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Abstract: With the emergence of SARS-CoV-2, routine surveillance combined with sequence and
phylogenetic analysis of coronaviruses is urgently required. In the current study, the four common
human coronaviruses (HCoVs), OC43, NL63, HKU1, and 229E, were screened in 361 clinical sam-
ples collected from hospitalized children with respiratory symptoms during four winter seasons.
RT-PCR-based detection and typing revealed different prevalence rates of HCoVs across the four
seasons. Interestingly, none of the four HCoVs were detected in the samples (n = 100) collected
during the winter season of the COVID-19 pandemic. HCoV-OC43 (4.15%) was the most frequently
detected, followed by 229E (1.1%). Partial sequences of S and N genes of OC43 from the winter
seasons of 2015/2016 and 2021/2022 were used for sequence and phylogenetic analysis. Multiple
sequence alignment of the two Saudi OC43s strains with international strains revealed the presence of
sequence deletions and several mutations, of which some changed their corresponding amino acids.
Glycosylation profiles revealed a number of O-and N-glycosylation sites in both genes. Based on
phylogenetic analysis, four genotypes were observed with Riyadh strains grouped into the genotype
C. Further long-term surveillance with a large number of clinical samples and sequences is necessary
to resolve the circulation patterns and evolutionary kinetics of OC43 in Saudi Arabia.

Keywords: OC43; NL63; 229E; HKU1; human coronaviruses; sequence and phylogenetic analysis;
epidemiology

1. Introduction

Coronaviruses are globally distributed and infect a wide range of hosts including
humans. CoVs cause systemic infections where several organs are attacked, including
the respiratory tract, gastrointestinal tract, kidneys, liver, and nervous system [1–3]. In
the case of human CoVs, the symptoms range from insignificant, self-limiting infection
of the upper respiratory tract (i.e., common cold) to severe and even fatal infections that
are associated with pneumonia, renal failure, liver injury, and septic shock [4–8]. With
the identification of SARS-CoV-2, seven human CoVs are now known to infect the human
population: HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, SARS-CoV-1, MERS-
CoV, and SARS-CoV-2. The first four types usually cause the common cold with mild and
self-limiting infection of the upper respiratory tract in immunocompetent individuals [9].
The remaining three types are the causative agents of CoV outbreaks/pandemics in the
last two decades [4,10]. The four common HCoVs, OC43, NL63, 229E, and HKU1, show
differences in the frequency of detection in different countries at different times. In general,
OC43 is the most frequently detected, followed by NL63, and HKU1 and 229E have the
lowest detection frequency [11–14].
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According to the latest International Committee on the Taxonomy of Viruses (ICTV)
report, HCoVs are grouped within the subfamily Orthocoronavirinae, family Coronaviridae,
and order Nidovirales. CoV particles are enveloped with three structural proteins that
decorate the viral envelope; envelop (E), membrane (M), and spike protein (S). The S protein
constitutes long projections and gives the virus its characteristic crown-like structure or
corona shape. Orthocoronavirinae have four genera: α-coronavirus (229E and NL63),
β-coronavirus (OC43, HKU1, SARS-CoV-1, MERS-CoV, and SARS-CoV-2), γ-coronavirus
(Avian coronavirus), and δ-coronavirus (Coronavirus HKU15) [1,7,15]. The latter two genera
do not infect humans. CoVs genome is a non-segmented, positive sense, single-stranded
RNA genome. It is the longest (26.4–32.0 kb) among all known RNA viruses [16–18]. The
genome is flanked by two untranslated regions (UTRs) and was predicted to have around
14 ORFs with more than 25 proteins. The first two ORFs, ORF1ab and ORF1a, occupy
approximately three-fourths of the genome size and code for 16 non-structural proteins.
Non-structural proteins are mainly involved in virus replication where they serve several
functions such as RNA-dependent RNA polymerase (nsp12), helicase (nsp13), protease
(nsp5), and papain-like protease (nsp3) [19]. Structural proteins (E, M, N, and S) along with
a number of accessory proteins are encoded by the last third ORFs [20,21].

