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Abstract: In this study, a novel antimicrobial formula that incorporates Listeria bacteriophage P100
and silver nanoparticles into an alginate matrix was successfully developed. Paper coated with
the antimicrobial formula inhibited the growth of Listeria monocytogenes. The effects of alginate
concentration on the formation of silver nanoparticles, silver concentration on the infectivity of
phages, and of low alginate concentrations on the sustained release of silver and phages were
explored. The highest antimicrobial activity of the alginate–silver coating was achieved with an
alginate concentration of 1%. Adding phage P100 (109 PFU/mL) into the alginate–silver coating
led to a synergic effect that resulted in a 5-log reduction in L. monocytogenes. A bioactive paper was
then developed by coating a base paper with the antimicrobial formula at different coating weights,
followed by infrared drying. The higher coating weight was a crucial factor for the maintenance
of phage infectivity throughout the coating and drying processes. Phages incorporated into the
alginate matrix remained functional even after high-temperature infrared drying. Taken together, an
optimized coating matrix is critical in improving the antimicrobial performance of bioactive paper as
well as maintaining phage infectivity during the paper manufacturing process.

Keywords: antimicrobial activity; bacteriophages; Listeria monocytogenes; paper coating; silver
nanoparticles

1. Introduction

According to the Global Food Security Index, food quality and safety are among the
four criteria for food security. In order to meet these criteria, the food industry continues to
seek out advanced packaging technologies that improve quality and extend the shelf-life of
food. In addition to acting as a physical barrier, packaging materials can possess preser-
vative properties that protect the food from microbial spoilage and foodborne bacterial
contamination [1]. Using as few chemical products as possible is also considered to be
a crucial factor for food packaging. Thus, new active packaging systems using biobased
materials have emerged, with bioactive surfaces consisting of antimicrobial substances.
These new systems are a promising solution for meeting the above demands [2].

The use of paper-based packaging materials is a sustainable approach to food qual-
ity and safety. Paper is biodegradable, renewable and highly compatible with bioactive
agents [3]. To use paper as a packaging material for food, specific treatment is required
to improve the mechanical and barrier properties as well as the antimicrobial activity of
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the paper surface [4]. Paper coated with a polymer is used to create a functional paper
surface [5–7]. For active paper packaging in which antimicrobial agents are incorporated,
polymers are used as protectors as well as a delivery device for the antimicrobials. In-
deed, the polymer matrix protects the antimicrobials from extreme conditions during the
production and handling of the packaging materials, and also allows for a controlled, pro-
gressive release of antimicrobials, leading to effective and long-term antimicrobial activity
for the packaged food [8–10]. Current research trends are moving toward natural and
biodegradable sources, supporting the use of biopolymers as functional coatings due to
their film-forming properties and biodegradability [11].

Bacteriophages (also called phages) are being increasingly explored as antibacterial
agents due to their ubiquity, high host specificity and their ability to self-replicate [12,13].
The use of phages for the biocontrol of foodborne pathogens has garnered great interest dur-
ing a time of growing concern for antimicrobial resistance in agri-food production [14,15].
Commercially available phage preparations are now available, and their efficacy has in-
creasingly been documented [16]. Virulent phages are usually used for foodborne pathogen
biocontrol, as they often readily lyse the targeted bacterial host cells, resulting in cell
destruction and the release of a large number of progeny phages, which are then able
to infect neighbouring targeted cells [12,13]. Dipping, spraying or even adding phage
solutions directly to food are strategies proposed for food applications. However, these
direct application methods often require large numbers of phages to be effective. These
issues can be addressed by developing support materials on which phages are immobilized
before their controlled release and interaction with the food [15]. The use of paper as the
support material to immobilize phages has been successful in some studies [3,17,18].

Another antimicrobial agent that has been used in active food packaging is silver
nanoparticles, which boast a broad spectrum of antimicrobial activity against foodborne
pathogens. Certain works on risk assessment of potential toxicity of silver nanoparticles
via migration as well as in vivo toxicity studies have shown a low level of risk from
exposure to silver nanoparticle-containing packaging materials. The incorporation of
silver nanoparticles into food contact materials to improve packaging properties has been
exploited in the food industry [19,20]. The large surface of silver nanoparticles maximizes
their contact with the microorganisms, allowing for cell permeation, denaturation and
death [21]. One of the most useful methods for introducing silver nanoparticles to food
packaging materials is to incorporate them into a biopolymer matrix for coatings. Some
biopolymers, such as starch, chitosan, alginate, and gelatin, have been successfully mixed
with silver nanoparticles, leading to high bioactivity [21].

