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Abstract: Despite decades of focus on crickets (family: Gryllidae) as a popular commodity and model
organism, we still know very little about their immune responses to microbial pathogens. Previous
studies have measured downstream immune effects (e.g., encapsulation response, circulating hemo-
cytes) following an immune challenge in crickets, but almost none have identified and quantified the
expression of immune genes during an active pathogenic infection. Furthermore, the prevalence of
covert (i.e., asymptomatic) infections within insect populations is becoming increasingly apparent,
yet we do not fully understand the mechanisms that maintain low viral loads. In the present study,
we measured the expression of several genes across multiple immune pathways in Gryllodes sigillatus
crickets with an overt or covert infection of cricket iridovirus (CrIV). Crickets with overt infections
had higher relative expression of key pathway component genes across the Toll, Imd, Jak/STAT, and
RNAi pathways. These results suggests that crickets can tolerate low viral infections but can mount
a robust immune response during an overt CrIV infection. Moreover, this study provides insight
into the immune strategy of crickets following viral infection and will aid future studies looking to
quantify immune investment and improve resistance to pathogens.

Keywords: cricket viruses; iridovirus; gene expression; immunity; edible insects; immune tolerance;
host-pathogen interactions

1. Introduction

Although the practice of mass-produced insects has been long-standing (e.g., silk-
worm farming, apiculture, biocontrol agents) [1,2], its application has recently expanded to
include uses as livestock and pet feed ingredients [3,4], protein for human consumption [5],
chitin for numerous industrial applications [6], and remediation of wastes [7]. Due to the
increasing popularity of and demand for insect-based products, there are considerable
efforts to maximize insect mass-production [8]. For example, within rearing facilities, mi-
crobial pathogens (e.g., viruses, bacteria, fungi) can cause significant mortality, in addition
to reducing fecundity and body size. Thus, increasing disease prevention and resistance of
insects is essential to the success of this burgeoning industry [9–11].

Despite the threat that entomopathogenic infections pose to insect mass-production,
we know little about disease prevalence in these settings as systematic screening efforts
are currently absent. Crickets (family: Gryllidae) are an especially popular farmed insect;
however, they are known to be susceptible to multiple microbial pathogens that can cause
disease outbreaks [12–14]. For example, the Acheta domesticus densovirus (AdDNV), a
parvovirus, was implicated to have caused large disease outbreaks in farmed house cricket
(Acheta domesticus) colonies globally, resulting in wholesale product losses. As a direct
response to these outbreaks, many producers switched to farming alternative species,
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including Gryllodes sigillatus in North America, due to reports that they are less susceptible
to AdDNV [15]. Furthermore, the number of reports of covert (or, silent) viral infections
has increased in reared populations as molecular screening of viruses has expanded to
asymptomatic populations [13]. Covert infections by a broad range of microorganisms and
other infectious agents are widespread and can manifest as latent infections (e.g., remain
within the host cell or integrate into the host genome) or persistent infections with low
levels of replication [16]. Importantly, covert infections may become activated resulting in
detectable pathology, including mortality.

Beyond agricultural and industrial applications, several species of crickets have long
been a model organism within several fields of research (e.g., evolutionary ecology, ecologi-
cal immunology, insect physiology), where immune effectors have been evaluated across
numerous contexts [17–29]. From these studies, we know that crickets mount an immune
response to some microbial pathogens by, for example, exhibiting increased lysozyme-like
activity of their hemolymph [30,31], producing a melanization and/or encapsulation re-
sponse [32,33], and/or increasing circulating hemocytes [34] after controlled exposure to
live, inactivated, or simulated (e.g., nylon filaments) pathogens. Although these studies
provide insight on the functional downstream outcomes of infection, few have identified
and quantified immune gene expression in response to pathogens in these insects [35,36],
which is foundational to understanding the molecular basis of their defensive repertoire.
Additionally, we do not yet know how crickets respond to naturally acquired pathogenic
infections, as almost all assessments have been conducted following controlled inoculation.