Viruses with RNA genomes including CoVs are known to form viral quasispecies
because of the polymerase errors during virus replication [22]. The formation of qua-
sispecies enables viruses to evade pre-existing immunity and to adapt to a variety of
environments. The large genome of CoVs allows these viruses to evolve through genetic
recombination besides point mutations. In this way, CoVs are frequently evolving, crossing
species boundaries and adapting to rapidly changing niches [23].

Due to their high morbidity and mortality rates, the three SARS-CoV-1, SARS-COV-2,
and MERS-CoV received much attention regarding their epidemiology and evolutionary
kinetics. On the other hand, the epidemiologies and genomic characteristics of the four
common HCoVs are poorly described in the literature. Therefore, performing sequence
and phylogenetic analysis of HCoVs will help to predict, prevent, and control any possible
HCoV outbreaks. In Saudi Arabia, more than 10 million Muslims from around 184 different
countries with different ethnicities and socioeconomic backgrounds are gathered in the holy
places during the Hajj and Umrah seasons. In addition, over 11 million foreign workers
from more than 100 countries are in a dynamic movement back and forth between their
home countries and Saudi Arabia. In such conditions, new viral strains can be introduced
into Saudi Arabia and can be spread to other countries [24]. Despite this situation, there is
a lack of knowledge regarding the sequence and phylogenetic analysis of the four human
CoVs. Most of the studies are mainly focused on virus detection and clinical outcomes.
Therefore, in the current study, the prevalence of the four HCoVs was investigated. RT-PCR
assay was used to detect and type HCoVs in clinical samples collected from two hospitals
in Riyadh. Sequence and phylogenetic analysis of S and N genes of OC43 were performed
to determine the genotype of circulating Saudi stains.

2. Materials and Methods
2.1. Clinical Samples and Ethics Statement

A total of 361 nasopharyngeal aspirates (NPA) samples were collected from children
hospitalized at King Khalid University Hospital (KKUH) and King Abdulla University
Hospital (KAUH) during four winter seasons, 2014/2015, 2015/2016, 2019/2020, and
2021/2022. NPAs were collected from children displaying acute respiratory symptoms
including rhinorrhea, cough, dyspnea, fever, and sneezing. The samples were obtained
following the protocols approved by the Ethical Committee of King Saud University and
after obtaining written informed consent from the parents/guardians of the patients. The
collected NPAs were mixed immediately with 2 mL of the viral transport medium (MEM
supplemented with 500 units of penicillin and 0.5 mg streptomycin). Upon collection,
samples were transported in an ice box to the Virology Research Laboratory (College of
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Science, King Saud University, Riyadh, Saudi Arabia) for processing, aliquoted, and stored
at −80 ◦C till use.

2.2. Detection and Typing of HCoVs

Viral RNA was extracted from NPAs using QIAamp viral RNA extraction kit (Qiagen,
Hilden, Germany) following the instructions of the company. RNAs were used as a template
to screen the samples for the presence of the four HCoVs; NL63, OC43, HKU1, and 229E
using the OneStep RT-PCR kit (Qiagen). Typically, for each 25 µL reaction, the following
reagents were mixed; nuclease-free water 9 µL, OneStep RT-PCR buffer (5×) 5µL, dNTP mix
(10 mM, each) 1 µL, forward primer (panCoV-F) 1.5 µL, reverse primer (panCoV-R) 1.5 µL
(Table 1), RNase inhibitor 1 µL, OneStep RT-PCR enzyme mix 1 µL and 5 µL of the extracted
RNA. The tubes were placed in the Gene-Amp 9700 thermal cycler (Applied Biosystems,
Foster City, CA, USA) using the following cycling protocol: reverse transcription at 50 ◦C
for 30 min, 1 cycle of initial PCR activation at 95 ◦C for 15 min, 35 cycles of denaturation
at 94 ◦C for 30 s, primer annealing at 52 ◦C for 90 s, extension at 72 ◦C for 90 s, and final
extension at 72 ◦C for 10 min. Typing reactions of positive samples were performed using
the same conditions of detection and primer sets listed in Table 1. PCR products were
visualized in 1% ethidium-bromide-stained agarose gel and compared to a DNA ladder
(GelPilot 100 bp plus, cat. No. 239045; Qiagen).