Manufacturing bioactive paper by coating paper with antimicrobial agents would
allow the pulp and paper industry to develop a new chain of products with no or minor
equipment modifications [3]. However, one challenge is that the paper processing con-
ditions can affect the stability and activity of the bioactive agents, resulting in a loss of
functionality. Bioactive agents such as phages may be protected and immobilized through
specific bioactive surface design and tailor-made coating formulas, in order to assure an
efficient bioactive paper surface.

This study focuses on the development of a new antimicrobial coating for active paper-
based food packaging. Coating formulas incorporate phages and silver nanoparticles into a
biopolymer matrix. The concentration of ingredients in the coating formula was optimized
to obtain maximum antimicrobial performance. The effect of paper coating and drying
processes on the antimicrobial performance of bioactive paper against L. monocytogenes was
also investigated.

2. Materials and Methods
2.1. Bacterial and Chemical Materials

Listeria monocytogenes serotype 4b strain (ATCC 19115) purchased from Cedarlane
(Burlington, ON, Canada) was used as the bacterial host. A fresh bacterial culture was
prepared by inoculating 300 µL of a stock culture in 2.7 mL of tryptic soy broth (TSB) and
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incubating at 30 ◦C for 18 h when the cells reached a concentration of approximately 109

Colony Forming Units (CFU)/mL. The commercial phage product ListexTM P100 (Micreos,
Wageningen, the Netherlands), containing phage P100 at a titer of approximately 1011

PFU (Plaque Forming Unit)/mL, was purchased from Think Ingredients (Burlington, ON,
Canada) and was stored at 4 ◦C until use.

Chemical products including AgNO3 solution, phosphate buffered saline (PBS) and
biopolymers including alginic acid sodium salt from brown algae, carboxymethylcellulose
sodium salt (CMC) and gelatin from bovine skin type B gelatin (ACS grade), were purchased
from Sigma-Aldrich (Oakville, ON, Canada). Culture media Tryptic soy agar (TSA), Tryptic
soy broth (TSB) and agar were purchased from Difco (Montréal, QC, Canada) and Listeria-
selective Oxford agar from Sigma-Aldrich (Canada). Microfibrillated cellulose (MFC) and
the base papers with a basis of 50 g/m2 was kindly provided by Kruger Inc., Montréal,
QC, Canada.

2.2. Preparation of Coating Solutions

Coating solutions were prepared by dissolving 1% (w/v) of each biopolymer in dis-
tilled water and stirring the solutions on a magnetic hotplate stirrer at 350 rpm and 60 ◦C.
When homogenized solutions of biopolymers formed, the AgNO3 solution was gradually
added to get final concentrations that varied from 0.05 to 14.5 mg/mL. The biopolymer–
silver solutions were mixed vigorously at 60 ◦C without exposure to light for 1 h. The final
solutions were stored in the dark at 4 ◦C for up to 2 weeks. Alginate–silver–phage coatings
were prepared by homogenizing the alginate–silver solution by continuous agitation at
350 rpm, and then maintained at 25–30 ◦C. Phage P100 solution was gradually added
during agitation until a final concentration of approximately 109 PFU/mL was reached.
The final solution was used immediately or stored at 4 ◦C in the dark for no longer than
24 h.

2.3. Lab-Scale Paper Coating

Base paper was cut to 6-mm or 90-mm diameter circles depending on the experiments.
Prior to coating, both sides of the paper circles were sterilized by exposure to UV in a
laminar flow hood for 30 min [22]. For the coating ingredient optimization experiment,
an aliquot of 5 to 10 µL of coating solution was applied on the surface of the 6-mm paper
sheets using the dropping pipette technique. The coated paper was air dried at ambient
temperature for 40 min before further analysis. Bioactive papers were made by coating the
90-mm paper circles with the alginate–silver–phage solution using a customized spraying
system (Figure 1). The spraying system consisted of a mesh, a 150-mm diameter glass
dish placed underneath a 0.9-mm spray nozzle and a glass shutter. A peristaltic pump
(Masterflex) was used to pump the formula from a reservoir to the spraying system.
Spraying was repeated to obtain different coating weights. A glass stick was used as a
metering blade to remove excess coating solution and to uniformly distribute the formula
over the paper surface. The coated paper was then dried before further analysis.

