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Abstract: The illegal trade of animals poses several health issues to the global community, among
which are the underestimated risk for spillover infection and the potential for an epizootic in both
wildlife and domestic naïve populations. We herein describe the genetic and antigenic characteriza-
tion of viruses of the specie Carnivore protoparvovirus 1 detected at high prevalence in puppies illegally
introduced in North Eastern Italy and compared them with those circulating in wild carnivores from
the same area. We found evidence of a wide diversity of canine parvoviruses (CPV-2) belonging
to different antigenic types in illegally imported pups. In wildlife, we found a high circulation of
feline parvovirus (FPV) in golden jackals and badgers, whereas CPV-2 was observed in one wolf only.
Although supporting a possible spillover event, the low representation of wolf samples in the present
study prevented us from inferring the origin, prevalence and viral diversity of the viruses circulating
in this species. Therefore, we suggest performing more thorough investigations before excluding
endemic CPV-2 circulation in this species.

Keywords: CPV-2; FPV; illegal trade; companion animals; wildlife; spillover

1. Introduction

Parvoviruses are non-enveloped viruses with a short genome of non-segmented
single-stranded DNA encoding for two open reading frames (ORFs), among which ORF1
encodes for non-structural proteins NS1 and NS2 and ORF2 encodes for the capsid
proteins VP1 and VP2 [1]. Parvoviruses of companion animals belong to the species
Carnivore protoparvovirus 1, genus Protoparvovirus, and family Parvoviridae. Canine par-
vovirus type-2 (CPV-2) arose in the mid-1970s as a variant of a virus similar to but distinct
from FPV [2]. Historically, typing of CPV-2 was based on the antigenic variability of strains
assessed using monoclonal antibodies or amino acid (aa) substitutions (at aa residues 297
and 426) within the gene coding for the major capsid protein VP2 [3], although phyloge-
netic analyses based on either the VP2 or the whole genome do not completely reflect the
antigenic properties [1]. Since its first emergence, CPV-2 was selected in dogs giving rise
to several antigenic and genetic variants: CPV-2a, CPV-b, and the most recent subtypes
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new CPV-2a, new CPV-2b and CPV-2c, that gradually replaced the original type [3,4].
Nowadays, CPV-2 is occasionally detected worldwide likely due to its use as attenuated
live vaccine [5,6]. Compared to the original CPV-2, the new variants recovered the ability
to infect felids and showed increased pathogenicity [2,7].

Regardless of the classification used and based on the sequences publicly available,
parvoviruses fail to show any significant geographical clustering in dogs, thus suggesting
high admixing between populations due to the extensive movement of persons and their
pets and, very likely, to the ever-growing commercialization, legal and not, of pups [1]. In
this context, it hast been suggested that the black market of puppies might contribute to
the spread and evolution of CPV-2 in European count ries with high vaccination coverage,
such as Italy [6].

The European Commission considers the illegal trade of pets an emerging risk for
Member States. Indeed, considering the sanitary impacts, the illegal distribution not only
poses risks to the pet itself due to the possible bad practices in keeping, breeding and
transporting, but also represents a risk for the introduction of epizootic and zoonotic
diseases into free areas [8,9]. Within this frame, the important sanitary impacts driven
by the illegal transport of puppies through Northeastern Italy has been underlined. In-
deed, a three-year survey demonstrated that illegally imported puppies displayed poor
vaccine immunity—with canine parvovirus and giardia recognized as the infections most
frequently associated to fatal gastroenteritis and, most importantly, identified Salmonella
and Microsporum canis as major zoonotic pathogens [10]. In 2015, the cat and dog trade
involved 61 million dogs and 67 million cats in twelve EU Member States, representing
€ 1.3 billion and generating a direct employment of about 300,000 workers [8]. The illegal
trade of puppies also represents a source of illegal market, thus an unfair competition for
complaint breeders and sellers [11].

