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Abstract: Rotavirus (RV) is a non–enveloped icosahedral virus with an 11–segment double–stranded
RNA genome, belonging to the family of rotaviruses. RV is one of the pathogens causing diarrhea
in infants and young animals, and it induces the production of type I interferons (IFNs), which can
trigger antiviral function by inducing the production of interferon–stimulated genes (ISGs). Although
IFITM3, an ISG localizing to late endosomes, can limit many viral infections, whether or not it restricts
the infection of RV is still unknown. Therefore, we attempted to determine whether IFITM3 also
restricts RV infection by using over–expression and knockout cell strains. It was found that IFITM3–
expressing cell strains were less susceptible to RV infection, as the replication of RV in over–expressing
cells was significantly less than in control group cells. Correspondingly, IFITM3–knockout cells were
significantly susceptible compared to the normal cells. Furthermore, the IFN–induced antiviral
effect was significantly attenuated in the absence of IFITM3, and IFITM3 delayed RV escape from
endosomes in the presence of IFITM3, suggesting that endogenous IFITM3 is of great importance in
type I IFN–mediated antiviral responses and may restrict infection by affecting the function of the
late endosomal compartment. In conclusion, these data provide the first evidence that IFITM3 limits
RV infection in vitro and delays RV escape from late endosomes into the cytoplasm.

Keywords: IFITM3; rotavirus; cell infection; cell entry

1. Introduction

IFITMs play important roles in adaptive and innate immune responses against viruses.
Human IFITMs are located on chromosome 11p15.5. IFITM3 is a kind of ISGs, and mainly
expresses on endosomes and lysosomes. It has been demonstrated that IFITM3 restricts the
infection of a variety of viruses in vitro, such as influenza A virus (IAV), Ebola virus (EBOV),
Marburg virus (MAVR), SARS coronavirus (SARS–CoV) [1,2], human immunodeficiency
virus (HIV–1) [3], Dengue virus (DENV) [4] and Zika virus (ZIKV) [5]. Regarding the
data reported from in vivo experiments, human patients owning non–functional alleles of
IFITM3 or mutations in the promoter regions of IFITM3 have also been reported to have
an increasing risk of severe IAV infection. Consistent with this, IFITM3 knockout mice
have higher sensitivity to IAV and West Nile virus (WNV) [6–8], which demonstrates an
important role of IFITM3 in antiviral activity.

IFITM3 is primarily located on early and late endosomal and lysosomal membranes [9].
The molecular mechanisms of IFITM3–mediated antiviral activity have not yet been very
clearly investigated, while existing explanations suggest that IFITM3 inhibits viral fusion
through a proximity–based mechanism, which inhibits the fusion pore formation by trap-
ping the process at the fusion stage [10,11]. In addition, IFITM3 is considered to directly
modify the structure, rigidity and curvature of target membranes, which leads to a block in
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virus–host fusion [10,12]. As has been reported in other articles, amphotericin B, an antifun-
gal medicine enhancing membrane fluidity, impairs the antiviral activity of IFITM3 [13,14],
and IFITM3 protein could be incorporated into nascent virions which lead to decreases in
virus entry capacity, such as in HIV–1 virions [15–17], EBOV, measles virus (MV), WNV
and murine leukemia virus (MLV) [18,19]. Moreover, IFITM3 relies on proper subcellular
localization to perform its antiviral functions. Certain sequences at the N–terminal of
IFITM3, which is responsible for the localization, are essential for its antiviral activity [6,11].
Furthermore, the palmitoylation of cysteine residues improves the stability of IFITM3 to
enhance antiviral ability [20].

However, the viruses, mentioned above and restricted by IFITM3, are all enveloped so
far. Compared with enveloped viruses, there are fewer studies on non–enveloped viruses,
only reoviruses [21], foot–and–mouth disease virus (FMDV) [22] and norovirus (NoV) [23].
Therefore, we conducted a study on whether the IFITM3 molecule affects rotavirus (RV)
replication. RV, the cause of severe diarrhea and vomiting in many mammals, can lead
to dehydration, electrolyte imbalance and even death [24,25]. RV belongs to the family
reoviridae, and it is a non–enveloped icosahedral virus with a ~18,500 bp 11–segment
double–stranded RNA genome encoding structure proteins (VP1–4, VP6, VP7) and non–
structure proteins (NSP1–NSP6). The six RV structural proteins form three concentric
layers [26,27].

It has been reported that ammonium chloride (NH4Cl) and other weak bases prevented
the acidification of endosomes and reduced the infectivity of the human strain Wa, while
these endosomal acidification inhibitors did not block the infection of the Wa strain, which
meant that the Wa strain depended on the acidification of the endosome to infect cells more
efficiently [28–30]. In addition, some researchers have proposed that the spike protein VP4
undergoes a series of conformational changes to escape from the endosomal compartments
into the cytosol to begin replication [31]. Due to IFITM3 localizing on late endosomes as
well, we tested whether IFITM3 had an effect on endosomes to restrict RV infection.