2.4. Infrared Drying Process

The paper was dried using a 250 W infrared (IR) brooder lamp system. The coated
paper was exposed to IR light at a distance of 30 cm for 90 s. The thermal profile of the paper
surface was recorded using a FLIR T1030sc thermal imaging camera. The temperature
of the paper surface was captured at a rate of 30 frames per second using FLIR software
version 5.13.18031.2002(Wilsonville, OR, USA).

2.5. Transmission Electron Microscopy

The distribution of phage particles and silver nanoparticles (AgNPs) in the alginate
polymer network and their particle sizes were analyzed using a transmission electron
microscope (TEM EM208S, Philips) at 100 kV, which was equipped with a digital camera.
One drop of the alginate–silver–phage solution was applied onto a copper grid covered
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by an amorphous carbon film and stained with 1.5% wt. uranyl acetate solution. The
surface images of the samples were observed at magnifications of 36,000× to 70,000×. The
average sizes of phage particles and AgNPs were determined by measuring a minimum of
100 particles using an ImageJ 1.53t (Wayne Rasband and contributors, National Institutes
of Health, 10 Center Dr, Bethesda, MD 20814, United States. http://imagej.nih.gov/ij
(accessed on 25 September 2022)) software package.
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2.6. Antimicrobial Activity Assay

The antimicrobial activity against Listeria of the coating solutions and the coated paper
were evaluated using the double layer agar (DLA) technique [23] and diffusion in liquid
medium [24]. For the DLA method, a culture of L. monocytogenes was mixed into a soft
TSA medium (0.75% agar) and poured on top of a solid TSA medium (1.5% agar) in a
90-mm plate for a final concentration of 5 × 105 CFU/cm2. The DLA plates inoculated with
L. monocytogenes were allowed to settle for 10 min before adding an aliquot (5–10 µL) of
coating solution or placing the 6-mm paper circle samples on the agar layer surface. The
DLA plates were incubated at 30 ◦C for 72 h. The antimicrobial activity was determined
by measuring lysis areas in lawns of L. monocytogenes at specific time intervals during
the incubation.

2.7. Phage Enumeration

Phage titers in the coating formula or loaded onto coated paper were determined
using the DLA technique. For the coated paper, phages were released by submerging 6-mm
paper circles in 15-mL tubes containing 5 mL of PBS buffer, which were then agitated at
120 rpm at 30 ◦C. Suspension samples were collected at 24-h intervals for the DLA method
for 72 h. The phage titer was expressed as plaque-forming units per cm2 (PFU/cm2) of
paper. Experiments were performed in triplicate.

3. Results and Discussions
3.1. Silver-Incorporated Biopolymer Coating

At first, the paper coatings by different biopolymers supplemented with silver were
studied. The impact of biopolymers on silver nanoparticle formation and on the antimicro-
bial activity against L. monocytogenes were assessed.

http://imagej.nih.gov/ij
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3.1.1. Selection of Biopolymers

Polysaccharide polymers, alginate, microfibrillated cellulose (MFC), carboxymethyl
cellulose (CMC) and a protein-based polymer in the form of gelatin were each blended with
AgNO3 to produce a coating solution. The antimicrobial activity against L. monocytogenes,
determined by measuring the area of lysis in the DLA assay after 24 h of treatment, are
shown in Figure 2. First, we confirmed that these polymers (without antimicrobials) do
not inhibit the growth of L. monocytogenes by the DLA method. The paper coated with
the polymer–silver blend exhibited a stronger antimicrobial effect than the silver-coated
paper, revealing an improvement in activity when the biopolymer is mixed with silver. The
biopolymer matrices likely acted as reducing and stabilizing agents which led to active
silver nanoparticles (AgNPs) from the AgNO3 [21].
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Figure 2. Antimicrobial activity of coated paper using silver and different polymers.