Both CPV-2 and FPV have been detected in wild carnivores of different genera across
the world, with cross-species transmission at the domestic-wildlife interface still evident
in some countries, such as South America, making virus dynamics and evolution rather
complex [1]. In other areas, including most European countries investigated so far, CPV-2
and FPV strains have mostly become endemic in wild reservoirs, even if sporadic spillover
events are still detected [12]. As for dogs and cats, the pathogenicity of parvoviruses in
wildlife is variable, spanning from asymptomatic infection to severe diarrhea in pups,
possibly affecting the health of fragile populations [12–14].

In the present study, we characterized viruses of the specie Carnivore protoparvovirus 1
(FPV and CPV-2) circulating in wild carnivores from Friuli Venezia-Giulia (North Eastern
Italy) and compared them to the strains that have been introduced in the same area through
the illegal trade of puppies [10].

2. Materials and Methods

The sample set included (i) n = 256 feces samples collected from puppies admitted in
quarantine facilities in Friuli Venezia-Giulia between 2018 and 2021 after their illegal intro-
duction from Central and Eastern Europe and (ii) n = 79 intestines collected post-mortem in
case of the animal death during the observation period [10]. In addition, we analyzed intesti-
nal samples of wild carnivores collected since 2021 in the framework of passive surveillance
for rabies from the same region. These include n = 55 from Eurasian badgers (Meles meles),
n = 21 from red foxes (Vulpes vulpes), n = 12 from golden jackals (Canis aureus), n = 5 from
gray wolves (Canis lupus lupus), and n = 4 from beech martens (Martes foina). Samples were
homogenized and nucleic acids were extracted using QIAsymphony DSP Virus/Pathogen
Midi kit on the QIAsymphony SP instrument (QIAGEN, Hilden, Germany) or MagMAX
Viral/Pathogen II on KingFisher Magnetic Particle Processors (Thermo Fisher Scientific,
Waltham, Massachusetts) for dog and wildlife samples, respectively. All samples were
screened using molecular testing for canine parvovirus and feline panleukopenia virus [6]
using the QuantiFast® Pathoghen PCR+IC (QIAGEN, Hilden, Germany) as amplification
kit and CFX 96 BIO-RAD (BIO-RAD, Hercules, CA, USA) as platform.
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We characterized the near complete genome of all wildlife strains and of strains from
selected samples of seventy-four positive dogs. More specifically, samples from dogs were
selected using a random stratified sampling, according to the year of detection and the
type of sample. In order to do this, we used a target PCR approach and Next Generation
Sequencing (NGS). Primers were modified from Perez et al. (2014) [15] or designed de novo
to obtain two or three overlapping amplicons using alternative protocols (Tables 1 and 2).

Table 1. Primers used within the study.

Primer Sequence 5′→3′ Nucleotide Positions Direction Reference

NS-Rext GAAGGGTTAGTTGGTTCTCC 2441–2460 reverse [15]

F194short ATAAAAGACAAACCATAGACCGT 194–223 forward

Modified from [15]
NS-Fext GACCGTTACTGACATTCGCTTC 206–227 forward
2161For TTGGCGTTACTCACAAAGACGTGC 2161–2184 forward
4823Rev ACCAACCACCCACACCATAACAAC 4800–4823 reverse
3475R GTTGGTGTGCCACTAGTTCCAGTA 3452–3475 reverse

CPV2-2776midF ATCTTGCMCCAATGAGTGATG 2776–2797 forward This study
CPV2-4928R TGGTAAGGTTAGTTCACCTTATA 4905–4928 reverse

Table 2. Protocols used for sequencing the complete genome of Carnivore protoparvovirus 1.

Protocol Primer Combination for 5′ Fragment Amplicon Size Primer Combination for 3′ Fragment Amplicon Size

1 F194short forward + NS-Rext reverse
→ In case of PCR failure use protocol 2

2400 2161 For forward + 4823 Rev reverse
→ In case of PCR failure use protocol 3 2700

2 NS-Fext forward + NS-Rext reverse 2200

3 2161For forward + 3475 R reverse 1314
CPV2-2776midF forward + CPV2-4928R reverse 2150

