl-1,4-dihydroquinazolin-6-yl)acetamide (10a).

Yellow powder, 83%, mp 285 ◦C; IR (KBr) νmax/cm−1: 3271(NH), 3074 (CH-Ar), 2962
(CH-sp3), 1701 (C=O); 1H NMR (400 MHz, DMSO-d6) δ 2.14 (s, 3H, CH3), 4.28 (s, 2H, CH2),
6.6 (d, J = 16 Hz, 1H, Ar-H), 7.56–7.76 (m, 6H, Ar-H), 8.44 (s, 1H, Ar-H), 10.67 (s, 1H, NH,
exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ 23.7 (CH3), 43.8 (CH2), 116.4, 118.6,
119.6, 126.5, 128.6, 130.8, 130.9 (2C), 131.3, 136.9, 137.5, 138.7, 161.4, 165.7 (CO), 166.8 (CO);
C17H14ClN3O2; LC-ESI-MS (m/z): 328 [M+H]+; purity was confirmed by HPLC-UV (254
nm)-ESI-MS.

2-Chloro-N-(2-methyl-4-oxo-1-(m-tolyl)-1,4-dihydroquinazolin-6-yl)acetamide (10b).

Reddish white powder, 88%, mp 280 ◦C; IR (KBr) νmax/cm−1: 3271 (NH), 3073 (CH-
Ar), 2958 (CH-sp3), 1701 (C=O); 1H NMR (400 MHz, DMSO-d6) δ 2.14 (s, 3H, CH3), 2.39
(s, 3H, CH3), 4.30 (s, 2H, CH2), 6.63 (d, J = 16 Hz, 1H, Ar-H), 7.33–7.78 (m, 5H, Ar-H), 8.42
(s, 1H, Ar-H), 10.85 (s, 1H, NH, exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ
20.1 (CH3), 24.3 (CH3), 43.8 (CH2), 116.5, 118.2, 119.3, 126.3, 126.7, 128.0, 131.3, 131.4, 135.5,
136.5, 136.6, 139.0, 161.1, 165.6 (CO), 168.4 (CO); C18H16ClN3O2; LC-ESI-MS (m/z): 342
[M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

General procedure for the synthesis of 2-substituted phenoxy-N-[2-methyl-4-oxo-1-
(substituted phenyl)-1,4-dihydro quinazolin-6-yl]acetamide (11a–f).

A mixture of substituted phenol (2.4 mmol), K2CO3 (0.33 g, 2.4 mmol), and compound
10a or 10b (1.6 mmol) in CH3CN (50 mL) was refluxed for 8 h. The reaction was monitored
by TLC. After the reaction was complete, the solvent was evaporated, and a 4% NaOH
solution (60 mL) was added to the residue to remove any remaining excess phenol as
water-soluble sodium phenoxide salt. The product was separated out. The precipitate was
filtered, washed with water, and recrystallized to form methanol.

N-(2-Methyl-4-oxo-1-phenyl-1,4-dihydroquinazolin-6-yl)-2-(p-tolyloxy)acetamide (11a).

White powder, yield 85%, mp 268 ◦C; IR (KBr) νmax/cm−1: 3271(NH), 3066 (CH-Ar),
2970 (CH-sp3), 1705 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.13 (s, 3H, CH3), 2.23 (s, 3H,
CH3), 4.69 (s, 2H, CH2), 6.55 (d, J = 10 Hz, 1H, Ar-H), 6.90 (d, J = 8 Hz, 2H, Ar-H), 7.11 (d,
J = 6.4 Hz, 2H, Ar-H), 7.57–7.78 (m, 5H, Ar-H), 7.85 (d, J = 12 Hz, 1H, Ar-H), 8.46 (s, 1H,
Ar-H), 10.47 (s, 1H, NH, exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ 20.5 (CH3),
24.4 (CH3), 67.6 (CH2), 115.0 (3C), 116.9, 117.9, 119.4, 126.5, 128.9 (2C), 130.3 (2C), 130.6,
131.2 (2C), 136.3, 138.1, 139.1 156.0, 161.1, 167.6 (CO), 168.5 (CO); C24H21N3O3; LC-ESI-MS
(m/z): 400 [M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

2-(4-Chlorophenoxy)-N-(2-methyl-4-oxo-1-phenyl-1,4-dihydroquinazolin-6-yl)acetamide (11b).

White powder, yield 87%, mp 254 ◦C; IR (KBr) νmax/cm−1: 3267 (NH), 3070 (CH-Ar),
2974 (CH-sp3), 1705 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.12 (s, 3H, CH3), 4.76 (s, 2H,
CH2), 6.56 (d, J = 10 Hz, 1H, Ar-H), 7.05 (d, J = 12 Hz, 2H, Ar-H), 7.36 (d, J = 8 Hz, 2H,
Ar-H), 7.57–7.78 (m, 5H, Ar-H), 7.84 (d, J = 12 Hz, 1H, Ar-H), 8.47 (s, 1H, Ar-H), 10.52 (s, 1H,
NH, exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ 24.4 (CH3), 67.6 (CH2), 117.0
(2C), 117.9, 119.4, 125.5, 126.5, 128.9 (2C), 129.7 (2C), 130.6, 131.2 (2C), 136.3, 138.1, 139.0,
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157.0, 161.2, 167.2, 168.4 (CO), 169.6 (CO); C23H18ClN3O3; LC-ESI-MS (m/z): 420 [M+H]+;
purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

2-(4-Chloro-3-methylphenoxy)-N-(2-methyl-4-oxo-1-phenyl-1,4-dihydroquinazolin-6-yl)
acetamide (11c).

White powder, yield 80%, mp 271 ◦C; IR (KBr) νmax/cm−1: 3267 (NH), 3074 (CH-Ar),
2927 (CH-sp3), 1701 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.13 (s, 3H, CH3), 2.30 (s, 3H,
CH3), 4.71 (s, 2H, CH2), 6.53 (s, 1H, Ar-H), 6.89 (s, 1H, Ar-H), 7.04 (s, 1H, Ar-H), 7.34 (s,
1H, Ar-H), 7.60–7.69 (m, 5H, Ar-H), 7.82 (s, 1H, Ar-H), 8.48 (s, 1H, Ar-H), 10.32 (s, 1H,
NH, exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ 20.3 (CH3), 24.5 (CH3), 67.7
(CH2), 114.3, 116.9, 117.9, 118.0, 119.4, 125.8, 126.4, 128.9 (2C), 130.0, 130.6, 131.2 (2C), 136.3,
137.0, 138.2, 139.0, 157.0, 160.9, 167.2(CO), 168.3(CO); C24H20ClN3O3; LC-ESI-MS (m/z):
434 [M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

N-(2-Methyl-4-oxo-1-(m-tolyl)-1,4-dihydroquinazolin-6-yl)-2-(p-tolyloxy)acetamide (11d).