The biopolymers also likely retain active AgNPs in their three-dimensional polymeric
network without aggregation, resulting in a controlled release of AgNPs from the polymer
matrix into the surrounding medium [19,25]. In addition, the interface of the cellulosic fibers
of the paper with the polymer–silver matrix led to a porous structure on the coated paper,
which likely facilitated water adsorption, thereby releasing AgNPs more efficiently [20,26].

The antimicrobial activity also increased with the AgNO3 concentrations for all
polymer–silver coatings, suggesting that the AgNPs are easily incorporated and well-
dispersed within the polymer matrix. The combination of alginate and silver resulted in the
best antimicrobial performance against L. monocytogenes, followed by the combinations of
silver with MFC, CMC and gelatin, respectively. Increasing the AgNO3 concentration from
1 to 8 mg/mL improved the antimicrobial activity of paper coated with the alginate–silver
blend, as demonstrated by the larger area of L. monocytogenes growth inhibition on the DLA
from 0.28 ± 0.01 to 1.0 ± 0.05 cm2. The highest activity obtained with the alginate–silver
blend could be attributed to the interaction of alginate and silver nanoparticles. According
to previous studies, the addition of silver ions (Ag+) to the alginate solution served as a
cross-linking agent for the formation of an alginate hydrogel, which supported AgNPs
formation [22,27]. Others showed that the hydrophilic alginate hydrogel in turn facilitated
the release of AgNPs from the polymeric network, which likely resulted here in inhibit-
ing of L. monocytogenes [28]. An alginate polymer was selected for further exploration of
antimicrobial coating formulas.

3.1.2. Effect of Alginate Concentration

Coating formulas that combined 5.5 mg/mL of AgNO3 with concentrations of alginate
ranging from 0.5 to 3% w/v were tested. The varying alginate concentrations in the
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coating solutions resulted in changes in viscosity, AgNPs formation and antimicrobial
activity against L. monocytogenes (Figure 3). According to previous studies, the most typical
evidence of AgNPs formation is the appearance of a strong surface plasmon resonance
band that is observable in the region of 350–600 nm [20,28].
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Figure 3. Effect of alginate concentration on antimicrobial activity, viscosity and AgNPs formation of
alginate–silver coating.

As shown in Figure 3, the absorbance (380–420 nm) of our coating solutions increased
as a function of the alginate concentration, reaching a maximal absorbance of 1.0 at an
alginate concentration of 3.0%. It suggests that the formation of AgNPs is improved when
the concentration of alginate increases.

However, antimicrobial activity reached a maximum inhibition (area of 0.92 ± 0.07 cm2)
with an alginate concentration of 1.25% w/v, but decreased (0.26 ± 0.05 cm2) when alginate
was increased to 3.0% w/v. The proportional increase in coating solution viscosity with
alginate concentration (shown in Figure 3) likely resulted in an aggregation of AgNPs,
obstructing the contact between AgNPs and bacteria [20]. Others [29] reported that a
cellulosic surface is thoroughly covered by the micro- or nanostructure polymer–ZnO
coating at coating weights of 3 g/m2. Increasing the coating weight to 4.5 g/m2 resulted
in densely packed layers of polymer–ZnO coating on the cellulosic surface, leading to
a significant loss in micro- or nano hierarchical structures that reduced antimicrobial
efficiency. This outcome is consistent with our results, in which an alginate concentration
range of 1.0–1.25% that corresponded to dried paper coating weights of 1.8–2.3 g/m2

were the most effective for antimicrobial activity against L. monocytogenes. Because coating
weights clearly affect the antimicrobial efficiency, adjustments should be considered during
the coating formula application process. This is especially true for spray coating, which
might require a high coating weight.

3.2. Incorporating Phages into Alginate–Silver Coating

In order to design an antimicrobial coating formula containing phages, as a proof of
concept we incorporated the commercially available Listeria-specific phage P100 into the
alginate–silver matrix. It was expected that the addition of phages into the alginate–silver
coating would provide a synergistic effect for the control of L. monocytogenes. Using alginate
hydrogel as the delivery system would allow for a sustained release of the phages and
AgNPs to prolong the duration of treatment.