Table 1. Oligonucleotide primers used in the study for detection, typing, and sequencing of sea-
sonal coronaviruses.

Primer Name Sequence (5′–3′) Amplicon Size (bp) Ref

Detection of CoVs (RdRp gene)
panCoV-F AARTTYTAYGGHGGYTGG

668 [25]panCoV-R GARCARAATTCATGHGGDCC
Typing primers (RdRp gene)

HCoV-OC43
OC43-F CTGGGATGATATGTTACGCCG

444 [26]OC43-R TATTCTGTGACAAAGGTTG
HCoV-229E

229E-F GTGTGATAGAGCTATGCCCTCA
463229E-R GTAACCAAGTCCAGCATAAGTT [26]

HCoV-NL63
NL63-F AATAATATGTTGCGTACTTTA

472NL63-R TCATTGAAAAATGTTTCCTA [26]
HCoV-HKU1

HKU1-F AAAGGATGTTGACAACCCTGTT
453HKU1-R ATCATCATACTAAAATGCTTACA [26]

Sequencing primers
OC43-SF CCA ATG GCT TTT GCT GTT ATA GGA G 1525 This study
OC43-SR GTA CCT GCA GGA CAA GTG CC
OC43NF CAGCAACCATCAGGAGGGAA 891 This study
OC43NR AAACATCCTTCTGGGGCTG

2.3. Generation of Sequence Fragments of S and N Genes

RNAs of HCoV-OC43-positive samples were used to amplify sequence fragments of
S (1052 nt) and N (837 nt) genes. Generation of the sequencing fragments was achieved
as described in our previous study (Farrag et al., 2021) using SuperScript® III One-Step
RT-PCR System (Life Technologies, Carlsbad, CA, USA) and sequencing primers in Table 1.
The cycling program involved one cycle at 55 ◦C for 30 min, one cycle at 94 ◦C for 2 min,
40 cycles at 94 ◦C for 15 s, 55 ◦C (S gene) and 57 ◦C (N gene) for 30 s and 68 ◦C for 1 min, and
one cycle at 68 ◦C for 10 min. To remove impurities of PCR products, S and N fragments
were purified using a QIAquick PCR purification kit (Qiagen) and were sequenced on both
strands using BigDye Terminator version 3.1 sequencing kit on ABI PRISM 3730xl genetic
analyzer at GATC Biotech (Cologne, Germany). The raw sequence data of both genes were
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edited and assembled using Bioedit software, version 7.2.5 (Ibis Biosciences, Carlsbad, CA,
USA). The sequence of both genes was deposited in the gene bank database under the
accession number (S gene: OP712601 and OP712602 and N gene: OP712603 and OP712604).

2.4. Sequence and Phylogenetic Analysis

A total of 59 (S gene) and 46 (N gene) HCoV-OC43 strains were retrieved from the
GenBank database. The strains were selected to represent the different virus genotypes,
different countries worldwide, and different years. Sequence fragments corresponding
to S and N genes were edited and trimmed from the international sequences using the
Editseq program of Lasergene software, version 3.18 (DNAStar, Madison, WI, USA). The
prototype strain HCoV-OC43 (accession number: AY391777) isolated during the year 1967
was set as the reference strain. Sequences of Bovine CoVs isolated from France, Canada,
and Japan were added to the alignment to root the trees [27]. Multiple sequence alignment
for S and N genes and their corresponding amino acid sequences were generated and
identification of mutation sites was performed using the Clustal W algorithm, MegAlign
program, Lasergene v3.18. Heterogeneity in the glycosylation profiles of all stains was
assessed by determining the potential N- and O-linked glycosylation sites using Net-N-glyc
v1.0 [28] and Net-O-glyc v4.0 [29], respectively. The phylogenetic tree was constructed
based on both 1052 nts of the S gene and 837 nts of the N gene. Phylogenetic analysis
was performed using the maximum likelihood (ML) method of MEGA v7.0 software with
branch support and was assessed by 1000 bootstrap resampling iterations.

