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Abstract: The coronavirus disease (COVID-19) pandemic has placed a massive impact on global
civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper
outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP)
technology for antiviral applications. We searched for papers on NBP virus inactivation in PubMed
ePubs, Scopus, and Web of Science databases. The data and relevant information were gathered
in order to establish a mechanism for NBP-based viral inactivation. NBP has been developed as
a new, effective, and safe strategy for viral inactivation. NBP may be used to inactivate viruses in
an ecologically friendly way as well as activate animal and plant viruses in a number of matrices.
The reactive species have been shown to be the cause of viral inactivation. NBP-based disinfection
techniques provide an interesting solution to many of the problems since they are simply deployable
and do not require the resource-constrained consumables and reagents required for traditional
decontamination treatments. Scientists are developing NBP technology solutions to assist the medical
community in dealing with the present COVID-19 outbreak. NBP is predicted to be the most
promising strategy for battling COVID-19 and other viruses in the future.

Keywords: nonthermal plasma; COVID-19; SARS-CoV-2; NBP viral inactivation; coronavirus disinfection

1. Introduction

Viruses are the world’s most abundant and varied microorganisms. They’ve been on
the planet for billions of years [1–3], have evolved to a variety of environments, and can now
be found in all ecosystems. Pathogenic viruses cause tens to hundreds of millions of plant,
animal, and human infections each year, resulting in significant agricultural losses and
countless fatalities. To improve one’s quality of life, it is necessary to inactivate dangerous
viruses. The human coronavirus disease-2019 (COVID-19) is an epidemic infection created
by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), and it was initially
spotted in Wuhan, Hubei province, China. This infection has extended throughout the
world and is also progressing during the present pandemic.

COVID-19 disease is a new infectious disease caused by SARS-CoV-2. As an airborne
virus, it can infect humans through respiratory droplets in the same way as common
colds and the flu [4–6]. The virus’s rapid spread has quickly reached a pandemic status,
threatening almost the whole world population and affecting millions with the clinical
manifestations and morbidities associated with the disease it causes, COVID-19. SARS-CoV-
2 caused a once-in-a-century pandemic, and studies have shown that the infectious virions
can survive on various surfaces for several hours (e.g., plastic, metals, and cardboard) [4].
Surface contamination poses a significant risk of SARS-CoV-2 transmission between people,
and breaking the transmission cycle by developing new inactivation methods is critical.
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Modern drug discovery practices include a wide range of theoretical and computational
approaches, collectively known as computer-aided drug design (CADD). CADD techniques
have played a significant role in the development of several drugs that are currently being
tested in clinical situations. These techniques have been developed in combination with
experimental strategies used in drug development [7]. The recent outbreak of COVID-19, a
novel coronavirus disease, calls for and welcomes potential treatment plans utilizing the
available pharmaceuticals. Computer-aided drug design methods are very effective for
quickly identifying potential drug repurposing candidates, particularly after the precise 3D
structures of important viral proteins are resolved [8–10].

In the realm of viral inactivation, nonthermal biocompatible plasma (NBP) has emerged
as an innovative, effective, and safe approach over traditional ones. NBP can be used to
inactivate viruses in an environmentally acceptable manner and can activate a variety of an-
imal and plant viruses in a variety of matrices. The reactive species have been demonstrated
to be responsible for viral inactivation. Disinfection methods based on NBP technologies
provide an exciting solution to many of these difficulties because they are simply deploy-
able and do not necessitate the resource-constrained consumables or reagents required
for traditional decontamination practices. NBP technologies have shown considerable
potential in a variety of medical applications ranging from wound healing and cancer
treatment to sterilization approaches to reduce virus transmission by airborne and fomite
transfer. We hope that this review will give readers a platform to examine the progress
made in the fight against COVID-19 through NBP technology.