All PCR protocols were run in a final volume of 25 µL, using 1 to 5 ng of sample DNA,
0.7 µM of each primer, 1X PCR buffer, 0.8 M MgCl2 and 1 U of Platinum Taq polymerase
(Invitrogen). The amplification included 5 min at 94 ◦C, followed by 40 cycles at 94 ◦C
for 30 s, 58 ◦C for 30 s and 72 ◦C for 3 min and by a final extension of 10 min at 72 ◦C.
For sequencing, we pooled amplicons belonging to the same sample in equimolar ratio,
prepared libraries using the Nextera XT DNA sample preparation kit (Illumina, San Diego,
CA, USA) and processed them on an Illumina MiSeq platform with the MiSeq reagent
kit V3 (2 × 300) or V2 (2 × 250) (paired-end [PE] mode; Illumina, San Diego, CA, USA)
following the company’s instructions.

After assessing the quality of raw reads with FastQC v0.11.7 (https://www.bioinfor
matics.babraham.ac.uk/projects/fastqc/, accessed on 23 September 2022), we used scythe
v0.991 (https://github.com/vsbuffalo/scythe, accessed on 23 September 2022) to clip them
from Illumina Nextera XT adaptors sequences (Illumina, San Diego, CA, USA) and cutadapt
v2.10 to trim the adaptors and filter raw reads with length below 80 nucleotides and Q score
below 30. We then generated complete genomes through a reference-based approach using
BWA v0.7.12 (https://github.com/lh3/bwa, accessed on 23 September 2022) [16]. Finally,
we used Picard-tools v2.1.0 (http://picard.sourceforge.net (accessed on 23 September 2022))
and GATK v3.5 (https://github.com/moka-guys/gatk_v3.5, accessed on 23 September
2022) to process alignments, loFreq v2.1.2 (https://github.com/CSB5/lofreq, accessed on
23 September 2022) to call Single Nucleotide Polymorphisms (SNPs) and an in-house script
to obtain consensus sequences, setting 50% of allele frequency as threshold for base calling
and 10X as the minimum coverage.

In order to investigate the diversity of parvovirus strains circulating in the area, we
performed genetic and phylogenetic analyses for the whole genome and the complete VP2
gene, which is more widely used across the literature. Datasets included positive original
samples and the first three non-identical best matches for each sequence, as determined
using BLAST reference strains that were previously associated either with dogs in the

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/vsbuffalo/scythe
https://github.com/lh3/bwa
http://picard.sourceforge.net
https://github.com/moka-guys/gatk_v3.5
https://github.com/CSB5/lofreq
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study area [6] or with wildlife across the world. The selection from the public database
included sequences from Italy or wild species tested positive in our study. Sequences
were aligned using the G-INS-1 parameters implemented in Mafft [17] and Maximum
likelihood (ML) nucleotide phylogenetic trees were inferred using PhyML (version 3.0),
employing the GTR+Γ4 substitution model, a heuristic SPR branch-swapping algorithm
and 1000 bootstrap replicates [18]; the obtained trees were then graphically edited using
iTOL [19]. In order to achieve the typing of the CPV-2/FPV strains, we derived amino
acidic sequences using MEGA6 and considered VP2 amino acid residues at positions 87,
297, 300, 305, 426 and 555, as described elsewhere [1].

3. Results

Overall, we screened n = 387 fecal samples and intestines from dogs and different
wildlife species, achieving a total of n = 298 positive samples among dogs (n = 290/343,
84.5%), Eurasian badgers (n = 4/55, 7.2%), golden jackals (n = 3/12, 25%), and grey wolves
(n = 1/5, 20%). All samples from red foxes (n = 21) and beech martens (n = 4) tested negative
(Table 3). Pathological findings in positive dogs were in accordance with a moderate to
severe hemorrhagic/necrotic-hemorrhagic enteritis. Similarly, the positive wolf was an
adult male presenting a severe hemorrhagic enteritis, whereas the golden jackals were all
young individuals and did not show any gut lesion. On the other hand, we could not
evaluate the association between virus positivity and clinical or pathological conditions of
badgers, which were submitted for rabies surveillance as carcasses at various degrees of
putrification, or after severe car accidents, both conditions preventing reliable necropsies.

Table 3. Details of samples including the genetic and antigenic characterization of positive samples.