3. Results
3.1. Prevalence of Human CoVs

Detection of the four seasonal HCoVs was attempted in the viral RNA extracts of
361 newly collected and archival clinical samples using a one-step RT-PCR assay (Table 2).
Of the 361 samples, 21 (5.8%) were positive for HCoVs. HCoV-NL63 and HCoV-HKU1
were not detected in the four winter seasons. Among the studied winter seasons, HCoVs
were more prevalent in the winter season of 2015/2016 (20.2%) followed by 2014/2015
(3.2%). No positive samples were detected in the winter season of 2019/2020, and only
one positive sample (2%) was detected in 2021/2022. The most detected HCoVs was the
OC43 (4.15%), particularly in the winter season of 2015/2016, recording 13.48% of the
collected samples (n = 89). Two samples were reported to be co-infected with OC43 and
229E (Table 2).

Table 2. The prevalence of the four common HCoVs in the studies of winter seasons.

Winter
Season

Total No. of
Samples

No. of Positive
Samples

Human CoVs

OC43 229E NL63 HKU1 Mixed

2014–2015 122 4 (3.2%) 2 (1.64%) 2 (1.64%) 0 0 0
2015–2016 89 18 (20.2%) 12 (13.5%) 2 (2.25%) 0 0 2 (2.25%)
2019–2020 100 0 0 0 0 0 0
2021–2022 50 1 (2%) 1 (2%) 0 0 0 0

Total 361 21 (5.8%) 15 (4.15%) 4 (1.1%) 0 0 2 (0.55%)

3.2. Sequence Analysis and Glycosylation Profiles of S and N Genes

Multiple sequence alignment of the two Saudi HCoV-OC43s strains with international
strains allowed recording several mutation sites at the nucleotide and amino acid levels.
Among the HCoVs included in this study, the overall nucleotide sequence homology
ranged from 94.2% to 99.9%. A total of 43 mutations were recorded in the S gene of strain
Riyadh-65-2016 and 38 mutations in Riyadh-05-2022. Of these mutations, 23 changed
their corresponding amino acids in strain Riyadh-65-2016 and 22 amino acids have been
changed in strain Riyadh-5-2022 (Table 3). Three sequence deletions were reported in strain
Riyadh-65-2016: (i) one nucleotide deletion at 352; (ii) two-nucleotide deletion at positions
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356 and 357; and (iii) 12 nucleotides deletion at positions 798 to 809. The first two deletions
were reported in all strains, including Riyadh-5-2022, except strains from Cote d’Ivoire
(MG977445 and MG977447). The 12 nucleotide-deletion was reported in strains of human
CoVs from the USA, France, and China and all BCoVs.

Table 3. Mutation record of nucleotides and amino acids sequences.

Genome
Location Riyadh-65-2016 Genome

Location Riyadh-5-2022

Nt Sequence Amino Acid Nt Sequence Amino Acid

The S gene/protein

A101T K34I A98G D33S
C112G P38A A101T K34V
C118T P40S C118T P40S
T131C D44A T131C D44A
G258C K86N G263C S88T
G263C S88T A267C V89D
T266A V89D T269A L90Q
T269A L90Q C278G R93T
G278C R93T A352T I118F
A290G K97R C361G R121G
A352T I118F A470T Y157V
C361G R121G A534T Q178H
A470T Y157V G566T R189F
A534T Q178H T583A L195M
G566T R189F A644C D215T
T583A L195M A785T N262I
A644C D215T G792C K264R
G710T V237F G798T K266N
A785T N262I A800T N267I
G792C K264R C809G T270S
T793G V265P T1016C L339P
T1016C L339P A1018G N340D
A1018G N340D