2. Virus Deactivation by Radiations

Radiations are well known to have several effects when interacting with biological
systems [11–16]. The mechanism by which an electromagnetic field affects biological
systems was presented well [11]. For the decontamination of various virus species, a
variety of physical approaches have been used, including electromagnetic irradiation,
X-rays, UV, and gamma radiations [17–21]. Radiation production is an ongoing subject of
study [22–32] that is beneficial to our modern lives. Figure 1 graphically depicts the direct
impact and mechanism of employing radiations to disinfect microorganisms. Irradiation
is a low-energy, ecologically friendly, and safe way of killing viruses under carefully
regulated conditions with little molecular modifications, which is particularly significant in
the manufacture of biological reagents. The sun’s UV radiation in the atmosphere is the
most effective natural germicide. Far-UVC light, with a wavelength range of 207–222 nm,
on the one hand, probably eliminates germs without harming their natural equivalents [33].
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UV absorption and viral inactivation are both aided by nucleic acids found within
pathogens. UV light inactivates and tabulates the susceptibilities of a wide range of viruses,
including those with double/single-stranded RNA or double-stranded DNA genomes,
at a wavelength of 254 nm [33,34]. SARS-CoV-2 can be successfully inactivated by UVC
irradiation, according to a recent study [35–37]. Recent research has also emphasized the
use of UV radiation to decontaminate N95 respirators to assure COVID-19 safety [38].

Gamma radiation is ionizing radiation with the smallest wavelength and most of
the energy in the electromagnetic spectrum that is capable of inactivating DNA and RNA
viruses [39–41]. The breakdown of DNA/RNA by radiolysis or genetic material cross-
linking is assumed to be the main process behind the inactivation of viruses by irradia-
tion [42]. In other words, it can either directly break down the DNA helix or produce free
radicals that cause DNA damage [43]. The use of gamma irradiation to sterilize harmful
organisms in the environment is efficient. Gamma radiation is commonly used in the
sterilization of medical devices, injectable goods, and food samples due to its great decon-
tamination capabilities [44]. Because of the present global COVID-19 epidemic, numerous
researchers have looked at how effective gamma radiation is at inactivating the virus.
Gamma radiation has been claimed to play a key role in vaccine manufacturing via viral
inactivation since it has previously demonstrated efficacy in inactivating other enveloped
viruses [42,45,46]. It was recently discovered that the sample volume and protein content of
the sample influenced viral inactivation by gamma irradiation using a surrogate virus [40].
X-rays can stop the virus from regressing by stopping cellular division and causing patho-
logical alterations that eventually kill the virus [47]. Ionizing radiation has proven to be a
highly successful approach to disinfecting gloves, surgical masks, and other items in the
case of SARS-CoV-2 [48–52].

3. Virus Deactivation Using Emerging Nonthermal Biocompatible Plasma (NBP) Technology
3.1. Introduction of Plasma

Plasma is the most common kind of matter, accounting for 99% of the entire universe.
The plasma state comprises the sun and other stars, galaxies, solar winds, lightning, and the
aurora borealis. The most well-known man-made uses of plasma include plasma televisions,
as well as neon and fluorescent lighting. As seen in Figure 2, plasma is composed of free
electrons, atoms, and molecules in neutral, ionizing, and/or excited states, as well as
reactive species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS).
The plasma, made up of a variety of gases, is a large source of UV and vacuum UV
radiation [53]. Plasma is a unique material-treatment technology since it can utilize a single
ingredient or a mixture of elements.
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mechanism through which RONS produced in Ar-based NBP damage S protein. Plasma jet-generated
reactive species dissolve into liquid and cross-react in the liquid phase. Predominant RONS ONOO−

and O2
− oxidized tyrosine, tryptophan, and histidine at RBD and NTD, thereby impair RBD’s capacity

to bind to cell receptor ACE2 and NTD’s function. After 3 minutes of cold atmospheric plasma (CAP)
or NBP treatment, the viral genome remains intact. Reprinted with permission from [56].