In this study, we found that IFITM3 expression significantly restricted RV infection.
IFITM3–mediated restriction mainly occurred at the stage of entry. As the results showed,
IFITM3 may limit virus infection in both the early endocytosis and endosomal penetration
phases, since virus receptor binding was not affected. This represents the first evidence
that IFITM3 can restrict the infection of RV. However, whether IFITM3 delays the dynamics
of RV endosomal uncoating leading to inefficient membrane penetration, as well as the
difference in the mechanism between enveloped and non—enveloped viruses, require
further study.

2. Materials and Methods
2.1. Cells

Monkey kidney Mark145 cells, Madin–Darby canine kidney (MDCK) cells and Mon-
key kidney MA104 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM;
HyClone, Logan, UT, USA), containing 10% fetal bovine serum (FBS; Gibco, Grand Island,
NY, USA) and 1% penicillin–streptomycin (Solarbio, Beijing, China). Colon carcinoma
human Caco2 cells were cultured in the same way, except with 20% FBS. The cells were cul-
tured at 37 ◦C in a 5% CO2 incubator. Mark145, MDCK and Caco2 cells were kindly stored
at Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences.

2.2. Viruses

RV human strain Wa and simian strain SA11 were kindly gifted by Professor Wu
Yuzhang, Institute of Immunology, PLA, Army Medical University, and they were prop-
agated in MA104 cells as previously described [32,33]. Bat strain MSLH14 is a character-
ization of a novel G3P [3] RV isolated from a lesser horseshoe bat. It is a distant relative
of feline/canine RV, and was propagated in Marc145 cells. RV lysates were activated
with trypsin (10 µg/mL; Gibco, Grand Island, NY, USA) for 30 min at 37 ◦C. All live RV
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experiments were performed at Biosafety Level 2 at Changchun Institute of Veterinary
Medicine, Chinese Academy of Agricultural Sciences.

2.3. Virus Titration

Confluent monolayers of MA104 cells or Marc145 in 96–well tissue culture plates were
infected with a series of tenfold dilution of trypsin activated RV. RV was diluted in DMEM
containing 2% FBS and 1% penicillin–streptomycin. After 5–7 days infection, infected wells
were determined by direct examination for cytopathic effect (CPE). Viral titer was measured
by 50% tissue culture infective dose (TCID50) by the Reed–Muench method, as previously
described [34].

2.4. RV Infection

RV lysates were activated with 10 µg/mL trypsin for 30 min at 37 ◦C in advance.
Cells at approximately 90% confluence were washed with phosphate–buffered saline and
inoculated with RV at a multiplicity of infection (MOI). After 1 h adsorption, the inocula
were removed and the cells were maintained in medium containing 2% FBS at 37 ◦C in a
5% CO2 incubator for an indicated time. Mock–infected cells were generated using culture
medium as the control inoculum. Then virus infection was determined by fluorescence
imaging, Western blot, flow cytometry, or RT–qPCR.

2.5. Over–Expression of IFITM3 in MDCK Cells

The inducible IFITM3–overexpressing MDCK–Tet3G–IFITM3 cells were generated
based on the Tet–On 3G system as described previously [35]. Briefly, cells were cotrans-
fected with pTRE3G–IFITM3 and pLVX–Tet3G using Lipofectamine 3000 transfection
reagent (Invitrogen, Carlsbad, CA, USA). After 48 h, cells were selected in a complete
medium containing 4 µg/mL puromycin (Invivoegn, Carlsbad, CA, USA). Stable cells were
harvested and lysed. IFITM3 induced by doxycycline (Dox, 2.5 µg/mL) was examined by
RT–qPCR and Western blot. Dox was solubilized in dimethyl sulfoxide (DMSO), so the
same volume of DMSO was added into DMEM as the control group.

2.6. Knockout of IFITM3 in Caco2 Cells

The IFITM3–konckout Caco2 cells were generated using the CRISPR/Cas9 gene
editing system. CRISPR–pLentiv2 vector was stored in the lab. Single guide RNAs
were specifically designed using the online tool available at http://crispr.mit.edu (ac-
cessed on 20 November 2021). The first sgRNA (sgRNA1) was CACCGGGGGCTGGC-
CACTGTTGAC (reversed, AAACGTCAACAGTGGCCAGCCCCC). The second sgRNA
(sgRNA2) was CACCGTGGATCACGGTGGACGTCGG (reversed, AAACCCGACGTC-
CACCGTGATCCAC,). Pairs of oligos targeting IFITM3 sequences were annealed and
cloned into the BsmBI–digested pLentiv2 vector. Functional lentiviruses were generated
in HEK293T cells by cotransfecting IFITM3 sgRNA–encoding CRISPR–pLentiv2, psPAX2
and pMD2.G using Lipofectamine 3000 transfection reagent. HEK293T cells were collected
and frozen and thawed twice, then, functional lentiviruses encoding sgRNA1 and sgRNA2
were obtained, respectively. Caco2 cells were coinfected using the two HEK293T cell
lysate supernatants for 48 h. After that, 10 µg/mL puromycin was added into culture
medium for 24 h, and a single cell clone was generated using limited dilution method
in 96–well tissue culture plates. Clones were genotyped and verified by DNA sequenc-
ing technique. The sequencing primer was TGCCTGGGCACCATAGTGAAG (reversed,
CCAGGGAATGCTCAGAGGGT).