The N gene/protein

A230C E77A A230C E77A
T242C V81A T242C V81A
A347T Q116L A347T Q116L
A452G N151S A452G N151S

T884C F295S

At the amino acid level, analysis of the glomerular part of the S protein (S1 subunit)
revealed a large number of mutations (Table 3, Figure 1a). Some amino acid changes are
characteristic for each genotype. Genotype E strains have a four-codon deletion at positions
153, 154, 155, and 156. The same codon deletion was reported in BCoVs. Strains of genotype
E have also characteristic amino acid changes at positions P38V, M123L, and S152L. The
majority of genotype C strains have a characteristic amino acid change at position L90K
and N180K. Genotype B strains have a characteristic amino acid change at position S276P.
Two characteristic amino acid changes were reported for strain Riyadh-65-2016 at positions
K86N and K97R. Both Saudi strains have characteristic amino acid change at position L90Q.
Four-codons deletion was also reported in strain Riyadh-65-2016 at positions 262, 263, 264,
and 265. The same four-codons deletion was reported in strains of BCoVs and China strains
of human CoVs. One amino acid change at position Q174H was reported in all strains except
for the reference strain AY391777. Glycosylation profiles were assessed by determining the
potential N- and O-linked glycosylation sites. The four common N-glycosylation sites in all
HCoV-OC43s including Saudi strains are 64N-138N,151N, 207N, and 213N. The pattern of
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O-glycosylation is not fixed. The potential sites for O-glycosylation vary among the strains
through the amino acid residues 33, 36, 37, 38, and 40 (G-score 0.6–0.99).

For the N gene, 10 and 8 mutations were reported in Riyadh-5-2022 and Riyadh-65-
2016, respectively. Among these, four mutations in Riyadh-65-2016 and five in Riyadh-
5-2022 changed their corresponding amino acids (Table 3). No sequence gaps and/or
deletions were reported in the N gene fragment. At the amino acid level, one signature
amino acid change (V81A) was observed in all strains except for the reference strain
AY391777 (Figure 1b). One characteristic amino acid change (Q116L) was observed in
strains of Riyadh-65-2016 and Riyadh-5-2022. One additional amino acid change was
reported only in strain Riyadh-5-2022. No characteristic amino acid changes were reported
among strains from different countries or different years. Stains of BCoVs have three
characteristic amino acid changes at S147A, H200Q, and V205I (Figure 1b). No amino acid
residues were predicted as potential sites for N-glycosylation. However, several serine
and threonine residues were predicted as potential O-glycosylation sites (G-score 0.5–0.98);
167S, 168S, 174T, 180T, 194S, 198S, 200T, 201S, 202S, 204T, 205S, 206S, 209S, 210S, 213S, 214S,
219S, 223T, 225T, 226S, 249T, 255T, 258T, and 275S.