White powder, yield 85%, mp 270 ◦C; IR (KBr) νmax/cm−1: 3221 (NH), 3074 (CH-Ar),
2962 (CH-sp3), 1701 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.14 (s, 3H, CH3), 2.23 (s, 3H,
CH3), 2.41 (s, 3H, CH3), 4.66 (s, 2H, CH2), 6.62 (s, 1H, Ar-H), 6.91 (s, 2H, Ar-H), 7.11 (s,
2H, Ar-H), 7.47–7.77 (m, 4H, Ar-H), 7.85 (s, 1H, Ar-H), 8.46 (s, 1H, Ar-H), 10.38 (s, 1H, NH,
exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ 20.2 (CH3), 20.5 (CH3), 24.5 (CH3),
67.8 (CH2), 115.0 (2C), 116.9, 117.9, 119.4, 126.4, 128.2, 130.3 (2C), 130.4, 131.4, 131.6, 135.4,
136.5, 137.0, 138.8, 156.2, 160.7, 167.5 (CO), 168.2 (CO); C25H23N3O3; LC-ESI-MS (m/z): 414
[M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

2-(4-Chlorophenoxy)-N-(2-methyl-4-oxo-1-(m-tolyl)-1,4-dihydroquinazolin-6-yl)
acetamide (11e).

White powder, yield 85%, mp 283 ◦C; IR (KBr) νmax/cm−1: 3221 (NH), 3074 (CH-Ar),
2927 (CH-sp3), 1701 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.14 (s, 3H, CH3), 2.42 (s, 3H,
CH3), 4.73 (s, 2H, CH2), 6.64 (d, J = 12 Hz, 1H, Ar-H), 7.04 (d, J = 8 Hz, 2H, Ar-H), 7.36 (d,
J = 8 Hz, 2H, Ar-H), 7.46–7.75 (m, 4H, Ar-H), 7.82 (d, J = 8.0 Hz, 1H, Ar-H), 8.45 (s, 1H,
Ar-H), 10.40 (s, 1H, NH, exchangeable by D2O); 13C NMR (100 MHz, DMSO) δ 20.2, 24.5,
67.8, 116.9(2C), 117.0, 118.0, 119.4, 121.8, 125.4, 126.3, 128.3, 129.7(2C), 131.4, 131.7, 135.4,
137.00, 138.8, 138.9, 157.1, 160.7, 167.0 (CO), 168.2(CO); C24H20ClN3O3; LC-ESI-MS (m/z):
434 [M+H]+; purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

2-(4-Chloro-3-methylphenoxy)-N-(2-methyl-4-oxo-1-(m-tolyl)-1,4-dihydroquinazolin-6-yl)
acetamide (11f).

White powder, yield 87%, mp 290 ◦C; IR (KBr) νmax/cm−1: 3221 (NH), 3074 (CH-Ar),
2927 (CH-sp3), 1701 (CO), 1643 (CO); 1H NMR (400 MHz, DMSO-d6) δ 2.14 (s, 3H, CH3),
2.30 (s, 3H, CH3), 2.42 (s, 3H, CH3), 4.71 (s, 2H, CH2), 6.63 (d, J = 8 Hz, 1H, Ar-H), 6.87 (d, J
= 8 Hz, 1H, Ar-H), 7.03 (s, 1H, Ar-H), 7.32 (d, J = 8 Hz, 1H, Ar-H), 7.39–7.75 (m, 4H, Ar-H),
7.83 (d, J = 8 Hz, 1H, Ar-H), 8.45 (s, 1H, Ar-H), 10.37 (s, 1H, NH, exchangeable by D2O);
13C NMR (100 MHz, DMSO) δ 20.2 (CH3), 21.3 (CH3), 24.4 (CH3), 67.7 (CH2), 114.3, 116.4,
116.9, 118.0, 119.4, 125.8, 126.0, 128.2, 130.0, 131.6, 135.4, 136.4, 136.9, 137.0, 138.9, 138.9,
157.0, 160.9, 165.4, 167.2 (CO), 168.2 (CO); C25H22ClN3O3; LC-ESI-MS (m/z): 448 [M+H]+;
purity was confirmed by HPLC-UV (254 nm)-ESI-MS.

2.2. Cell Culture

The Huh5-2 stable cell line, containing the HCV subgenomic reporter replicon of GT
1b I389luc-ubi-neo/NS3-3′/Con1/5.1 (strain Con1), has been previously described [52]
and was kindly provided by Prof. R. Bartenschlager (Heidelberg University, Germany).
Huh7.5-3a and Huh7.5-4a cell lines have been previously reported [53] and harbor the
subgenomic reporter replicons of HCV GT 3a (S52) S52-SG(Feo)(AII) and GT 4a (ED43)
ED43-SG(Feo)(VYG), respectively, that were kindly provided by Prof. C.M. Rice (The Rock-
efeller University, New York, NY, USA) [54]. The subgenomic reporter replicon DENV2
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16,681 pD2-hRUPac (kindly provided by Prof. C.M. Rice) has been previously described [55]
and was used to construct the stable cell line Huh7-D2 [53]. Cells were cultured in Dul-
becco’s modified minimal essential medium containing high glucose (25 mM) (Invitrogen),
supplemented with 2 mM L-glutamine, 0.1 mM non-essential amino acids, 100 U/mL
penicillin, 100 µg/mL streptomycin, and 10% (v/v) fetal calf serum (referred to as com-
plete DMEM). Complete DMEM was supplemented with G418 at 500 µg/mL for Huh5-2,
750 µg/mL for Huh7.5-3a, and 350 µg/mL for Huh7.5-4a, or puromycin at 0.5 µg/mL for
Huh7-D2.