3.2. Thermal and Nonthermal Plasma

Two basic groups of plasma systems are typically characterized: thermal plasmas and
non-thermal plasmas, in which the temperatures of the various plasma species differ. Due
to growing interest in industries like aerospace, microelectronics, automotive, material
processing, metal melting and welding, plasma chemical synthesis, vapor deposition,
plasma, arc spraying, and waste destruction during the past few decades, thermal plasma
technology has advanced [57]. The major phenomena involved in typical atmospheric
plasma devices are Joule heating and thermal ionization [57]. These devices are made
possible by arcs or radio frequency (RF) inductively coupled plasma discharges. The
main limitations of thermal plasmas include low excitation selectivity and extremely high
gas temperatures, as well as stringent quenching requirements and electrode issues that
restrict the energy efficiency and practicality of thermal plasma sources. Thermal plasmas
are nearly fully ionized plasma in which all particles have about the same temperature.
Thermal plasma was also known as hot plasma or equilibrium plasma. Based on the
demands, the equilibrium plasma was used in a variety of applications [58,59]. On the other
hand, nonthermal plasma contains light electrons, which have much higher temperatures
than heavy atoms and molecules and are often close to room temperature. Due to their
high selectivity in plasma chemical processes and their ability to function well at low
temperatures without quenching, non-thermal plasmas, such as low-pressure glow and
RF, microwave discharges, dielectric barrier discharges, and laser-produced plasmas, have
been used. Non-thermal atmospheric pressure plasmas have more recently been researched
for a range of industrial and medical applications and are known as NBP or plasma
medicines [58,60–66]. The NBP was also known as a cold plasma or non-equilibrium
plasma. NBP is appropriate for treating a wide range of biological materials, including
solids, liquids, and aerosols because it is at room temperature at the site of application. Low
pressure and atmospheric pressure are two different types of NBPs that offer a wide range
of applications [58,59,62,64,67–71]. Low-pressure plasma spreads across a vast volume, but
high-pressure plasma is restricted to the volume where substantial electric fields exist [59].
Electric discharges are commonly used for the sustainability of plasma. The temperature of
the gas is normally unchanged, but because of the presence of reactive species, the chemical
reactivity is much higher than the source gas. Because of practical reasons, atmospheric
pressure plasma has been employed in biological systems [55,72]. Numerous in vitro and
in vivo investigations have demonstrated the positive effects of plasma. In several clinical
studies [73,74], NBP was also shown to be safe for people and is well-known as a plasma
medicine [58,75,76].

3.3. Generation and Role of Reactive Species in Anti-Viral Responses

ROS are important cell-signaling molecules for normal biological development, and
they are often generated by both external and endogenous stimuli. However, the production
of ROS can harm a variety of cellular organelles and activities, disrupting the cells’ normal
functioning [54,77–80]. When measuring a cell’s oxidative stress levels, it is important
to remember if an enhanced oxidant status causes biomolecule damage and defines the
critical threshold for cellular functions via redox signaling [77,81]. ROS may be produced
by a variety of medications as well as traditional physical methods like X-rays and gamma
radiation. A broad range of reactive species is generated in cold plasma [82–84], depending
on several factors such as the feeding gas, the target material’s configuration, the energy
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source, and the distance between the target and plasma source during plasma discharges.
Free energetic electrons produced by plasma have energies high enough to electrically
excite, dissociate, and ionize molecules, resulting in more than 80 distinct species in humid
air [85,86]. Plasma-induced ROS play a vital role in the deactivation of various pathogens.
That is why NBP has become a future hope for the deactivation of viruses [87].