3.2.1. Effect of Silver Concentration on Phage Infectivity

When exposing phages to the alginate–silver matrix, the AgNPs may affect phage
infectivity. Previous studies on phage–silver interaction have demonstrated that the sen-
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sitivity of phages to metallic nanoparticles depends on the concentration and size of the
nanoparticles [30,31]. Different coating formulas containing 0.5% alginate and AgNO3, at
concentrations that ranged from 0.05 to 5.5 mg/mL, were used to incorporate phages at a
concentration of 109 PFU/mL. The coating formulas were stored in the dark at 4 ◦C and
phage titers were estimated after 1 h, 24 h and 48 h. As shown in Figure 4, the phage titer
was reduced proportionally with increases in AgNO3 concentrations from 0.5 to 3 mg/mL.
When AgNO3 was at its highest concentration of 5.5 mg/mL, phage titers were signifi-
cantly reduced by 3.5 and 4.5 log after 24 h and 48 h, respectively. Meanwhile, there was
a reduction of only 1 log unit in the phage titer with the coating formula sampled after
1 h. According to spectrophotometric measurements at 380–420 nm, the absorbance of
the alginate–silver solution increased from 1.5 to 2.4, along with an increase in AgNO3
concentration from 0.5 to 3 mg/mL, resulting in increased AgNPs formation (Figure 4).
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This might indicate that the phages were inactivated when certain levels of AgNPs
were reached, which were determined by the initial AgNO3 concentration and storage time.
At low AgNO3 concentrations, ranging from 0.05 to 0.45 mg/mL, the reduction in phage
titers was not significant (0 to 1.5 log-unit reductions) as a function of storage time (from
1 h to 48 h). AgNP absorbance was approximately 1.0 at these low AgNO3 concentrations,
meaning that there was adequate AgNP formation for antimicrobial efficiency. Thus, for
the preparation of the coating formula, the concentration of AgNO3 should remain lower
than 0.45 mg/mL in order to minimize negative effects on the phages.

3.2.2. Effect of Phage Dose on L. monocytogenes Growth Inhibition

Formulas that consisted of 0.5% alginate, 0.05 mg/mL AgNO3 and phages at titers
ranging from 105–107 PFU/mL were added to approximately 105 CFU/mL of L. monocyto-
genes, resulting in ratios of phages to bacteria (multiplicity of infection, MOIs) of 1, 5, 10,
50 or 100 at the time of infection. The formulas containing cultures were then incubated
for 72 h and the optical density was measured at different intervals. As shown in Figure 5,
MOIs of 50 and 100 prevented L. monocytogenes growth (OD600 mm ≤ 0.1) over 72 h. An
MOI of 10 prevented L. monocytogenes growth for only 24 h.

At lower MOIs (1, 5 and 10), L. monocytogenes continued to grow, with OD600 mm values
ranging from 3.3 to 4.7 after 72 h compared to non-treated L. monocytogenes culture, which
had an OD600 nm of 5.2. These observations are consistent with previous research that
demonstrated that higher phage concentrations are more effective in inhibiting bacterial
growth [18,32]. Thus, it is important to consider the use a sufficient quantity of phages in
coatings to prevent bacterial growth, which would lead to extending the shelf-life of food.
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Figure 5. Antimicrobial activity of formulas applied at different MOIs.

3.3. TEM Analysis of Alginate/AgNPs/Phage Formula

The phage–AgNPs–alginate matrix was visualized under a transmission electron
microscope (TEM) (Figure 6). Phage particles and AgNPs had a homogeneous distribution
in the alginate network and confirmed the presence of AgNPs in spheroid form. The
AgNPs were 10–20 nanometers in diameter, whereas the capsid (90 nm) of phage P100
could be easily distinguished in the polymer matrix [33]. Interestingly, the phage and
AgNPs appeared to remain separate from each other, which could reduce the negative
impact of AgNPs on phages.
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3.4. Lab-Scale Fabrication of Bioactive Paper

The alginate–silver-phage (AAP100) coating formula, at optimized concentrations
(109 CFU/mL phages, 0.05 mg/mL AgNO3 in 0.5% alginate solution), was used to produce
a bioactive paper. Coating experiments were conducted using a laboratory spraying system
and paper circles that were 90 mm in diameter. The AAP100 formula was applied to
the paper at different coating weights: 16, 31, 47, 63, 79, 94 and 110 g/m2. The coated
paper circles were then dried under IR lamps for 90 s or air-dried for 40 min. The effect
of the drying method along with the coating weights on antimicrobial performance was
then investigated.