2.3. Cytotoxicity Assay

Cytotoxicity of the compounds was determined by the alamarBlue® reduction bioassay,
which is based on alamarBlue® reduction by cellular enzymes involved in the oxidation-
reduction reaction. Specifically, 104 replicon cells were seeded in 96-well flat-bottom plates
in a total volume of 100 µL of complete DMEM per well. After 24 h, cells were incubated
with the compounds for 3 days at 37 ◦C (5% CO2). Cells treated with the solvent DMSO
were used as the control. Ten microliters of alamarBlue® were added to each well, and cells
were further incubated at 37 ◦C for 3 h. Absorbance was read at 570 nM (reduced) and
600 nm (oxidized) using a plate reader. The percent difference in dye reduction between
treated and control cells was calculated and used for the determination of the compound
concentration causing 50% cell death (CC50). CC50 values were determined by nonlinear
regression analysis after converting the drug concentrations into log-X using the Prism 5.0
software (GraphPad Software Inc., San Diego, CA, USA).

2.4. Antiviral Assay

An antiviral assay was performed by seeding 104 replicon cells per well in a 96-well flat
bottom plate. The medium was exchanged with serial dilutions of the test compounds in
complete DMEM. Compounds were diluted in DMSO, and the final concentration of DMSO
in complete DMEM was 0.2%. Cells were cultured at 37 ◦C (5% CO2) and lysed after 3 days.
Viral replication levels were determined by measuring Firefly luciferase (F-Luc) activity in
cell lysates by using the Luciferase Assay System (Promega), as recommended by the man-
ufacturer. Measurements were performed with a GloMax 20/20 single-tube luminometer
(Promega) for 10 s. F-Luc activity was normalized to the total intracellular protein amount
as determined by the Bradford assay (Pierce). Relative luminescence units (RLUs) were
calculated as the percentage of the respective values from DMSO-treated control cells. The
median effective concentration (EC50) was defined as the concentration of the compound
that reduced the luciferase signal by 50%. EC50 values were determined by nonlinear
regression analysis after converting the drug concentrations into log-X using the Prism 5.0
software (GraphPad Software Inc.). Daclatasvir used in the drug combination experiments
was kindly provided by Dr. Marc Windisch (Institute Pasteur Korea). The coefficient of
drug interaction in these experiments was calculated as follows: CDI = AB/(A × B) where
AB is the ratio of the viral replication (luciferase activity levels) resulting from cells treated
by the 2-drug combination, normalized to the control group (cells treated with the solvent
DMSO), which is set to 1, and A or B is the ratio of the viral replication resulting from the
single drug, normalized to the control group.

2.5. Total RNA Extraction and Quantification of Viral Replicons

Total RNA was extracted from replicon cells seeded in 12-well plates using the Nu-
cleoZOL reagent (Macherey-Nagel) based on the manufacturer’s recommendation and
subjected to reverse-transcription (RT) for cDNA synthesis. cDNA was then used as a
template for the quantitative real-time polymerase chain reaction (qPCR). RT was per-
formed using Moloney Murine Leukemia Virus (MMLV) reverse transcriptase (Promega)
and reverse primers specific for Con1 IRES (5’-GGATTCGTGCTCATGGTGCA-3’) and
the housekeeping gene YWHAZ (5’-GGATGTGTTGGTTGCATTTCCT-3’). For the qPCR
reactions, Con1 IRES-specific primers (forward: 5’-GGCCTTGTGGTACTGCCTGATA-3’
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and reverse: 5’-GGATTCGTGCTCATGGTGCA-3’) and the Luna Universal qPCR Mas-
ter Mix (NEB) were used. YWHAZ mRNA was used for normalization (forward: 5’-
GCTGGTGATGACAAGAAAGG-3’ and reverse: 5’-GGATGTGTTGGTTGCATTTCCT-3’).

2.6. Gel Electrophoresis and Western Blot Analysis

Denaturing SDS-polyacrylamide gel electrophoresis and Western blotting were per-
formed as previously described [56]. The following antibodies were used: HCV NS5A
(9E10) monoclonal antibody at a dilution of 1:2000 (kindly provided by Prof. C.M. Rice), the
β-actin monoclonal antibody at 1:6000 (Merck-Millipore), and the secondary anti-mouse
horseradish peroxidase-conjugated antibody at 1:2000 (Cell Signaling).

2.7. Statistical Analysis

In the diagrams, bars represent the mean values of three independent experiments
in triplicate. Error bars represent standard deviation. Only results subjected to statistical
analysis using Student’s t-test with p ≤ 0.05 were considered statistically significant and
presented. Statistical calculations were performed with Excel Microsoft Office®.

2.8. Determination of Water Solubility of Compounds 11a and 11b

In a capped 5 mL polypropylene tube, an excess quantity of compounds 11a or 11b
was added to 1mL aliquot of deionized water. A stirrer magnet was placed, the tube
was capped and rapped with aluminum foil then placed on a stirring plate at an ambient
temperature. The suspension was agitated at an ambient temperature for 24 h after which
it was centrifuged at 5000 rpm for 5 min. The clear supernatant was pipetted and filtered
through a 0.2 µm syringe filter disc and then transferred to an HPLC vial. A 20 µL aliquot
was injected into an HPLC system equipped with a UV detector set at 254 nm. Elution
was achieved isochratically on an RP C18 column (250 × 4.5 mm) with 90% methanol in
water as a mobile phase. The column temperature was thermostatically controlled at 40 ◦C
and the mobile phase flow rate was 1 mL/min. Linear regression analysis of integrated
peak areas versus the concentration of a series of standard solutions of each compound
in methanol (1–500 µg/mL) was used to prepare the calibration curve from which the
concentrations of the solubility assessment samples were estimated.

2.9. Computational Chemistry

All protein and ligand preparation, docking, and free energy calculations, as well as
the analysis of the poses, were conducted using the Schrödinger platform, LLC, New York,
NY, USA, release 2019-1. Ligand preparation was performed with the default protocol
of LigPrep using Epik [57,58] to generate protonation states at pH = 7.4 ± 2.0. Protein
preparation was performed using the default protocol of Protein Preparation Wizard, using
Prime to fill in missing side chains and loops, capping termini, and using Epik to generate
protonation states at pH = 7.4 ± 2.0. The docking grid was created using the Receptor
Grid Generation module of Glide at default settings. Rigid docking was performed with
the default protocol of Glide, with the use of XP scoring (extra precision), performing
post-docking minimization and applying strain-correction terms. Induced-fit docking was
performed with the default protocol of the Induced Fit module of Glide, with the use of XP
scoring (extra precision). The MMGBSA free energy of binding calculation was performed
using the default protocol of Prime. The structure–activity relationships (SARs), such as
hydrogen bonds, π–π interactions, cation–π interactions, and halogen bonds were identified
automatically using the default settings of Maestro. Only the atom/ring distances were
measured manually.