Insects possess a suite of cellular and humoral immune defenses in response to viral
infection [37] and most of what we know about gene expression as the basis of these
defenses comes from work in Drosophila melanogaster [38,39], lepidopterans [40], and sev-
eral mosquito species [41]. Once a pathogen is detected by the insect host, a series of
immune signaling pathways are activated intracellularly to respond to infection with a
certain degree of specificity, which is in part attributed to the binding specificity of pattern
recognition receptors (PRRs) to pathogen associated molecular patterns (PAMPs) (e.g.,
lipopolysaccharides and peptidoglycans) [42]. The main signaling pathways that medi-
ate immunity in insects are the Toll, Immune deficiency (Imd), and Jak/STAT pathways.
Within the Toll pathway, microbes are detected by PRRs that activate the ligand Spätzle,
which then binds to Toll receptors and transduces the signals to Cactus-Dif (Dorsal-related
immune factor) through a signaling complex containing the adapter MyD88 [43]. Cactus is
then cleaved from Dorsal and/or Dif which then translocate into the nucleus and regulate
the transcription of effector genes [44]. Within Imd, PRRs recognize invading pathogens
and activate the adapter molecule Imd, which activates Relish [45]. Relish is then cleaved
and its DNA binding domain translocates into the nucleus where it regulates the tran-
scription of effector molecules [46]. The Jak/STAT pathway is activated as a response
to cell stress and/or viral and fungal infection. In this pathway, Domeless is activated
and then associated kinases recruit and phosphorylate STAT, which translocates into the
nucleus to regulate the expression of downstream effector genes [47]. Additionally, STAT is
negatively modulated by PIAS [48]. Activation of these signaling pathways leads to the
production of downstream effector molecules, such as antimicrobial peptides (AMPs), that
suppress a range of microbes, including viruses [49]. Further, lysozyme is a particularly
potent antimicrobial effector in many insects, including crickets [50]; however, the potential
antiviral activity of lysozyme has not been widely investigated [51]. Beyond these canonical
immune signaling pathways, the RNAi (RNA interference) pathway plays a significant role
in the antiviral response in Drosophila [52] and has been linked to Jak/STAT, suggesting
coordination between these responses [53]. In this pathway, viral dsRNA is recognized
by Dicer-2 proteins, which dice it into small siRNAs (small interfering RNAs) which are
then loaded into an RNA induced silencing complex (RISC) by Dicer-2 and co-factor R2D2.
RISC finds the target transcripts (by complementary sequence with the guide strand of
the siRNA) and the Argonaute-2 protein (effector protein of RISC) degrades the target
transcript [54].
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Recently, we characterized viral abundance in reared G. sigillatus crickets from two
populations infected with cricket iridovirus (CrIV; family: Iridoviridae): one in which
crickets were host to high amounts of viral copies and suffered from increased mortality
and reduced fecundity while the other showed no apparent signs of disease and had
very few viral copies present [13]. Thus, we consider the diseased population as one
exhibiting an overt infection while the healthy population exhibited a covert infection of
CrIV. Covert infections of invertebrate iridoviruses are reportedly more prevalent than
overt lethal infections in some insect population [55–57], which could be due to several
factors, including reduced virulence of the virus or increased tolerance of the host. Here,
we quantified the expression of immune signaling pathway genes that have been shown
to be important in anti-viral immune responses of insects across these two populations of
crickets. We selected targets across Toll (MyD88, Cactus, Dorsal, and Dif), Imd (PGRP-LC,
Imd, and Relish), and Jak/STAT (Domeless, PIAS, and STAT5B) signaling pathways in
addition to a gene encoding for lysozyme. We also measured expression of targets within
the RNAi pathway (Dicer-2, R2D2, and Argonaute-2). Finally, because the microbiome has
been shown to influence viral dynamics in other insects [58], we quantified the amount
of bacteria and fungi present via amplification of the 16S rRNA gene for bacteria and 18S
rRNA for fungi to determine if total microbial load plays a role in viral dynamics. We also
present TEM images of CrIV viral capsids to confirm active infection within crickets with
an overt infection.