Because of the interaction between free electrons and the feeding gas molecules,
primary reactive species, such as nitric oxide radicals (NO), excited nitrogen (N), hydroxyl
radicals (OH), superoxide radicals (O2*), and singlet oxygen (1O2), are directly generated in
the plasma discharge zone. Although these species have a short lifespan, their concentration
in the discharge area is very significant. More importantly, multiple studies [88–90] reveal
that the amount of OH radicals generated in the ambient air is quite high. In the ambient
environment, the species are further transformed into long-lived reactive species such as
hydrogen peroxide (H2O2), nitrite (NO3), ozone, and nitrate (NO2). The principal reactive
species may react with molecules in the surrounding air, resulting in stable species. The
H2O2 is the most dispersible and stable of the three within the water, whereas NO3 and
NO2 are converted to NO3

− and NO2
−, respectively. It’s worth noting that the chemistry

underpinning the formation of reactive oxygen and nitrogen species [43] varies significantly
depending on the plasma discharge circumstances [91].

The plasma-activated medium (PAM) can be made by exposing a biological liquid to
electrical discharge under ambient circumstances [92–94]. When the plasma is formed in
the natural environment, it produces a substantial array of reactive species. These RONS are
key species that allow NBP technology to be used in a wide range of biological applications.
This approach might be useful for healing serious wounds or decontaminating infectious
areas. The plasma is immediately exposed to biological solutions in the off-site approach,
which are used for specialized biomedical applications. Variations in the supplying working
gas, flow rate, and applied voltage, for example, can affect the levels of reactive species
formed. Short-lived reactive species can be used in situ, whereas long-lived reactive species
can be stored in PAM and used later.

The viral inactivation mechanisms might be ROS, RNS, or a composite of both, de-
pending on the treatment method, circumstances, and plasma supply. Because transport
constraints are extremely significant for plasma-based decontamination, the species that are
ultimately responsible for the viral inactivation may rely not only on the dominant species
generated by the plasmas but also on the environmental and treatment circumstances.
Consequently, this may introduce certain system- and treatment-specific characteristics to
the viral inactivation processes by NBP.

4. Disinfection of Viruses Inside Water by Using NBP

Even though water is necessary for life, coronavirus has been shown to be able to
survive there for days, and it serves as a typical means of viral dissemination [95–99]. The
WHO claims that the main way COVID-19 transmits from person to person is by airborne
droplets that are emitted when an infected person coughs, sneezes, or even talks. If someone
inhales these droplets from an infected individual, they may get COVID-19 [100]. Through
recombination, reassortment, and mutation, viruses may adapt to new environments, from
air to aquatic life, and survive in water [101]. Due to the COVID-19 epidemic, interest in
UV disinfection and sterilization technologies has increased. In principle, prolonged or
repeated exposure to UV radiation is never actually safe for people. UV rays, both direct
and indirect, can damage the skin and eyes of people. UV radiation is a potent energy
source, and due to its characteristics, it is lethal to germs and viruses while being toxic
to people. As shown in Table 1, several conventional and alternative technologies were
used to sterilize water or destroy the viruses present in it. The current technologies and
procedures have the ability to render viruses inactive, but they also come with substantial
disadvantages and limitations for a wide range of applications.

In contrast to other disinfection methods indicated in Table 1, NBP sometimes referred
to as cold plasma, joins the decontamination procedures as a novel, effective, cost-free,
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safe, and environmentally friendly substitute for inactivating viruses [55,102]. Like many
other strategies, the NBP strategy needs improvement. Understanding the factors that
affect NBP’s antiviral activity inside water is crucial [103]. According to several studies, a
number of factors are significantly presented which are effective in NBP [104]. The NBP
potential is also greatly influenced by the pH and conductivity of the water since these
factors are closely connected to ion generation in the aqueous medium and, consequently,
to how well the reactor produces active species in water. Conductivity, pH, and viral
inactivation effectiveness are all inversely correlated. In response to the administration
of NBP, nitrite species develop in the water, lowering the medium’s pH and increasing
conductivity as a result of the interactions between the ionic species they produce [105].
When it comes to the inactivation of viruses inside water, salinity, and temperature, also
have a substantial role [106]. Salinity and temperature are associated because salinity
has a greater impact at lower temperatures. According to research, temperature has a
more significant influence than salinity alone in reducing viral persistence in water [107].
Viral persistence at low temperatures can be increased by high salt. However, minute
temperature changes have nonlinear effects on the persistence of viruses and less NBP
inactivation efficiency. Furthermore, the working gas in NBP technology and device types
are also important to achieve better inactivation inside water. The RONS generated by NBP
successfully inactivated the SARS-CoV-2 inside the water. This is the process by which the
S protein is harmed by RONS generated in Ar-based NBP. Reactive species produced by
plasma jets dissolve into liquid and interact with one another inside. Tyrosine, tryptophan,
and histidine were oxidized at RBD and NTD by the predominate RONS ONOO− and O2,
which affected RBD’s ability to bind to the ACE2 cell receptor and NTD’s functionality. The
viral genome remained unaltered after 3 minutes of treatment with NBP (Figure 2c) [56].