3. Results and Discussion
3.1. Chemistry

The synthetic strategies designed for the preparation of 5-nitro-2-(substituted pheny-
lamino)benzamide derivatives 3a,b, 2-substituted phenoxy-N-(4-oxo-1-(substituted phenyl)-
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1,4-dihydro quinazolin-6-yl)acetamide derivatives 7a–f, and 2-substituted phenoxy-N-
(2-methyl-4-oxo-1-(substitutedphenyl)-1,4-dihydroquinazolin-6-yl)acetamide 11a–f are il-
lustrated in Schemes 1–3. The starting material 5-nitro-2-chlorobenzoic acid was fused
with aromatic amines, namely, aniline and 3-methylaniline, at 120 ◦C to afford 5-nitro-
2-(phenylamino)-benzoic acid 1a [48] and 5-nitro-2-(m-tolylamino)benzoic acid 1b [49],
respectively. The formation of compounds 1a,b is believed to proceed via an SNAr addition–
elimination reaction [48].
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(iv) substituted phenols, K2CO3, CH3CN, 90 ◦C, 8 h.

5-Nitro-2-(substituted phenylamino)benzoyl chlorides 2a,b were prepared via the
reaction of 5-nitro-2-(substitutedphenylamino)benzoic acids 1a,b, respectively, with PCl5
in methylene chloride under reflux [59,60]. Instability of the prepared compounds 2a,b and
partial hydrolysis to their corresponding carboxylic acids were observed and confirmed on
TLC. Therefore, immediately after the formation of compounds 2a,b and without separation
and purification, these were transformed into compounds 3a,b.

Thus, the solution of compounds 2a,b in methylene chloride was added dropwise
to a 25% aqueous ammonium hydroxide solution to afford compounds 3a,b in excellent
yields [50,51,61]. The IR spectrum of compound 3b showed three absorption peaks at
3437, 3344, and 3193 cm−1 corresponding to NH2 and NH moieties. Furthermore, the 1H
NMR spectra of compound 3b showed D2O exchangeable singlet signals at 10.89 ppm
corresponding to aniline NH proton along with two D2O exchangeable singlet signals at
7.75 and 8.51 ppm due to magnetically inequivalent protons of amide moiety. Furthermore,
13C NMR spectra showed a typical signal for a carbonyl carbon at 170.4 ppm corresponding
to the amide moiety.

Rad-Moghadam and Khajavi recently reported the synthesis of 2-subtituted-4(3H)-
quinazolinones under microwave conditions. A mixture of anthranilic acid, ammonium ac-
etate, and triethyl orthoformate was subjected to microwave irradiation under solvent-free
conditions to produce 2-substituted-4(3H)-quinazolinones [62]. Later, Wang et al. reported
a similar approach for the synthesis of a series of 1-substituted 4(1H)-quinazolinones [63].
Compounds 3a,b were fused with triethyl orthoformate and a catalytic amount of sulfuric
acid to afford 6-nitro-1-phenylquinazolin-4(1H)-one 4a and 6-nitro-1-(m-tolyl)quinazolin-
4(1H)-one 4b, respectively, in high yields [64]. The IR spectrum confirmed the formation
of compounds 4a,b via the disappearance of OH and NH absorption bands at 3437, 3344,
and 3193 cm−1 and the appearance of a peak at 1670 cm−1 owing to the carbonyl group
at C-4 of the quinazoline ring. Moreover, the 1H NMR spectra confirmed the formation
of compounds 4a,b through the disappearance of three D2O-exchangeable singlet signals
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at 7.78, 8.54, and 10.99 ppm along with the appearance of a singlet signal at 8.81 ppm
corresponding to one proton at C-2 carbon of the quinazoline ring.

In a similar manner, 2-methyl-6-nitro-1-phenylquinazolin-4(1H)-one 8a and 2-methyl-
6-nitro-1-(m-tolyl)quinazolin-4(1H)-one 8b were obtained from fusing acetic anhydride
with compounds 3a and 3b, respectively, in the presence of a catalytic amount of sulfuric
acid [65]. The 1H NMR spectra of compound 8a showed the disappearance of D2O-
exchangeable signals at 7.78, 8.54, and 10.99 ppm and the presence of a singlet signal at
2.18 ppm corresponding to CH3 protons at C-2 carbon of quinazoline ring.

Compounds 4a,b and 8a,b were subjected to reduction via a reaction with stannous
chloride dihydrate, SnCl2, and 2H2O in the presence of a catalytic amount of HCl at room
temperature for 2 h, yielding compounds 5a,b and 9a,b, respectively [66]. The IR spectra
of compounds 5a,b and 9a,b showed a characteristic forked peak at 3425 and 3336 cm−1

for compounds 5a-b, 3417 and 3332 cm−1 for compound 9a, and 3402 and 3321 cm−1 for
compound 9b, attributed to their amino groups. The 1H NMR spectra of compounds 5a,b
and 9a,b revealed a D2O-exchangeable singlet signal in the range of 5.51–5.61 ppm assigned
to the amino group.

The reaction of compounds 5a,b and 9a,b with chloroacetyl chloride in the presence
of potassium carbonate afforded compounds 6a,b and 10a,b, respectively [67,68]. The
IR spectra of compounds 6a,b and 10a,b showed bands in the range of 3275–3271 cm−1

referring to the NH group along with a new absorption peak attributed to the acetamide car-
bonyl moiety at 1689 cm−1 for compound 6a, 1693 cm−1 for compound 6b, and 1701 cm−1

for both compounds 10a,b. Furthermore, the 1H NMR spectra of compounds 6a,b and
10a,b confirmed the disappearance of the NH2 signal of compounds 5a,b and 9a,b along
with the appearance of a D2O-exchangeable singlet signal assigned for acetamide NH
at 10.4–10.5 ppm. It also showed a singlet signal at 4.7–4.73 ppm corresponding to CH2
protons of the acetamide moiety. Furthermore, the 13C NMR spectra of compounds 6a,b
and 10a,b displayed a signal at 79.12 ppm assigned to the CH2 carbons of the acetamide
group in addition to signals at 167.12 and 168.30 ppm attributed to the C=O carbon of the
acetamide group and the C=O at C-4 of the quinazoline ring, respectively.