2. Materials and Methods
2.1. Cricket Colonies

G. sigillatus crickets were sourced from either of two populations (diseased: a pop-
ulation presenting pathological manifestations of infection, or healthy: an apparently
disease-free population) of lab-reared colonies. Symptoms present in the diseased colony
were high, intermittent mortality among late-instar nymphs and adults, a strong putrid
odor within rearing containers, milky white hemolymph which appeared iridescent under
illuminated magnification, increased cuticle and tissue frailty, and underdeveloped or
absent ovaries in some adult females [13]. Our previous work found that both populations
had the presence of CrIV and AdDNV. Diseased crickets had significantly more CrIV
(mean ± 95% C.I. = 3.017 × 109 ± 3.485 × 108 viral copies/µL) compared with healthy
crickets (mean± 95% C.I. = 380.7± 131.4 viral copies/µL) [13]. Moreover, diseased crickets
also had significantly higher viral loads of AdDNV (mean ± 95% C.I. = 1409 ± 731 viral
copies/µL) than healthy crickets (mean ± 95% C.I. = 34.99 ± 18.63 viral copies/µL) [13].
Despite coinfection with CrIV and AdDNV, we concluded that CrIV was the likely disease-
causing agent due to the amount of CrIV viral copies present and the apparent symptoms
(e.g., iridescent hemolymph). We further determined that the diseased population had an
overt CrIV infection while the healthy population had a covert CrIV infection, as the latter
had no apparent disease symptoms [13].

These populations were descendants from the same ancestral wild-caught crickets
collected from Las Cruces, NM (USA) and have been cultured in a lab setting since 2001.
Populations were split and maintained in separate labs since 2007. Rearing methods
followed standard cricket rearing protocol within a research laboratory setting [13]. Briefly,
about 500 crickets were housed in 55 L plastic storage bins with ventilated lids packed
with egg carton to increase rearing surface area. They were provisioned with a standard
diet (roughly equal parts Mazuri® Rat & Mouse Diets and Purina® Cat Chow Complete
pellets) and water (glass vials plugged with moist cotton) ad libitum. All individuals were
housed in an environmental chamber at 32 ◦C on a 16 h:8 h light:dark cycle. Experimental
individuals were at least 1-week-old (no more than 14 days old) post-emergence as adults
when they were killed by freezing at −80 ◦C.
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2.2. Viral Imaging Via Electron Microscopy

To capture images of virus particles and confirm active infection of CrIV within dis-
eased crickets, we dissected the fat body from a cricket with an overt infection from the dis-
eased colony. Samples were fixed in 2% paraformaldehyde/2.5% glutaraldehyde/0.05 M
NaCacodylate/0.005 M CaCl2 (pH = 7). They were post fixed in 1% Osmium for two hours
and then processed in graded alcohols, propylene oxide and LX112 (Ladd Research, Willis-
ton, VT, USA) resin with 48 h polymerization and shipped to the USDA-ARS Microscopy
Services Laboratory at the National Animal Disease Center (Ames, Iowa, United States) for
further processing. Thick sections (1 µm) were performed on select samples and a toluidine
blue stain and basic fucsin stain were applied. Polaroid photos were taken of these images
and the area of interest for thin sections was identified. A uranyl acetate and Reynold’s
lead stain were performed on the thin section before being examined with a ThermoFisher
FEI Tecnai G2 BioTWIN electron microscope (ThermoFisher FEI Co., Hillsboro, OR, USA)
and images were taken with a Nanosprint12 camera (AMT Corp., Woburn, MA, USA) [59].

2.3. RNA Extraction and cDNA Synthesis

We extracted RNA from whole body homogenates of individual crickets from each
population (20 crickets/population). Previously frozen (−80 ◦C) crickets were placed
individually in tubes with 1 mL sterile 1x PBS (pH 7.2) and two 3.2 mm diameter sterile
stainless-steel beads and macerated using a TissueLyser II (Qiagen, Hilden, Germany).
The resulting liquid homogenate was removed (about 0.9 mL) and placed in a new sterile
tube for RNA extraction. RNA was extracted from 100 µL of cricket homogenate using
the RNeasy Mini prep kit (Qiagen) following the “Purification of Total RNA from Animal
Tissues” protocol. The concentration of RNA within each sample was estimated via a
NanoDrop OneC Microvolume UV-Vis Spectrophotometer (ThermoFisher, Waltham, MA,
USA) and 260/280 and 260/230 values were above 1.8 for all samples. RNA from each
sample was diluted to 1 µg, treated with DNA Wipeout, and then converted to cDNA using
the QuantiTect Reverse Transcription Kit (Qiagen) prior to conducting reverse transcriptase
quantitative PCR assays. All cDNA samples were stored at −20 ◦C until further use.