Host N of Positive/Tested Samples % of Positivity Viral Type/Variant
(% Out of Positive Samples)

Dog 290/343 84.5 CPV-2 (12.2), new CPV-2a (74.3), CPV-2b (8.1),
new CPV-2b (2.7), CPV-2c (2.7)

Eurasian badger 4/55 7.2 FPV (100)
Red fox 0/21 0 -

Golden jackal 3/12 25 FPV (100)
Grey wolf 1/5 20 CPV-2c (100)

Beech marten 0/4 0 -

Seventy-four positive samples from dogs and all positive samples from wildlife were
further characterized throughout whole genome sequencing. The majority of CPV-2 detected
and characterized in dogs were new CPV-2a (Table 3) followed by CPV-2, new CPV-2b, CPV-
2b, and CPV-2c. Whereas viral strains from wildlife were characterized as FPV (from Eurasian
badgers and golden jackals) and CPV-2c (from one grey wolf) (Table 3; Figure 1).

All positive samples were sequenced using one of the three molecular approaches
described, obtaining consensus sequences of a total length of 4000–4300 nucleotides that
mostly excluded only non-coding terminal regions (160–400 bp on 5′ and 140 bp on 3′).
However, we failed to amplify around 2000 bp on 5′ in nine samples, including four
dogs, the wolf, one jackal and three badgers, and on 3′ in three badger samples. In
addition, another jackal’s sample did not provide an interpretable sequence across 1000 bp
towards the 5′ end. The obtained sequences have all been deposited under the GenBank
accession numbers OP587964 to OP588036 and OP595737 to OP595745. Alignments used
for phylogenetic analyses accounted for 130 and 230 sequences for the whole genome and
the VP2 region, respectively. Of these, 73 and nine, respectively, have been obtained in the
present Investigation. The topology of the phylogenetic trees based on the whole genome
sequences and on the VP2 gene sequences were comparable, showing that sequences of
viral strains from wildlife were included in a separate branch, along with the sequences of
other FPV strains, except for the one from the grey wolf, included in a cluster within the
sequences of CPV-2 strains. Sequences related to illegally imported puppies displayed a
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high differentiation of canine parvoviruses included in several clusters across the whole
phylogenetic tree (Figures 1 and 2).
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Figure 1. ML phylogenetic tree of Carnivore Protoparvovirus 1 analyzed in this study, based on the
complete VP2 gene sequences, divided in canine (blue) and feline (yellow) parvoviruses. Branches
supported with SH value higher than 0.7 are marked with grey circles, with size proportional to the
SH value. Original strains sequenced for this work are shown with colored labels based on their
antigenic classification as CPV-2 (blue), new CPV-2a (red), CPV-2b (petrol), new CPV-2b (green),
CPV-2c (light blue). Sequences (original and reference) associated with wildlife and found in the
study area are indicated with pink stars and blue circles, respectively (full for the region of Friuli
Venezia-Giulia and empty for some other areas in Italy), while vaccine strains are marked with a
red checkmark.

Almost all published available CPV-2/FPV sequences detected in the Italian domestic
dogs and cats, as well as in European wildlife, accounted for partial genomes. In this
framework, phylogeny based on the VP2 gene sequences provided better reference to
interpret phylogenetic trees. Indeed, FPV sequences from Eurasian badgers generated
in this study formed a stand-alone cluster within FPV considering the whole genome
(Figure 2). Conversely, considering the VP2 only, the FPV strains sequenced from wildlife
appeared scattered in the phylogenetic tree, showing high correlation with strains described
in Italian cats but also in Eurasian badgers and stone martens from Spain and the UK
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(Figure 1). Interestingly, two of these sequences (OP595737 and OP595738) were identical to
Italian FPVs associated with cats at the VP2 level (KX434461 and KX434462, respectively).
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Figure 2. ML phylogenetic tree of Protoparvovirus 1 analyzed in this study, based on the complete 
genome, divided in canine (blue) and feline (yellow) parvoviruses. Branches supported with SH Figure 2. ML phylogenetic tree of Protoparvovirus 1 analyzed in this study, based on the complete