3.3. Phylogenetic Analysis of S and N Genes

The phylogenetic trees constructed based on S and N genes are shown in Figure 2. For
the S gene-based tree (Figure 2a), five clusters can be differentiated from the outlier strains
of BCoVs. The clustering is supported by high bootstrap values that ranged from 52 to 99.
The cluster of BCoVs is divided into two clades where sequences of Mebus, Kakegawa, and
Quebec are in one clade and other BCoVs from France in the other subclade. We followed
the nomenclature of genotypes adopted by [27,30]. Genotype A included the HCoV-OC43s
strains isolated during the year 2004 and the reference strain (AY391777) isolated in 1967.
Genotype C included our Saudi strains (Riyadh-65-2016 and Riyadh-5-2022) and strains
from the USA, China and France, Belgium, and Netherland. Strains with four-codon
deletion (positions: 153, 154, 155, and 156) were grouped into genotype E. Genotype B
included the majority of Chinese strains. The tree was constructed based on the N gene
six clusters including the cluster of BCoVs (Figure 2b). The clusters of human CoVs were
named genotypes A, B, C, E, and F. With few exceptions, these genotypes included the same
strains as in the S tree. Some strains showed recombinant genotypes, such as HCoV-OC43-
Belgium-2003 (AY903459) and HK04-01-2004 (JN129834) (genotype BC), whereas strains
of genotype A (AY391777, NC005147, and NC006213) showed non-recombinant genotype
AA. Similarly, strains of genotype E showed a non-recombinant genotype EE. Strains from
the USA (KF530079-HCoV-OC43-USA-1991, KF530071-HCoV-OC43-USA-1992) that were
grouped (C) into genotype in the S gene tree formed a distinct clade (F) that root genotypes
A, B, C.
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Figure 2. Phylogenetic analysis tress based on (a) 1052 nucleotides of the S gene (subunit 1) and
(b) 837 nt of the N gene. Multiple sequence alignment was performed using Clustal W, and the
phylogram was generated by the MEGA 7 program using the maximum likelihood method. Strains
of bovine coronaviruses were used to root the trees. Strains in red fonts refer to Saudi stains identified
and sequenced in the currents study. Only bootstrap values exceeding 50% are displayed. Saudi
strains of the seasons 2015/2016 and 2021/2022 are presented in red font. Genotypes are indicated at
the periphery of the phylogram.

4. Discussion

HCoVs have long been recognized as the commonest cause of respiratory tract in-
fections with a wide range of clinical outcomes [14,31]. The epidemiologies of the four
common HCoVs (OC43, 229E, NL63, and HKU1) and their evolutionary kinetics are poorly
studied worldwide and particularly in Saudi Arabia. In our study, the prevalence of the
four HCoVs was investigated during the four winter seasons. Generally, HCoVs predom-
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inate during the winter seasons between December and April with low or no detection
frequency in the summer months [13,32]. NL63 is an exception where sporadic cases during
the summer were reported [32]. Among the four circulating HCoVs, HCoV-OC43 and
HCoV-NL63 are the most prevalent and usually encountered during early childhood [12].
The prevalence of HCoV in the current study was 5.8%, and OC43 was the most frequently
detected virus (4.15%) followed by 229E (1.1%). The prevalence pattern in our study in
agreement with previous studies from China, the UK, and France [26,32–34]. In China, the
prevalence of HCoVs among 13,048 tested samples was 2.25% (n = 294) during the winter
seasons of 2010 to 2015. Of the seasonal HCoVs detected, OC43 was the most prevalent
with 60.20% followed by 229E (16.67%), NL63 (14.97%), and HKU1 (7.82%) [14].

In contrast, other studies reported the prevalence of other HCOVs rather than OC43.
In Japan, in a 4-year study (2010 to 2013), the prevalence of HCoV in 4,342 samples was
7.6% (n = 332) with NL63 recording (3.1%), HKU1 (1.9%), OC43 (1.8%), and 229E (0.9%) [13].
Chow et al., reported the prevalence of HKU1 (64%) in congregate homeless shelter set-
tings followed by NL63 (24%) [11]. In the UK, Gaunt et al. reported the prevalence of
HCoV-OC43 in two winter seasons, whereas NL63 predominated in one season [32]. NL63
coronaviruses was the most common coronavirus identified in Michigan, USA [35]. We
were unable to detect HCoVs in the tested samples (n = 100) collected during the winter
season of 2019/2020. This could be attributed to the control measures (i.e., lockdown,
traveling restrictions, wearing masks, etc. . . . ) launched by the government to contain
the COVID-19 pandemic. During the COVID-19 pandemic, several countries reported
disturbances in respiratory virus dynamics [36–38]. In South Korea, the positivity rates of
eight respiratory viruses (influenza virus, adenovirus, bocavirus, rhinovirus, metapneu-
movirus, parainfluenza virus, respiratory syncytial virus, and HCoVs) decreased greatly in
the year 2020 in comparison with the previous year [39]. In Canada, the positivity rates
of influenza A and B, RSV, and enterovirus/rhinovirus decreased dramatically during the
year 2020/2021 [40].