2.4. Gene Target-Specific Primer Design

We searched for the target genes in the head transcriptome of G. sigillatus [60] using
the BLAST+ command-line application [61–63]. Specifically, protein sequences from the
mosquito Aedes aegypti or nucleotide sequences of the cricket A. domesticus were used
as a reference, using blastx and megablast, respectively with default settings to find G.
sigillatus sequences. The resulting cricket sequences were blasted to the nr database to
confirm gene identity [64,65], and sequences were manually trimmed to remove potential
chimeric sequences. Subsequently, the coding regions of these sequences were translated
to their respective proteins in Ugene [66], and were aligned with homologous proteins
from a representative set of insects (the moth Bombyx mori, the bee Apis mellifera, the fruit
fly Drosophila melanogaster, the mosquito Aedes aegypti, the beetle Tribolium castaneum, the
termite Zootermopsis nevadensis, the grasshoppers Locusta migratoria and Schistocerca gregaria,
and the cricket Gryllus bimaculatus), as available on the ncbi protein database [65]. Align-
ments were performed and visualized in Ugene using the MUSCLE algorithm [67] with
default settings (Supplementary Figures S1–S13). For Dicer-2, Argonaute-2, Relish, Dorsal
and Dif, phylogenetic trees were made to further confirm sequence identity (Supplementary
Figures S14–S16). Protein sequences were aligned using MUSCLE with default settings on
a linux machine, and Maximum Likelihood trees were subsequently made using RAxML
v. 8.2.12 [68]. Trees were visualized using the Interactive Tree of Life (iTOL) [69]. All
sequences were deposited in GenBank (see Table 1 for accession numbers).
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Table 1. Primers used to quantify gene expression in Gryllodes sigillatus adults in this study.