Compounds 7a–c and 11a–c were synthesized through the reaction of compounds 6a
and 10a, respectively, with substituted phenols in the presence of potassium carbonate [67].
Similarly, heating of the substituted phenols and K2CO3 with compounds 6b and 10b
afforded compounds 7d–f and 11d–f, respectively.

We proved the structure of compounds 7a–f and 11a–f by various spectral data. The
1H NMR spectra of compounds 7a–f and 11a–f showed an increase in the aromatic protons
at 6.56–8.59 ppm due to protons of the substituted phenolic ring. Furthermore, the 1H NMR
spectrum of compounds 7a, 7c, 7d, 7f, 11a, 11c, 11d, and 11f showed a singlet signal at
2.24–2.30 corresponding to the CH3 protons of the substituted phenolic ring. The 13C NMR
of compounds 7a–f and 11a–f represented an increase in the number of signals assigned
for aromatic carbons at 107.64–168.78 ppm.

3.2. Biological Evaluation
3.2.1. Screening of Compounds Using HCV GT 1b Replicon Assay

The anti-HCV potency of the synthesized compounds 1a,b, 3a,b, 4a,b, 5a,b, 6a,b,
8a, b, 9a,b, 10a,b, 7a–f, and 11a–f in cell culture was evaluated in the Huh5.2 stable cell
line harboring the HCV GT 1b subgenomic reporter replicon (strain Con1). In this cell-
based assay, the amount of firefly luciferase (F-Luc) co-expressed by the replicon directly
correlates with the level of HCV RNA replication. We used compound concentrations
that were not cytotoxic based on the results from the alamarBlue reduction cell viability
assay. The results were expressed as values of the median effective concentration (EC50),
defined as the concentration of compound that reduced the viral replication-driven F-Luc
activity by 50% (Table 2). The approved drug daclatasvir was used as a positive control for
viral inhibition in the replicon system. According to the data, compound 11a exhibited the
highest anti-viral potency (EC50 = 0.98 µM). Slightly lower was the activity of compound
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11b (EC50 = 1.38 µM). Compounds 11e and 5a also showed anti-HCV potency at a low
micromolar concentration (EC50 6.24 and 9.84 µM, respectively). For the most potent
analogues 11a, 11b, and 11e, dose–response curve analysis is presented (Figure 3).

Table 2. EC50, CC50, and SI values of compounds in HCV replicon cell lines of GT 1b (Con1), GT 3a
(S52), and GT 4a (ED43).

HCV Replicon 1b HCV Replicon 3a HCV Replicon 4a

Code CC50 (µM) EC50 (µM) SI EC50 (µM) SI EC50 (µM) SI

1a >200 >10 - >10 - >10 -
1b >200 >10 - >10 - >10 -
3a 70.69 ± 0.04 >10 - >10 - >10 -
3b 161.3 ± 0.07 >10 - >10 - >10 -
4a >200 >10 - >10 - >10 -
4b 64.9 ± 0.03 >10 - >10 - >10 -
5a >200 9.84 ± 0.57 >20.32 >10 - >10 -
5b >200 >10 - >10 - >10 -
6a 104.2 ± 0.03 >10 - >10 - >10 -
6b 143.3 ± 14.24 >10 - >10 - >10 -
8a >200 >10 - >10 - >10 -
8b 151.1 ± 5.41 >10 - >10 - >10 -
9a >200 >10 - >10 - >10 -
9b >200 >10 - >10 - >10 -
10a 87.47 ± 0.24 >10 - >10 - >10 -
10b 177.2 ± 0.03 >10 - >10 - >10 -
7a 84.67 ± 13.96 >10 - >10 - >10 -
7b 154.3 ± 3.71 >10 - >10 - >10 -
7c 75.22 ± 9.24 >10 - >10 - >10 -
7d 50.13 ± 1.77 >10 - >10 - >10 -
7e 47.6 ± 5.56 >10 - >10 - >10 -
7f 105.4 ± 10.30 >10 - >10 - >10 -

11a 157.5 ± 0.03 0.98 ± 0.06 160.71 >10 - >10 -
11b 99.01 ± 0.09 1.38 ± 0.04 71.75 11.65 ± 1.26 8.5 >10 -
11c >200 >10 - >10 - >10 -
11d 22.7 ± 2.23 >1 - >10 - >10 -
11e 36.6 ± 4.19 6.24 ± 0.04 5.86 8.4 ± 0.15 4.36 15.21 ± 0.29 2.4
11f 27.4 ± 2.71 >1 - >10 - >10 -

Daclatasvir 17.7 26.6 × 10−6

± 4.6 × 10−6 680,769.23 21.2 × 10−6

± 3.1 × 10−7 2120.27 0.008 ± 0.001 835,299.67

3.2.2. Cytotoxicity and Selectivity of the Synthesized Compounds

Determination of the median cytotoxic concentration (CC50) of the synthesized ana-
logues, which represent the compound concentration causing 50% cell death (Table 2),
showed that only three compounds, 11d, 11e, and 11f, showed cytotoxic activity with CC50
values of 22.7 µM, 36.6 µM, and 27.4 µM, respectively. However, the SI value of the potent
analogue 11e is acceptable (SI = 5.86). The rest of the tested compounds did not exhibit
significant cytotoxicity, providing a good safety profile as anti-HCV candidates. Analogues
with the highest activity, 11a and 11b, also had high selectivity indices (SI = CC50/EC50),
160.71 and 71.75, respectively.