genome, divided in canine (blue) and feline (yellow) parvoviruses. Branches supported with SH
value higher than 0.7 are marked with grey circles, with size proportional to the SH value. Original
strains sequenced for this work are shown with blue labels. Sequences (original and reference)
associated with wildlife and found in the study area are indicated with pink stars.
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FPV sequences generated from golden jackals (n = 3) were not related to each other
(Figure 1). One (OP595745) clustered with the FPV sequence (OP595740) from Eurasian
badger characterized in this study and with the FPV sequences from Italian cats and
wildlife, a second one (OP588006) with the FPV sequence from Canadian wildlife, and the
last one (OP587998) with the FPV sequences from Italian domestic cats. As for FPV strains
from Eurasian badgers, this last sequence (OP587998) was highly related with sequences
obtained from cats only at the level of VP2, while it occupied a basal branch with no evident
clustering upon analyses using the complete genomes (Figure 2).

Similarly, the analysis of the VP2 sequences allowed us to show that most clusters
identified in dogs in our study were highly related with strains already described in Friuli
Venezia-Giulia or, more generally, in Italy (Figure 1). Interestingly and similarly to what
previously noticed by [6], in the present study the VP2 phylogenetic tree showed that
the CPV-2 strains sequenced from illegally imported dogs are grouped according to the
antigenic type (Figure 1). Considering the antigenic characterization, 55 sequences classified
as new CPV-2a, six as CPV-2b, two as new CPV-2b, and two as CPV-2c (Figure 1). The
high prevalence of the new CPV-2a variant in illegally imported dogs is similar to the one
recently observed in dogs in the same Italian geographical area [6]. Of note, nine sequences
obtained from puppies clustered within CPV-2 strains actively circulating in dogs in the
1980s and were included in widely used attenuated vaccines (Figures 1 and 2). By analyzing
their amino acid sequence, we were able to confirm their antigenic classification as CPV-2
strains (Figure 1). Eight out of nine sequences, clustering with previously characterized
CPV-2 in Italy, showed mutations I219V and Q386K typical of one of the live-attenuated
vaccines available in the market (MG264079) [20]. Interestingly, four of the identified CPV-2
strains were associated with severe clinical signs and mortality in puppies, three of them
(including two sequences displaying the two vaccine signatures as of MG264079) in absence
of other pathogens detected (data not shown).

Finally, the VP2 phylogenetic tree evidenced that CPV new-2a strains identified in
the present study from illegally imported dogs make up distinct groups reflecting the
detection year to a certain extent (Figure 1). Interestingly, the 2018 new CPV-2a cluster
groups together with two new CPV-2a strains of the same year and same region (Friuli
Venezia Giulia) that were reported to be suspected of illegal importation from East Europe
most probably [6].

The strain detected in the grey wolf was the only CPV-2 we found in the screened
widlife (OP595742). This sequence was antigenically classified as CPV-2c and phylogeneti-
cally closely related with Asian-origin CPV-2c circulating in dogs, showing a maximum
nucleotide identity with dog strains of 99.9% across the whole genome and in the VP2 re-
gion (Figures 1 and 2). Analyses of the VP2 highlighted that a related sequence (MT454909)
had already been associated with wolves in Southern Italy in 2020 (Figure 1) [13]. The
analysis of aa residues showed that both the OP595742 sequence identified in the present
study and the MT454909 sequence [13] retained tyrosine and threonine at positions 324 and
440 of VP2, respectively, contrasting with the puppies’ sequences retaining only threonine
at position 440, out of the three signatures likely caused from vaccine immune pressure
(F267Y/Y324I/T440A) [21].