Table 1. Summary of methods to inactivate viruses inside water.

Methods Benefits Limitations

Chemicals
-Easy to use and energy-efficient
-Quick responses
-Consistent performance

-Insufficient to regulate and remove viruses from water
-Harmful and risky for human health
-Quick volatilization, which necessitates particular storage tanks

Ultraviolet (UV)

-UVC technology can get rid of bacteria
and viruses on surfaces, airborne infections,
and particles.
-Eliminates of bacteria, viruses, mold
spores, and germs.

-Due to its propensity to cause eye damage, UVC exposure is
dangerous to people

Ozone -Highly effective at killing microorganisms -Could be expensive if ozone disinfectant is used
-Limited research on ozone and SARS-CoV-2

Heat inactivation
-Effective with high rates of inactivation
-Possibility of the temperature selection for
the inactivation of different viruses

-When additional heat is needed, running costs are significant
and energy-intensive
-Inadequate technology
-Threats to public health

Membranes -Partially effective in preventing infections
-Automatization is conceivable

-High chance of clogging
-Expensive consumables

Photocatalytic -Effective and safe for viral disinfection -High expenditures for disinfecting big effluent

Adsorption
-Effective for viral inactivation in a
short amount of time
-Simple to use

-The pH adjustments are necessary
-Filtration device is necessary
-Frequent vessel cleaning is required

Nonthermal
Biocompatible plasma (NBP)

-Broad disinfection spectrum
-No toxic threat
-Effective method for inactivating germs and viruses
-Cocktail of many reactive species (RONS)
-Ability to inactivate any virus or its
variants

-Not accessible on a large scale
commercially
-The processes that cause viral inactivation in water are not well
understood
-The particular reactive species which might have a significant
role to inactivate viruses is not clearly identified

The prevalence of numerous COVID-19 variants has raised interest in the use of NBP
technology for viral inactivation in water. NBP technology is one approach that may be
used to overcome problems with water purification. There are questionable arguments
with NBP, which need more research and development for an answer. Therefore, further
research and debate on this particular technology’s limitations are needed in order to make
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its use financially viable. Additionally, techniques for inactivation based on ROS and RNS
may provide promise in the future.

5. Applications and Mechanism of NBP for Virus Deactivation

Plasmas are employed in a variety of industries, mostly to customize the surfaces
of solids (e.g., oxidation, cleaning, nanostructuring, and binding distinct atom/molecule
groups), but they are also used to destroy microbes such as viruses. Plasma can be used
to treat liquids as well; however, inactivating viruses in a liquid medium is more difficult
compared to a solid media because plasma cannot be preserved in liquids it can only be
found in gaseous bubbles within the liquids or just above the surface of the liquid. RONS
interacts with the bubble or liquid surface, where many disintegrate, depending on where
they are generated. They can then disperse through the liquid, perhaps interacting with the
virus. UV light also penetrates liquids with a penetration depth that varies substantially
depending on the wavelength, concentration, and type of contaminants [108]. There are
several ways for detecting long- and short-lived RONS in liquids [109], but they are not
commonly utilized by researchers studying viral annihilation. Many publications provide
discharge parameters (voltage, current, and power) rather than plasma parameters (reactive
species concentration), which are required to compare different plasma sources. As a result,
the plasma–virus scientific domain is still in its early stages. Research on dielectric barrier
discharge (DBD) devices and PAS on bacteriophages was undertaken in 2018 to investigate
the mechanism of the influence of plasma application in viruses [110]. The reactive species
produced by plasma treatment were shown to damage DNA and proteins, disrupting viral
cells.