Figure 7 shows the temperature profiles of the paper circles during IR drying, recorded
with a camera (FLIR T1030sc IR). Paper coated at low coating weights reached higher tem-
peratures more quickly. After 90 s of drying, the highest temperatures reached were 90 ◦C
for a coating weight of 16 g/m2 and 50 ◦C for a coating weight of 94 g/m2. In industrial
paper production, the IR drying technique is often used in binder-coating processes to
enhance coating uniformity and improve overall paper quality [34]. For a dry end of coated
paper, the temperature should reach 90 ◦C to ensure moisture removal, as was observed for
paper with a coating weight of 16 g/m2.
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(g/m2) during infrared drying.

The antimicrobial performance of IR-dried paper (Figure 8) revealed a decrease in the
lysis zone with a decrease in coating weight. There was no antimicrobial activity with the
IR-dried paper at coating weights of 16 g/m2 and 31 g/m2. For the air-dried paper, antimi-
crobial activity also decreased with decreasing coating weights, but antimicrobial efficiency
was still observed with the lowest coating weight of 16 g/m2. Our data clearly indicated
that the IR-drying temperatures affected the antimicrobial efficiency of the coated paper.
The structure and properties of the coated paper were influenced by high-temperature
drying, which induced a dried coating structure and caused poor antimicrobial activity [35].

The number of phages that remained infectious on IR-dried paper was compared
to that which was initially added to the formula (Figure 9), revealing about a 1-log titer
reduction for coating weights from 63 to 94 g/m2. Larger phage reductions of 2, 3.7 and
5-log units were observed for IR-dried papers at coating weights of 47, 31 and 16 g/m2,
respectively. Phage P100 was more stable in air-dried paper, with a reduction of about
1.5-log phage titer for all coating weights. Based on antimicrobial activity and phage
infectivity, we conclude that the high temperatures of IR drying negatively affect phage
stability. Increasing the coating weight improved the stability of the phages under extreme
IR-drying conditions, which can be attributed to the protective effect of the alginate–silver
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matrix on the phages during heat treatment. In addition, at high coating weights, the
coating structure was less influenced by IR drying, allowing phages to remain dispersed in
the alginate network and to be released during antimicrobial experiments. Phages can be
sensitive to dehydration and heat treatment [36–38]. As observed in the thermal profile
(Figure 8), the temperature reached 50 ◦C for high coating weights, leading to low levels of
water evaporation from the coating layer. This may have allowed the coated paper to retain
the moisture necessary for phage stability. In contrast, at low coating weights, coating layer
dehydration and consolidation associated with high IR temperatures could have led to the
penetration of phages from the coating layer into the base paper, resulting in a poor release
of phages during the test.
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For large-scale manufacturing of bioactive paper, IR drying is a practical approach into
the paper-making process. Thus, the control and optimization of IR-drying temperatures
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and coating weights is critical for the maintenance of phage activity and the antimicrobial
performance of treated paper. For example, IR-dried paper that lacks moisture could
undergo a rewetting step, which may also improve the diffusion of phages that are trapped
in the paper matrix [36]. Phages could also be applied at high concentrations into the
coating formula in order to increase the antimicrobial efficiency of phage-based bioactive
paper [18] and progress has been made in the production of Listeria phages [23].

4. Conclusions

Overall, our results showed that the addition of phages and silver nanoparticles into an
alginate matrix can provide antimicrobial properties to paper through coating techniques.
Indeed, a bioactive paper was successfully developed using an antimicrobial formula based
on alginate supplemented silver nanoparticles and a commercial phage preparation. The
combination of phages and silver nanoparticles was demonstrated to be effective in limiting
the growth of Listeria. The phages and the silver nanoparticles were well-distributed in
the alginate network, leading to a sustained release of these particles in our laboratory
tests. A high coating weight of the phage-based formula is required for maintenance of
phage activity when undergoing high-temperature infrared drying. These methods can be
used by the pulp and paper industry to produce antimicrobial paper-based food packaging.
Further research is needed on the antimicrobial efficiency of bioactive paper for in vivo
Listeria control tests on targeted foods and the shelf-life of packaged food. In addition, it
remains to be seen how other phages will behave in this coating formula.
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