Target Gene ID Primer Sequence Amplicon
Size (bp) Efficiency R2

Dorsal ON081012
GGTAGGGGCTCTCTTTGGTC

107 98% 0.9978CGTTCTGCTGGCTCTATTCC

Dif ON081011
TATGAATGCGAAGGGAGGTC

130 98% 0.9963ACAGCACGACCCTGATAACC

Cactus ON081013
GTGTGACCAGCGTAAGTGGA

75 92% 0.9979CCTCAGCAGTGTGTTGCATT

MyD88 ON081014
AACGGCTCCAGCATCTAAAA

115 90% 0.9949TGGTGGATCTGTCAAGCAAG

PGRP-LC ON081023
AATAGCCAGAGGAGCAGCAA

99 100% 0.9982GGCCAAACTGGAGATACCAA

Imd ON081024
ATTCCTCGCATCAACACTCC

143 96% 0.9839TCAGGTGATGGTGATTTGGA

Relish ON081022
GGCAGTTTCACCTTCCACAT

118 96% 0.9999GCTGCAGATGGCTCTAAAGG

STAT5B ON081015
GCCCCATACCATGTCCTAGA

109 91% 0.9971TATGTGCACAATCCCCTCAA

PIAS ON081016
GGTCACAAAGCCTTCAGGAG

82 100% 0.9973AGTTCTCTGGACGTGCCAAT

Domeless ON081017
CCATTCAGGCACCAGAAGAT

124 99% 0.9995TGCCAAAAGAACCAGTTTCC

Argonaute-2 ON081018
TGCATGTTCATCCCTTGAAA

135 95% 0.9976GTTCCCGGCAAGACATTAAA

Dicer-2 ON081020
CCCTTTCTCCATGACTTCCA

78 100% 0.9992CCTCCAATTTTCAGCACCAC

R2D2 ON081019
ATGTCTGCCTGTTGGGAAAC

99 99% 0.9986GCGCTCACGTGTACTGTTGT

Lysozyme ON081021
TTACGACTACGGCCTGTTCC

84 98% 0.9994TCGCACTTCATCTTGCAATC

18S rRNA KR904053
GCCGTTCTTAGTTCGTGGAG

130 97% 0.9979CGCCTGTCCCTCTAAGAAGA

16S rRNA AF514593
TCGTCACCCCAACCAAATAC

106 96% 0.9984TAATGGGGGACGAGAAGACC

All primers used in the present study were designed using Primer-BLAST (NCBI) (all
primers from IDT, Inc., Coralville, IA, USA). For quantification purposes, we designed
primers targeting the 18S and 16S ribosomal RNA (Table 1) as invariant housekeeping
genes. These were selected based on their performance/ranking via RefFinder [70,71],
which uses the algorithm from major computational programs such as geNorm, Normfinder,
and Best-Keeper to compare and rank candidate reference genes. We then calculated
the geometric mean for expression of these two genes for each individual and used
this as our reference target for gene expression. To evaluate whether fungal or bacte-
rial load could contribute to differential viral loads between populations, we quanti-
fied the 16s rRNA for bacteria (16SrRNA-Fw 5′-TCCTACGGGAGGCAGCAGT-3′ and
16SrRNA-Rv 5′ GGACTACCAGGGTATCTAATCCTGTT-3′) and the 18s rRNA (18SrRNA-
Fw 5′-AGATACCGTCGTAGTCTTAACCATAAACT-3′ and 18SrRNA-Rv 5′-TTCAGCCT-
TGCGACCATACT-3′) for fungi from crickets across both populations.

2.5. Reverse Transcriptase Quantitative PCR (RT-qPCR) Detection and Quantification

RT-qPCR reactions were run on a Quant-Studio 6 Real-Time PCR instrument (Thermo
Fisher Scientific, Waltham, MA, USA), and included a melt-curve stage to confirm product
specificity. One microliter of cDNA product was used in a 10 µL RT-qPCR reaction using
gene specific primers (Table 1) and PowerUp SYBR green Master mix kit (Qiagen). RT-qPCR
cycling conditions consisted of holding at 50 ◦C for 2 min and 95 ◦C for 2 min and 40 cycles
of 1 s at 95 ◦C and 30 min at 60 ◦C. The identities of targets were confirmed by mapping
sequences to the reference target genes using default settings in Geneious Prime® following
Sanger sequencing.

2.6. Statistical Analysis

Gene expression profiles were evaluated using the ∆∆Ct method [72]. We used an
unpaired t-test with Welch’s correction for each immune gene target to compare expression
of healthy and diseased crickets between populations, in addition to comparing microbial
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loads. All expression data were log2-transformed to fit normality assumptions. All analyses
and graphs were performed and created using GraphPad Prism 9 (version 9.0.0).

3. Results
3.1. TEM Imaging

TEM analysis revealed substantial quantities of virions and confirmed the presence of
large (~160 nm) icosahedral viruses in cells from the dissected fat body of a cricket from the
diseased population (Figure 1). Cricket cells were packed with virions that often formed
small paracrystalline arrays (e.g., Figure 1C).
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Figure 1. TEM images of fat body tissues dissected from a diseased cricket infected with cricket
iridovirus (CrIV) at (A) 30,000×magnification and (B–D) 4800×magnification.

3.2. Immune Signaling Pathways

Within the Toll pathway, the relative expression for the transcription factors Dorsal
(Welch’s corrected t(26.06) = 3.626, p = 0.0012) and Dif (Welch’s corrected t(27.50) = 5.779,
p < 0.0001) were significantly higher in the diseased population than in the healthy pop-
ulation. Similarly, the expression of Cactus, a negative regulator, was higher in diseased
crickets (Welch’s corrected t(22.26) = 4.058, p = 0.0005). The adapter molecule MyD88 did
not differ between populations (Welch’s corrected t(35.32) = 1.285, p = 0.207; Figure 2A).

For targets within the Imd pathway, both the transcription factor Relish (Welch’s
corrected t(19.95) = 6.361, p < 0.0001) and the adapter molecule Imd (Welch’s corrected
t(27.25) = 3.507, p = 0.0016) were more highly expressed in the diseased population. How-
ever, expression of the pathogen recognition receptor PGRP-LC was similar across popula-
tions (Welch’s corrected t(28.84) = 0.6128, p = 0.5448).

Finally, the relative expression of all targets measured in the Jak/STAT pathway were
significantly higher in the diseased population than in the healthy population, including
the receptor Domeless (Welch’s corrected t(35.31) = 5.525, p < 0.0001), the transcription factor
STAT5B (Welch’s corrected t(24.21) = 4.728, p < 0.0001), and the negative regulator PIAS
(Welch’s corrected t(24.49) = 5.424, p < 0.0001) (Figure 2C).
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Figure 2. Gene expression profiles of immune signaling pathways (A) Toll, (B) Imd, and (C) Jak/STAT
in the whole bodies of Gryllodes sigillatus adults from two populations (sample size for MyD88,
Domeless, and PGRP-LC: diseased n = 20 and healthy n = 19; sample size for Cactus, Dorsal, Dif, Imd,
Relish, PIAS, and STAT5B: diseased n = 20, healthy n = 20). Each dot represents a single cricket
with horizontal lines representing mean expression with 95% confidence intervals. The statistical
significance of fold change values was determined on log2-transformed values via unpaired t-test
with Welch’s correction. ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not significant.