4. Discussion

This study provides a snapshot of parvoviruses circulating in wild carnivores from
Friuli Venezia-Giulia, in comparison with strains imported in the region from Central and
Eastern Europe through the illegal market of pups. Despite the vaccination of puppies
against canine parvovirus is widely implemented in North Eastern Italy, this practice likely
represents a major evolutionary source of old and new strains [6]. The high prevalence
of CPV-2 in the tested puppies highlights the risk for domestic dogs posed by the illegal
introduction. Indeed, genetic and phylogenetic evaluations of the samples sequenced from
illegally traded dogs confirmed that the CPV-2 strains introduced in the area of study
belong to several groups across the phylogenetic tree of CPV-2, with eight to twelve clusters



Viruses 2022, 14, 2612 8 of 11

identified using the complete VP2 and the whole genome, respectively. Among these, most
samples were included in three clusters identified almost exclusively in Italy, with the
exception of a single sequence found in Hungary in 2008. Nine sequences clustered with
original strains CPV-2 circulating in the 1980s [1], even if most of them formed a sister clade
that was exclusive of this work. Similar sequences were reported from neighboring areas in
Italy, in particular in the Veneto region and were classified as being likely vaccine strains [6].
Indeed, viruses included in several live attenuated vaccines (shown with red checkmarks
in Figure 1) cluster within the original clade of CPV-2. These vaccines are still widely used
worldwide, because they induce a strong long-lasting immunity without inducing severe
clinical signs [22]. However, the virus replicates within the host so that shedding is frequent
after inoculation [23,24]. Because CPV-2 strains do not seem to be actively circulating in
European dogs, it is likely that our findings also relate to post-vaccination shedding, as
elsewhere already assumed [6]. In this context, it is noteworthy that eight out of nine typed
sequences presented two mutations that are included in the patent of a widely used CPV-2
vaccine (MG264079) [20], strongly supporting our hypothesis. Of note, although vaccine
replication and shedding are considered non-pathogenic for puppies, we found three cases
indicating severe signs of gastroenteritis and mortality linked with vaccine virus. This
finding is only partially in line with previous field detections, linking the shedding of
vaccine strains with mild diarrhea in pups [25]. In this context, we might not exclude that
clinical signs in our study were exacerbated by the poor health of pups under investigation,
mostly younger than the recommended vaccination age and transported illegally in poor
conditions and not in compliance with animal welfare and sanitary requirements [10].

Despite the whole genome provided a much better resolution of the phylogenetic
relationship between viruses identified in the area, the phylogenetic tree based on the VP2
allowed a clearer interpretation thanks to the presence of a greater number of sequences
from other areas, especially Italian and European from both dogs and wildlife. Indeed,
there are still few studies that provide the complete genome of Carnivore protoparvovirus 1,
despite they are progressively increasing. In this context, our sequencing protocols allowed
us to characterize successfully most strains and were able to provide a cost-effective tool
for future studies as well.

The analyzed CPV-2 strains were associated with most antigenic types currently
circulating worldwide (CPV-2, new CPV-2a, CPV-2b, new CPV-2b and CPV-2c), among
which new CPV-2a was the most widespread in the area, as previously reported in the
same geographic area (North East Italy) [6].

In addition, our data support that this subtype completely replaced CPV-2a in the
area, while CPV-2b still co-circulates with the recently emerged subtype new CPV-2b. The
differentiation of antigenic types mirrored only partially the topology of the phylogenetic
tree [1]. In particular, all CPV-2 strains clustered with the “original” clade and all sequences
classified as CPV-2c were included within a single cluster diverging from the others.
CPV2-b also clustered together, with strains of the new diverging subtype also in the
phylogenetic tree. In 2008, CPV-2b reappeared in Italy after ten years, and since then it
has maintained a low prevalence [6,26], raising several doubts on the origin of such a
renewed circulation. Indeed, CPV-2b has been introduced as vaccine component, due to
its notable capability of inducing a broad-spectrum immunity against both CPV-2a and
CPV-2c strains [27]. The origin of the CPV-2b sequences identified in the illegally imported
puppies in the present study could therefore be due to vaccine strain occurrence rather
than to an active circulation of the “old” CPV-2b variant. Of note, all dogs carrying CPV-2b
sequences displayed no signs of acute gastroenteritis. Finally, clusters of sequences typed
as CPV-2a were sparse across the phylogenetic tree, although clustering together according
to the detection year (Figure 1).

Overall, our phylogenetic and genetic data support the assumption that strains de-
tected and sequenced in imported dogs are highly related to what previously observed in
the local canine population, suggesting that either the illegal pet trade accounts for most
of the variability in parvoviruses in the area, or else that similar strains are circulating in
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Central and Eastern Europe. However, more recent data from these areas are needed to
corroborate one of the two hypotheses.