3.2.3. Compound Activity against HCV 3a and 4a Replicon Cells

The anti-HCV activity of the analogues was also tested against other genotypes.
Specifically, we measured their effect against viral replication-driven F-Luc activity in
Huh7.5-3a and Huh7.5-4a stable cell lines containing the HCV GT 3a (strain S52) and 4a
(strain ED43) replicons, respectively. Compounds 11b and 11e showed activity against
GT 3a, and 11e was the most active with EC50 = 8.4 µM (Table 2). Nevertheless, they
exhibited no activity against GT 2a (data not shown). Compounds 11a [EC50 = 0.98 µM
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(GT1b)] and 11b [EC50 = 1.38 µM (GT1b), 11.65 µM (GT3a)] exhibited the highest anti-HCV
potency. Similarly, compounds 11d and 11e demonstrated good anti-HCV activity but,
unfortunately, with cytotoxic activity [CC50 = 22.7µM (11d), 36.6 (11e)]. We believe that the
presence of a mono-substituted phenoxy ring in the para-position together with methyl
substitution at C-2 of the quinazoline ring is essential for this potent anti-HCV activity.
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Figure 3. Dose–response curves for compounds 11a, 11b, and 11e against replication of HCV GT 1b.
Serial dilutions of compounds were used to treat Huh5-2 replicon cells for 72 h. F-Luc activity was
measured and expressed as relative light units (RLUs) per µg of total protein. Values from compound-
treated cells were expressed as percentage of the ones from solvent-treated DMSO (control) cells.
Bars represent mean values from 3 independent triplicate experiments. Error bars represent standard
deviation (SD).

3.2.4. Validation of Compound Activity with Additional Assays

The inhibition profile of the most promising compound 11a measured by the luciferase
assay in HCV GT 1b was confirmed by determining viral RNA and NS5A protein levels.
Serial dilutions of the compound, or its solvent DMSO (control), were used to treat Huh5-2
replicon cells. Viral RNA was quantified by reverse transcription–quantitative polymerase
chain reaction (RT-qPCR) and NS5A was evaluated by Western blotting. We found that
compound 11a caused a reduction in HCV RNA replication (Figure 4A), similar to the
one in replication-derived luciferase activity with EC50 = 1.13 µM. Consistent results were
obtained in the detection of HCV NS5A protein in Huh5-2 replicon cells, which was best
visible at a low compound concentration (Figure 4B).
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Figure 4. Inhibitory activity of analogue 11a on HCV RNA and protein expression levels of the 
subgenomic 1b (Con1) replicon. Huh5-2 cells were treated with serial dilutions of 11a or the solvent 
Figure 4. Inhibitory activity of analogue 11a on HCV RNA and protein expression levels of the
subgenomic 1b (Con1) replicon. Huh5-2 cells were treated with serial dilutions of 11a or the solvent
DMSO (control—C). (A) (+) strand HCV RNA was quantified by RT-qPCR. Values were normalized to
the housekeeping gene 14-3-3-zeta polypeptide (YWHAZ) mRNA levels and expressed as percentage
of those derived from cells treated with the solvent (control), which was set to 100%. Bars represent
mean values obtained from three separate experiments in triplicate. Error bars represent standard
deviation (SD). (B) Western blot analysis for the viral protein NS5A. β-actin was used as a loading
control. A representative experiment of three independent replicates is shown.

3.2.5. Combinatory Effect of Compound 11a with DCV

To examine the activity of compound 11a in combination with an approved NS5A
inhibitor, the Huh5-2 replicon cell line was treated with 11a in the presence or absence of
daclatasvir (DCV) (Figure 5). The two compounds had an additive effect, as observed after
determining the coefficient of the drug interaction (CDI ≈ 1).
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3186, which is located in close proximity to the ligand and Leu497 and is also conserved 
to the position in PDB crystals of HCV NS5B polymerase 4JU2 and 4JTW) after superpo-
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Figure 5. Combinatory activity of 11a with DCV against HCV GT 1b (Con1). Huh5-2 cells were
treated or not with the analogue in the presence or absence of 30 pM DCV. F-Luc activity was
measured and expressed as RLU per µg of total protein. Values from compound-treated cells were
expressed as percentage of those derived from cells treated with the solvent DMSO (control—C).
CDI: Coefficient of drug interaction. Bars represent mean values obtained from three independent
experiments in triplicate. Error bars represent standard deviation (SD).
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3.3. Solubility Measurements

The observed water solubility of compound 11a is 2.7 µgm/mL and for compound
11b is 3.5 µgm/mL

3.4. In Silico Studies

Computational docking studies were carried out with Glide, Schrödinger platform [60–62]
to investigate the binding mode of 11a–f compounds. The crystal structure of HCV NS5B
polymerase with Protein Data Bank code 4JU1 (resolution 2.90 Å, crystallization at pH 7.5)
was employed [39], due to the similarity of the azabenzoxazole moiety in the bound ligand
IX (Figure 6) with the motif of 11a–f. The protein was set up for docking with Glide,
Schrödinger [69–71] by removing all water molecules (except water molecule 3186, which is
located in close proximity to the ligand and Leu497 and is also conserved to the position in
PDB crystals of HCV NS5B polymerase 4JU2 and 4JTW) after superposition with 4JU1 and
non-protein atoms, while keeping the magnesium ions. Optimization and minimization of
the protein and protonation of the amino acids were performed using the Protein Prepa-
ration Wizard, Schrödinger [72] under standard conditions. The ligand structures were
either built in Maestro, Schrödinger (compounds 11a–f) or extracted from crystal struc-
tures (a co-crystallized ligand of 4JU1 used for redocking, a co-crystallized ligand of 4JU2
used for crossdocking—cf. Figure 1). Protonation and energy minimization of the ligand
structures was conducted with LigPrep, Schrödinger under standard conditions with the
default protocol. Both the redocking and crossdocking yielded top XP score poses with low
RMS values of 0.5425 and 1.5999, respectively, compared to the original crystal structures.
However, rigid docking with the same protocol failed to place compounds 11a–f in the
binding pocket and resulted in them drifting towards the left-hand side. This occurred due
to the rigidity of the phenylquinazolinone core compared to benzylquinazolinone, with the
former not having enough space to enter the cavity. The latter is not only more flexible but
also the methylene bridge of the benzyl moiety allows the respective phenyl group to be
positioned at an optimal angle to geometrically fit the cavity [39]. Nonetheless, this part of
the pocket is comprised of flexible side groups of amino acids, such as Leu419, Met423, and
Arg422, which could accommodate the phenylquinazolinone core in a less static simulation
after minimal displacement. Thus, induced-fit docking was performed using the default
protocol of Glide [73–75]. Indeed, the aforementioned amino acids move slightly (RMSD:
Leu419 0.11–0.25; Met423 0.08–0.11; Arg422 1.02–1.12) and enlarge the existing cleft, there-
fore allowing the phenylquinazolinone scaffold to reside there. Furthermore, an MMGBSA
free energy calculation of binding was conducted using Prime, Schrödinger [76,77] to the
induced-fit docking output to facilitate comparison between the different poses. Selection
of the top poses for each ligand was conducted based on the docking score, the free energy
of binding (MMGBSA), and the RMSD value against the bound quinazolinone core in
4JU1, with the rationale that these structurally similar ligands should, in principle, exhibit
a similar binding mode, with minimal spatial deviations of the key scaffold, which forms
two critical hydrogen bonds with the enzyme. Again, redocking and crossdocking resulted
in adequate ligand RMSD for induced-fit docking, at 1.23 and 1.62, respectively (compared
to the original crystal structures), and with even lower ∆Gbind energies (cf. Table 3).
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Figure 6. Structure of co-crystallized ligand of 4JU1 used for redocking.