3.3. RNAi Pathway

All targets measured within the RNAi pathway, Argonaute-2 (Welch’s corrected
t(19.62) = 9.101, p < 0.0001), R2D2 (Welch’s corrected t(19.39) = 5.933, p < 0.0001), and
Dicer-2 (Welch’s corrected t(27.77) = 11.19, p < 0.0001), were more highly expressed in the
diseased population than in the healthy population (Figure 3A).

3.4. Lysozyme

The relative expression of lysozyme (Welch’s corrected t(16.03) = 7.504, p < 0.0001;
Figure 3B) was significantly higher in the diseased population compared with the
healthy population.
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3.5. Microbial Load

Both fungal load (Welch’s corrected t(28.85) = 1.152, p = 0.2588) and bacterial load
(Welch’s corrected t(68.00) = 1.348, p = 0.1821) were similar between healthy and diseased
populations based on relative quantification of fungal 18s rRNA and bacterial 16s rRNA,
respectively (Figure 4).
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4. Discussion

Despite its importance in host response to pathogens, we still know little about the
molecular basis of cricket immunity, and even less about immune responses within the
context of covert infections. To improve our understanding of host–virus interactions in
crickets, we evaluated canonical immune signaling pathways that have been shown in
other arthropod systems to be involved in immunity to microbial organisms, including
viruses. By quantifying gene expression across several facets of the invertebrate immune
system, we have begun to characterize the immune response to overt cricket iridovirus
(CrIV) infections in the popularly reared G. sigillatus cricket. Specifically, we found that
crickets infected with high levels of cricket iridovirus had higher gene expression across the
Toll, Imd, and Jak/STAT immune signaling pathways as well as within the RNAi pathway.

Activation of the Toll and Imd pathways are typically associated with defenses against
pathogenic fungi, bacteria, and protozoa. Furthermore, these two pathways have been
linked with the antiviral response in Diptera [73,74], but less is known about their role
in orthopterans. Both Jak/STAT and RNAi pathways are known to play important roles
in antiviral immunity and so it is not surprising that targets across these two pathways
were upregulated in crickets with large CrIV viral loads in our study. Our study also
evaluated an important antimicrobial effector, lysozyme, which has been found to have
antiviral activity against dengue virus in mosquitoes [75] as well as against other viruses
infecting eukaryotic hosts [51]. Our transcript level analyses show that the population
of diseased crickets had significantly higher expression of lysozyme compared with the
healthy population. This suggests that lysozyme might play a significant role in the cricket’s
efforts to control the systemic replication of CrIV. Taken together, we can conclude that
crickets with overt CrIV infection have an immune profile exhibiting strong induction of
critical immune pathway components across Toll, Imd, Jak/STAT, and RNAi. At the same
time, it begs the question of whether crickets tolerate viruses when they occur at a lower
concentration and fully engage the immune system only when viral loads surpass a certain
threshold. Unfortunately, our study is unable to fully answer this question given that our
control (healthy population) also carried CrIV, albeit at significantly lower levels.

A few previous studies have identified immune related genes in Orthoptera, includ-
ing crickets; however, none to our knowledge have investigated an antiviral response
in this order. An enzyme similar to the AMP prolixicin was discovered in A. domesticus
suspected of being infected with a gregarine parasite and found to occur at higher concen-
trations in juveniles compared with adults [76]. In the black field cricket (Teleogryllus emma),
researchers identified 58 differentially expressed unigenes and several AMPs following
inoculation with E. coli [77]. In Gryllus bimaculatus, 4 inducible lysozymes and 6 AMPs were
identified with similarities to defensin and diptericin, as well as pyrrhocoricin, prolixicin,
and hemiptericin [78]. A comparative transcriptomic analysis of the immune response of
migratory locusts challenged with Metarhizium fungi identified immune related unigenes in-
cluding those involved with Toll, Imd, and Jak/STAT pathways, with 58 and 3 differentially
expressed in the fat body and hemocytes, respectively [79]. It also found higher expression
of lysozyme transcripts post-infection. While it is difficult to draw direct comparisons
across these few studies, some patterns emerge, including the roles that the canonical
immune signaling pathways and their effectors play in the Orthopteran immune system.