To understand the evolutionary kinetics and molecular epidemiology of OC43 in
Saudi Arabia, a partial sequence of the S and N genes of two samples, one from the year
2016 and the other sample collected during the year 2022, was constructed. Due to the
long period of storage of archived samples and possible degeneration of viral RNA, the
sequence of S and N genes was only retrieved from one sample, Riyadh-65-2016. The
first attempt to analyze OC43 strains based on the S gene revealed a probable spatial
and temporal distribution of genetic clusters [41]. Subsequently, Lau et al., were the first
to define genotypes of OC43 stains based on the complete sequence of RdRp, S, and N
genes [30]. In the study of Lau et al., OC43s were grouped into four genotypes. Genotype A
included the prototype strain VR759, genotypes B and C included contemporary circulating
strains, and a recombinant genotype D is B/C genotype [30]. Similarly, Kin et al., have
sequenced complete RdRP, S, and N genes of OC43s and compared them to sequences
from the USA, Belgium, and Hong Kong. They followed the nomenclature of genotypes
established by Lau et al. and the same genotypes were designated. However, they defined
a new cluster E which is characterized by the deletion of 12 nucleotides in the S (subunit 1)
gene [27]. The impact of such deletion on virus binding and the possibility of cross-species
transmission from cattle have been discussed intensively in the study [27]. Genotype E was
reported to originate due to natural recombination between the three genotypes: A, B, and
C [34]. Two years later, two additional genotypes, F and G, were reported in Malaysia [42].
Reporting such new genotypes in different countries refers to the continuous evolution of
HCoV-OC43.

In our study, partial sequences of the S (1052 nt) and N (837 nt) genes were compared
with the corresponding international sequences of 59 and 46 OC43s, respectively. The use
of partial sequences of S1 (557 nt) and N (558) gens in sequence and phylogeny of OC43s
was reported [43]. Phylogenetic trees based on different genes of the same virus can be
used to identify recombinant virus strains [15,30,44]. Based on the S and N genes, we
have observed four genotypes (A, B, C, and E) with strains Riyadh-65-2016, and Riaydh-
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5-2022 were grouped into non-recombinant genotype C. The strain Riyadh-65-2016 has
a 12-nucleotides deletion which resulted in 4-codons deletions (266K, 267N, 268G, 269F).
Such four-codons deletion in the glomerular part of the S1 subunit may affect virus binding
to host cellular receptors. Interestingly, all BCoVs, strains isolated from the USA (2004)
(NC006213), and strains isolated from France (2004) (AY585229) have the same four-codons
deletion. This finding supports that Riyadh-65-2016 originated as a recombination with
cattle and crossed species boundaries.

5. Conclusions

In conclusion, the current study reported the prevalence of the four common HCoVs in
Riyadh, Saudi Arabia. OC43 was the most frequently detected followed by NL63, whereas
the other two HCoVs, HKU1 and 229E, were not reported in the four winter seasons. Due
to control measurements applied by the government, none of the common HCoVs was
detected in the winter season of 2019/2020. Sequence and phylogenetic analysis data of
OC43 were based on partial sequences of S and N genes. Four genotypes were observed in
the S-based tree with Saudi strains grouped into the genotype C. Nucleotide, and amino
acid sequences of the S gene revealed many characteristics and signature amino acids
for each genotype. Interestingly, strain Riyadh-65-2016 shared sequence similarity and
four-codons deletion with BCoVs which suggest recombination events for its origin. It is
recommended to perform long-term surveillance and analyze the whole OC43 genomes
which could reveal the recombination patterns and give more insights into the evolutionary
dynamics of HCoV-OC43.
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