Table 3. Docking data.

Compound Docking RMSD
MMGBSA

∆Gbind
(kcal/mol)

Glide XP
Score IFD Score

IX (redock) Rigid 0.5425 a −88.83 −10.098 -
VIII

(crossdock) Rigid 1.5999 b −82.11 −9.296 -

IX (redock) Induced fit 1.2336 a −92.19 −10.461 −1171.83
VIII

(crossdock) Induced fit 1.6153 b −92.37 −10.126 −1171.50

11a Induced fit 2.6138 c −69.86 −6.349 −1167.50
11b Induced fit 2.6174 c −71.65 −7.311 −1168.47
11c Induced fit 2.5848 c −60.81 −5.414 −1167.01
11d Induced fit 2.2737 c −59.60 −6.497 −1167.61
11e Induced fit 2.2734 c −61.18 −5.765 −1166.87
11f Induced fit 1.2665 c −61.90 −5.091 −1166.04

a Calculated versus the co-crystalized IX ligand in 4JU1. b Calculated versus the co-crystallized VIII ligand in
4JU2. c Calculated versus the quinazolinone core of the co-crystallized IX ligand in 4JU1.

The input from the crystal structures suggests that the most important SAR of the lead
compounds IX and VIII applicable in our case are the two hydrogen bonds formed by the
quinazolinone core and Ser476 and Tyr477. Ligands 11a and 11b share identical binding
modes and SARs, which is in accordance with their high level of similarity. Although they
do not form hydrogen bonds with Ser476 and Tyr477, the respective distances with the
quinazolinone heteroatoms are 4 and 4.45 Å, which indicate that in a dynamic environment,
their formation could be likely, as also depicted by their low RMSD values (cf. Table 3).
However, the phenylquinazolinone scaffold forms a sandwich π–π stacking with the
side group of Tyr477, which stabilizes the ligand in this favorable vicinity, rendering the
aforementioned hydrogen bond formation more probable. In addition, a water bridge is
formed between the ether O and the Leu497 backbone. The identical SARs of 11a and 11b
could indicate that the slight difference they exhibit in biological activity might be the result
of parameters other than their binding mode, e.g., their difference in solubility as described
above (Figure 7).
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Figure 7. Docking poses of 11a (green) and 11b (yellow). The two ligands have an identical binding
mode. A water bridge with Leu497 and a sandwich π–π stacking with Tyr477 are formed. Yellow
dotted line: Hydrogen bond. Cyan dotted line: π–π interaction. All the above SARs were identified
by employing the default settings of Maestro. Violet dotted line and number: Atom/ring distance in
Å (measured manually).

Ligand 11c exhibits the longest distance between the phenylquinazolinone heteroatoms
and Ser476 and Tyr477 (Ser476-aromatic N: 5.17 Å; Tyr477-carbonyl O: 6.61 Å). The re-
served crystal water forms a hydrogen bond with Leu497 but not with the ligands’ ether O,
mostly due to the discrepancy in the conserved orientation of the water hydrogen since
the latter is in very close proximity to it (aqueous O-ether O: 2.97 Å). Hence, in a less static
environment for the crystal water, the water bridge between 11c-Leu497 is expected to take
place. Moreover, a cation–π interaction between the protonated guanidine of Arg490 is
observed (Figure 8).
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Figure 8. Docking pose of 11c. Cation–π stacking is formed with Arg490, while the ligand drifts
the furthest away from Ser476 and Tyr477. Yellow dotted line: Hydrogen bond. Green dotted
line: Cation–π interaction. All the above SARs were identified by employing the default settings of
Maestro. Violet dotted line and number: Atom/ring distance in Å (measured manually).

Compounds 11d and 11e also share very similar binding modes and SARs, again in
accordance with their structural similarity; however, with certain differences compared
to the binding mode of 11a and 11b. Ligands 11d and 11e are closer to Ser476 but, due to
their orientation, drift further from Tyr477 than 11a and 11b (Ser476-aromatic N: 3.83 Å;
Tyr477-carbonyl O: 5.28 Å) without forming hydrogen bonds. They both form a water
bridge between the ether O and the Leu497 backbone and a sandwich π–π stacking with
His475 (Figure 9).
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Figure 9. Docking poses of 11d (cyan) and 11e (purple). The two ligands have an identical binding
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dotted line: Hydrogen bond. Cyan dotted line: π–π interaction. All the above SARs were identified
employing the default settings of Maestro. Violet dotted line and number: Atom/ring distance in Å
(measured manually).

Compound 11f displays the richest SAR of all the series while retaining the lowest
RMSD of its quinazolinone core compared to the co-crystalized ligand (cf. Table 3). It forms
a cation–π interaction with Arg490, a sandwich π–π stacking with the side group of Tyr477,
a hydrogen bond with the backbone of Ser476, and a halogen bond with the backbone of
Val494. The hydrogen bond with Tyr477 is not formed, albeit the distance Tyr477-carbonyl
O is 3.82 Å. The water bridge with Leu497 is not formed, similarly to 11c; however, the
crystal water molecule is close to the ether O (3.62 Å) and surprisingly even closer to the
amide carbonyl O (3.07 Å) (Figure 10).
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Figure 10. Docking pose of 11f. A hydrogen bond with Ser476, a sandwich π–π stacking with Ty477,
a cation–π interaction with Arg490, and a halogen bond with Val494 are formed. Yellow dotted line:
Hydrogen bond. Cyan dotted line: π–π interaction. Green dotted line: cation–π interaction. Purple
dotted line: Halogen bond. All the above SARs were identified employing the default settings of
Maestro. Violet dotted line and number: Atom/ring distance in Å (measured manually).