A decade ago, Yasuda et al. [111] proposed a biological technique to quantify the
in vivo DNA damage caused by bacteriophage lambda viruses exposed to air plasma.
Xia et al. conceived and built a packed-bed DBD plasma reactor that efficiently deactivated
MS2 bacteriophages in aerosols utilizing a nominal pressure drop across the reactor for air
sterilization against airborne bacteriophages. This method is beneficial for preventing viral
infections from spreading through the air [112]. Several other researchers have discovered
that plasma causes considerable protein oxidation of the viral coat or capsid. Through the
action of ROS, plasma treatment makes bacteriophages dormant. However, further research
is needed to figure out whether plasma operating parameters promote protein inactivation
or viral DNA damage. A variety of NBP sources can fully inactivate or greatly limit the
infectivity of multiple humans, animals, and plant harmful viruses, and a mechanism was
proposed recently [55], as shown in Figure 2b. Furthermore, the process by which RONS
is formed in NBP is based on Ar damage to the S protein. Reactive species created by
plasma jets dissolve in liquid and cross-react in the liquid phase. RONS ONOO− and O2

−

oxidized tyrosine, tryptophan, and histidine at RBD and NTD, limit RBD’s ability to bind
to the cell receptor ACE2 and NTD’s function as indicated in Figure 2c. Figure 3 illustrates
the mechanism of inactivation of SARS-CoV-2 by using NBP. The spike proteins of the
SARS-CoV-2 attach to the ACE2 receptor during normal viral entry and so enter the host
cell for viral replications. When SARS-CoV-2 was exposed to NBP, the spike proteins were
damaged, preventing the virus from binding to the ACE2 receptor and preventing infection.
On the other hand, NBP also damages the DNA/RNA, which restricts the SARS-CoV-2 for
viral replication.

Vaccine production and supply are critical components of any vaccination approach
since they ensure that a vaccine is extremely efficient in avoiding viral infection or virus-
associated illnesses. The role of NBP in each of these critical components of vaccine
development is now being investigated owing to the properties of NBP sterilization in
air, liquid, and surfaces. The NBP therapy is expected to have a wide margin of safety,
as evidenced by animal and human research [113,114], which found no notable acute
or long-term adverse effects on therapeutic NBP application to the skin. Because of the
focused nature of NBP application, it will be impossible to give NBP to all the cells that
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host the virus in infections caused by viruses that disseminate to various tissues, organs,
and compartments (e.g., HIV-1 and SARS-CoV-2)
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Figure 3. The mechanism of normal viral entry of SARS-CoV-2 to a host cell and the concept of its
inactivation by utilizing NBP. Various RONs produced by NBP bind directly to the surface of virus
particles to capture hydrogen atoms/ions and cause damage to the membrane proteins of the virus.
It refuses to let the virus enter the lung cells caused by spike proteins bound to membranes, which
do not bind properly to ACE-2 receptors. On top of that, the capsid proteins that protect RNA are
decomposed and the molecular binding of RNA is broken, and even if the virus penetrates through
the alveolar plasma membrane, contact viral components are not synthesized in lung cells due to
genetic information damage. NBP is possible with new treatments against SARS-CoV-2 infection by
these two-way solutions.