Our findings add to the current understanding of the insect host immune response
to iridovirus in crickets. Previous work has shown that lab reared Gryllus texensis crickets
infected with an iridovirus have significantly lower phenoloxidase activity than uninfected
crickets [80]. This contrasts with our findings of increased immune gene expression,
but we did not assess any genes involved directly in the phenoloxidase cascade and
phenoloxidase activity has been shown to be negatively associated with other components
of immunity or reduced following immune activation in other insects [81]. Although, to
our knowledge, there are no reports of studies that have investigated molecular markers of
immune activation following an infection with CrIV, several studies have characterized host
response to the closely related Invertebrate Iridescent virus 6 (IIV-6) in Drosophila [13,82].
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From these, we know that the IIV-6 genome encodes for proteins that can inhibit insect host
immune responses, including RNA silencing by the RNAi pathway (e.g., 340 L) [83], which
is the primary defense against IIV-6 [84,85]. In our study, both Dicer-2 and Argonaute-2
were upregulated in crickets with overt CrIV infections, suggesting that the RNAi pathway
is also important in antiviral defense for G. sigillatus. IIV-6 was also found to be able to
inhibit both Imd and Toll pathways [86]. Interestingly, while there is no evidence that
the Jak/STAT pathway confers immunity against IIV-6 infection in Drosophila [85], our
study indicates significant induction of Jak/STAT pathway components in response to
CrIV. Importantly, we found no evidence of viral inhibition of these responses at the
transcriptional level in the present study.

Why individuals from one population suffer from overt CrIV infections while the
other maintains covert, asymptomatic infections remains an open question. One possibility
is that the diseased population was exposed to an undetected microbe (e.g., bacteria or
fungi) that made it more susceptible to an overt viral infection. Indeed, previous studies
have demonstrated that co-infection with IIV-6 and a Gram-negative bacterium result in
more rapid mortality in Drosophila [86]. Although we did not find differences in total
microbial loads (Figure 4), we did not characterize microbiomes and therefore cannot rule
out the possibility that bacterial or fungal composition are different between populations.
Future studies will characterize the microbiome between populations with overt and covert
infections to determine if the microbiome may play a role in promoting (or inhibiting)
overt infections. While we previously found evidence of low viral loads of AdDNV in both
populations of crickets [13], AdDNV has not previously been associated with disease in G.
sigillatus [15]. Still, we did find that crickets with overt infections of CrIV had significantly
higher (albeit relatively low) AdDNV viral loads. Additional studies will evaluate the
impact of viral dynamics on infection outcomes. Another possibility is that intrinsic (e.g.,
inbreeding) or extrinsic (e.g., rearing environment) factors may impair immune function
leading to the opportunistic reactivation of covert infections [87]. However, crickets with
high levels of CrIV were able to mount an immune response across multiple pathways and
so it is unlikely that crickets from the diseased population have a dysfunctional immune
response, at least at the transcription level. Further studies probing post-transcriptional
and post-translational outcomes will be essential to understanding the role immunity plays
in regulating viral loads.

In the present study, we assessed genes that are known to be important in immunity in
other model insects (e.g., mosquitos, flies, moths). Future studies (e.g., RNAi knockdown
experiments) will determine the importance of specific pathways on clearing or decreas-
ing viral loads in these crickets. Furthermore, a comparison of complete transcriptomes
between populations is required to obtain the global gene expression repertoire of infected
crickets. These studies will be essential to fully characterize the defensive strategy of
crickets at the transcript level and will improve our understanding of how crickets can
tolerate low levels of CrIV and maintain covert infections. Hampering these efforts is the
fact that few genetic resources for crickets currently exist [88], including the absence of a
complete and annotated genome of G. sigillatus. Advancements in this field will greatly aid
research efforts, including those seeking to improve production of reared beneficial insects.

5. Conclusions

By evaluating the induction of immune-related genes across populations of crickets
with an overt or covert infection, we can begin to understand the immune responses of G.
sigillatus, a popularly reared cricket and a model insect across multiple branches of research.
Crickets with an overt infection of the highly pathogenic CrIV presented significantly
higher induction of multiple genes across all canonical immune signaling pathways, in
addition to the RNAi pathway, compared to crickets with a covert infection. Our data
suggest that G. sigillatus can tolerate low levels of viral infection and are able to mount an
immune response when faced with an overt viral infection.
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