As observed in all docking poses, the phenyl group of the phenylquinazolinone
core can be well accommodated within the newly revealed cleft, even with an m-CH3
substitution. In addition, its proximity to Trp528, His475, and the guanidine group of
Arg501 open a possibility that the phenyl might form π–π interactions (His475, Trp528) and
cation–π interactions (Arg501) in a dynamic environment. Furthermore, it is interesting that
between the two pairs with identical binding modes, i.e., 11a, 11b, and 11d, 11e, the only
difference is the exchange of a p-CH3 to a p-Cl, but this nonetheless results in differences
in the respective EC50. We have shown that this structural characteristic also results in a
difference in water solubility for 11a and 11b. Furthermore, since a cation–π interaction
with the guanidine of Arg490 has been illustrated by our model for compounds 11c and
11f, which bear both groups, it cannot be excluded that such an interaction may take place
during the binding process of the other ligands. In that case, the methyl substitution
would enhance a possible cation–π interaction by enriching the electron density of the ring
compared to the chloro-analogue—a feature difficult to simulate accurately in the MM
environment.
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As presented above, the series of 11a–f displays a variety of SARs; however, not
all of them are of equal importance (Figure 11). In addition to exhibiting optimal SAR,
a formidable ligand should also render a promising binding energy profile based on
prominent enthalpic interactions. Thus, the MMGBSA-calculated ∆Gbind ranks the inter-
actions of each ligand and provides supplementary profiling, according to which (a) the
co-crystallized ligands VIII and IX have the lowest ∆Gbind; (b) the ligands 11a and 11b
are next, although at a higher energy level; (c) the rest of the ligands follow at an even
higher energy level. A trend can be clearly seen between the values of ∆Gbind and the EC50
values. This profiling highlights that the formation of the two hydrogen bonds between
Ser476 and Tyr477 and the quinazolinone core, or at least the optimal positioning of the
latter towards the critical amino acids via other interactions (e.g., π-π stacking in 11a and
11b), is of the highest importance, similarly to the lead compound binding mode. Ligands
lacking these interactions and drifting away from this vicinity resulted in higher ∆Gbind
and EC50 values. Furthermore, it is notable that compounds bearing a 3-methyl group on
the quinazolinone phenyl groups receive an energy penalty due to rotation hindrance and
clash with the protein cleft.
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3.5. Lipophilicity and Solubility Parameters Calculations

The ClogP and Log S values for all compounds were illustrated in Table 4. The target
compounds 7a–f and 11a–f have lower LogP values (3.52–4.79) than the reported lead
compound VII (LogP = 8.09) and the ligand compounds VIII and IX (LogP = 9.15 and 9.29,
respectively). Moreover, the target compounds 7a–f and 11a–f have better LogS values
(−5.67 ~ −4.72) than compound VII (Log S = −6.02) and the ligand compounds VIII and
IX (Log S = −6.84 and −7.22, respectively).
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Table 4. Calculated lipophilic and solubility parameters for the synthesized compounds and the
ligand compound IX.

Compounds ClogP a Log S b Compounds ClogP Log S Compounds ClogP Log S

1a 3.04 −4.52 7b 3.87 −5.01 11a 3.83 −4.78
1b 3.35 −4.68 7c 4.17 −5.31 11b 4.17 −5.07
3a 3.22 −4.57 7d 3.83 −5.01 11c 4.48 −5.37
3b 3.53 −4.73 7e 4.17 −5.31 11d 4.14 −5.08
4a 2.29 −3.39 7f 4.48 −5.61 11e 4.48 −5.37
4b 2.6 −3.68 8a 2.6 −3.44 11f 4.79 −5.67
5a 1.98 −3.02 8b 2.91 −3.73 IX 9.29 −7.22
5b 2.28 −3.30 9a 2.28 −3.06
6a 2.37 −3.47 9b 2.59 −3.35
6b 2.68 −3.77 10a 2.68 −3.53
7a 3.52 −4.72 10b 2.99 −3.83

a Calculated by online Swiss ADME website application [45,46]. b ESOL calculated by online Swiss ADME website
application [45,46]. Solubility class: log S scale (insoluble < −10 < poorly soluble < −6 < moderately soluble < −4
< soluble < −2 < very soluble < 0 < highly soluble) [47].

4. Conclusions

In conclusion, a novel series of anthranilic acid, 1-substituted phenyl-4(1H)-quinazolinone,
and 2-methyl-1-substituted phenyl-4(1H)-quinazolinone derivatives have been prepared
and tested for their antiviral potency against various HCV GTs. Compound 11a was the
most potent against HCV GT 1b (EC50 = 0.98 µM) and showed a synergistic effect in
combination with an approved NS5A inhibitor daclatasvir (DCV). The SAR study of the
synthesized compounds revealed that the presence of both the mono-substituted phenoxy
ring in the para-position and the methyl group at C-2 of the quinazolinone ring, as seen
in compounds 11a, 11b, 11d, and 11e, is essential for potent antiviral activity. Due to the
proximity of the C-2 methyl group to the phenyl group of the quinazolinone scaffold, it
could be hypothesized that its presence may facilitate the opening of the cleft, rendering it
better approachable by the rigid phenyl ring. Our computational investigations show that
the phenyl analogues, which by a rigid approach were deemed not to fit in the binding site,
can reach a lipophilic cleft within the pocket where they can be accommodated. As exhib-
ited in the docking poses of 11a–f, there are possible SARs that might take place between
the phenyl group and the newly revealed cleft in a dynamic environment. However, as
shown both in the computational modelling and the pharmacologic data, these prospective
SARs would be of less significance than the ones of the benzyl analogues, since neither our
model showed any clear solid interactions forming in this cleft nor did our pharmacological
evaluation result in higher affinity than the lead compounds. Nonetheless, it is important
to exhibit that by minimal movement of lipophilic side chains, the known binding pocket
can be enlarged to accommodate more rigid ligands, but also that this new cleft presents
opportunities for SAR, which can be exploited in future drug design. Furthermore, the
hydrogen bonds from the quinazolinone core were highlighted as the most important SARs.
These findings may play an important role in further structure optimization aimed at the
development and production of more potent anti-HCV agents.
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