6. Conclusions and Perspectives

Although it is difficult to predict how the ongoing COVID-19 epidemic will unfold,
effective countermeasures must be developed and implemented as soon as possible. NBP-
based disinfection treatments operate by interfering with the survival of the virus’s critical
structural and/or functional components and life cycle, using either direct application or
an NBP-activated medium. To increase vaccine distribution and/or immunity conferral,
plasma might be utilized in combination with current preventative methods such as immu-
nization. These treatments offer significant advantages over typical sterilizing procedures
for SARS-CoV2. When an infectious disease epidemic occurs, NBP-based solutions may
be immediately deployed and used without the need for costly consumables, continuous
supply chains, or expensive and dangerous chemicals. While NBP discharges efficiently de-
contaminate SARS-CoV-2 bioaerosols, direct NBP application or NBP-activated media can
safely and effectively disinfect a variety of surfaces, including skin and medical PPE. NBP
addresses several shortcomings of conventional antiviral and sterilization methodologies
and has the potential to be an effective antiviral technology. When applied uniformly and
directly to exposed surfaces, UV-C radiation, for instance, has a limited depth of penetration
and lacks diffusion and turning functions [115].

The fluidity of plasma could be used in solutions to solve this issue. A high-energy
electron beam has been used to inactivate coronavirus on cold chain food outer packaging,
according to studies, and has controlled penetrating depths [116–118]. Therefore, electron
beams could be used to simultaneously inactivate viruses inside and outside of objects if
combined with plasma [119,120]. Additionally, SARS-CoV-2 is primarily spread through
the air. It can be difficult to set up NBP sterilization devices for large spaces with high
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airflow to meet the requirements for sufficient exposure time to effectively eradicate the
virus. Additionally, NBP-enabled biomedical technologies present special chances to
improve antiviral therapies. According to studies, NBP increases the body’s immune
response, which can then be used to treat viral pathogens within the body rather than just
applying NBP directly [121]. Plasma may be used to increase the antigenicity of viruses in
vaccine preparations after inactivation or can be applied topically to promote the activity
of antigen-presenting cells, enhancing immune responses to immunotherapies or during
vaccination. Additionally, different manufacturing processes can produce various NBP
types, enabling the customization of NBP technologies for particular biomedical scenarios.
NBP-based strategies for producing inhaled NO and for treating critically ill and intubated
patients may also be taken into consideration, even though the care of COVID-19 patients
continues to be primarily supportive. Finding the right reactive species and efficient
delivery strategies that enable strong preventative measures for enhancing infection control
and the clinical translation of new treatments for COVID-19 and in consideration of future
pandemics will be a significant challenge for the NBP and medical research communities
going forward [121–123]. Furthermore, there are several promising biomedical applications
for NBP.

One major benefit of NBP is that they can be readily produced from air, water, and
electricity, providing a sterilization solution at a lower cost without the expense and logistics
of maintaining expensive and robust supply chains, which are required for conventional
methods that rely on consumables like alcohol and hydrogen peroxide [105,113,124]. In
the end, its use should reduce the number of infections in humans, animals, and plants,
as well as lower economic and biological costs. NBP can inactivate airborne viruses
since it is produced with less energy and has an active electron at a significantly higher
temperature than bulk gas molecules [125]. Setting the right parameters and selecting
treatment periods that allow particles to interact with the contaminated material is crucial
when employing NBP for virus inactivation. It has been established that ROS and RNS have
an impact on capsid proteins and/or nucleic acids, which results in virus inactivation. The
development of more precise techniques will reveal which plasma particles are essential in
each experiment and exactly how they impact viruses. Water decontamination, we feel,
is one of the domains of viral inactivation where the plasma might be a more important
advance. For human use and/or agricultural reasons, NBP might inactivate troublesome
enteric viruses and hardy plant viruses. In any event, the possible detrimental genotoxic
and cytotoxic consequences of plasma-activated water on humans and plants must be
assessed first. However, the NBP technology for viruses is in its early stages and needs
further exploration. To clarify which plasma particles are most significant, as well as how
they affect viruses, more accurate approaches are desperately required.
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