In order to test the assumption that parvoviruses introduced in the area with the trade
of puppies might pose a risk for local wildlife, we analyzed a large repository of intestinal
samples collected from diverse carnivore species widespread in the region. We found only
one sample positive for CPV-2 in a grey wolf out of five analyzed in 2022, belonging to
the antigenic type CPV-2c. Despite this type was the least represented in dogs from our
investigation, this strain was correlated with sequences detected in Asia and also reported
in Italian domestic dogs. Similarly to what found elsewhere in Southern Italy, the CPV-2c
detected in the wolf retained two aa residues out of the three that had probably emerged
from vaccine immune pressure, and may represent current circulation in wildlife following
an ancestral spillover event [13,21]. However, investigating the ecopathology of this virus
in the grey wolf and its relationship with the domestic dogs deserves a wider investigation.

No other species was found positive for the presence of CPV-2, differently to that
described elsewhere [13,14]. On the other hand, we found that FPV circulates among carni-
vores in the study area, with percentage of positivity of 7.2 detected in Eurasian badgers,
consistently with what reported in Spain [14]. Similarly, a higher circulation of FPV com-
pared to CPV has been described in Portugal, together with a high frequency in Eurasian
badgers [28]. To the best of our knowledge, this is the first report of golden jackals resulted
positive for FPV in Europe, with the highest percentage of positivity corresponding to 25%
(3/12), compared to the other tested carnivores. The high diversity of FPV found in jackals
could be explained either by the repopulation of the areas with individuals from different
populations or by multiple cross-species transmission. Remarkably, several evidences
suggest interactions between jackals and domestic animals, including cats. In addition, the
scavenger-like feeding behavior performed by golden jackals in anthropogenic territory
may provide the opportunity for spillover from domestic animals to wild carnivores and
vice versa. Of note, all foxes tested negative in our study despite the number of individuals
tested, thus excluding a prevalence of at least 15% considering the estimated fox population
in Friuli Venezia Giulia. This result was expected based on previous findings estimating
2.8% prevalence of FPV in red foxes in other areas of Italy [13] and might be due to the
fox susceptibility to Carnivore protoparvovirus 4 species, of which the prototype virus has
been identified in a red fox [29]. Nevertheless, enhanced surveillance in the red fox should
be implemented in light of its susceptibility to both FPV and CPV-2 viruses [14,28] and its
well-known proximity with human settlements.

Interestingly, FPV sequences detected in this study did not all cluster together based on
the widely used VP2, but were correlated with viruses found in both wildlife and domestic
cats in Italy and abroad (Figure 1). Similarly, no sequences shared 100% ID based on the
whole genome, which suggests a considerable mixing of strains within wildlife populations,
including possible cross-species transmissions in the wild and across the interface with
domestic cats, as already suggested [14]. Finally, all FPV shared the classical antigenic
signature described in domestic animals across all the amino acid residues analyzed.

5. Conclusions

In this study, we showed that puppies illegally imported in North-Eastern Italy in-
troduce a wide diversity of canine parvoviruses, belonging to different antigenic types,
among which the new CPV-2a is the most represented. However, this diversity matches
the one reported elsewhere in Italy, preventing us further speculations.

In wildlife, we found evidence for the infection with CPV-2 only in one wolf, showing
a high correlation with a cluster already described in the same species in Southern Italy.
Severe clinical signs and mortality associated with original and vaccine strains might
be explained by the young age and poor health conditions of the illegally traded pups.
Negative findings in foxes and Eurasian badgers suggested that no CPV is circulating at
high prevalence in these species in Friuli Venezia Giulia. On the other hand, we found
a significant circulation of FPV in golden jackals and, to a lesser extent, in badgers. As
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for CPV-2, FPV found in wildlife clustered with sequences from wild as well as domestic
carnivores, thus describing a complex ecology of Carnivore protoparvovirus 1. This ecological
complexity is further enhanced by the rapid viral spatial movement associated with the
illegal trafficking of puppies from Eastern to Western Europe.
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