2.7. Virus Binding and Entrying Assay

Cell monolayers and virus were pre–chilled on ice for 30 min, mixed at 5 MOI and
allowed to bind for 1 h at 4 ◦C. Under these conditions, the viral particles were allowed
to bind on the cell surface, but not to entry into cells. After that, unbound viruses were
washed off with ice–cold PBS and then lysed with TRIzol (Life technologies, Carlsbad, CA,

http://crispr.mit.edu
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USA). Then, the binding virus was assessed by RT–qPCR. After that, the entry process was
undertaken by adding pre–warmed growth medium to the cells for the virus entry assay,
then the cells were cultured with the medium for 1 h at 37 ◦C. Finally, cells were washed
twice with pre–warmed PBS and total cellular RNA was extracted.

2.8. Endosomal Acidification Inhibition Assay

Cells were grown in 12–well tissue culture plates and adsorbed with human strain
Wa at the indicated MOI at 4 ◦C for 1 h. After adsorption, cells were washed with cold
PBS to remove unbound virions, and prewarmed DMEM was added. Then, cells were
incubated at 37 ◦C, and NH4Cl was added at various intervals in order to prevent endosome
acidification. Cells were incubated for 12 h and the percentage of infected cells was detected
on CytoFLEX (Beckman, Brea, CA, USA).

2.9. Analysis of Interferon Sensitivity

Caco2 cells were grownup to 80% confluence in 12–well tissue culture plates. They
were then treated with human IFNa2b (5000 U/mL) (Beyotime, Shanghai, China) for 12 h
before inoculation with RV at the indicated MOI, and were incubated at 37 ◦C for a specified
time. Finally, the viral RNA load in the cells was assessed by RT–qPCR, and the expression
of IFN–induced proteins was detected by Western blot.

2.10. Quantitative Real–Time PCR

RNA was purified according to the manufacturer’s instructions (Life technologies,
Carlsbad, CA, USA). Total RNA (500 ng) was used as template and was reverse–transcribed
to cDNA using M–MLV reverse transcriptase (Promega, Madison, WI, USA). RT–qPCR was
performed using SYBR Green Master Mix (TOYOBO, Osaka, Japan) on a BIO–RAD CFX96
Real–Time PCR System (BIO–RAD, Singapore). For relative quantitation analysis, samples
were normalized to the expression of housekeeping gene glyceraldehyde–3–phosphate
dehydrogenase (GAPDH). The specific primers used were as follows:

Primer Sequence (5′–3′)

RV–NSP5–F TCTATTGGTAGGAGTGAACA
RV–NSP5–R ATGAATCCATAGACACGCCA

IFITM3–F ATGTCGTCTGGTCCCTGTTC
IFITM3–R GTCATGAGGATGCCCAGAAT
GAPDH–F ACCCACTCCTCCACCTTTGAC
GAPDH–R TGTTGCTGTAGCCAAATTCGTT

2.11. Western Blotting

MDCK and Caco2 cells were infected with RV. After infection for an indicated time,
the total cell proteins were extracted with IP (Beyotime, Shanghai, China) with 1 mM PMSF
(Beyotime, Shanghai, China) on ice for 15 min. The lysates were briefly sonicated, and the
concentration of protein in the lysates was assessed with the BCA protein assay reagent
(Beyotime, Shanghai, China). The lysates were further denatured by a 10 min incubation
in a sample buffer (Phygene, Fuzhou, China) at 100 ◦C. A certain amount of cell lysates
were separated by SDS–polyacrylamide gel electrophoresis and then transferred onto
nitrocellulose membranes (Millipore, MA, USA), which were incubated in blocking buffer
(5% non–fat milk powder in Tris–buffered saline containing 0.1% Tween 20 (TBS–T)) for 1 h
at room temperature. Subsequently, the membrane was incubated in the primary antibody
for 16 h at 4 ◦C. Lastly, the membranes were washed with TBS–T, and then incubated with
horseradish peroxidase–conjugated (HRP) antibody for 1 h at room temperature. After a
further wash in TBS–T, the enhanced chemiluminescence detection kit (Pierce Biotechnology,
Waltham, MA, USA) was used, and the protein bands were detected. Regarding the protein
of similar size, such as RV–VP6 (45 kDa) and β–actin (43 kDa), the membrane was washed
using stripping buffer (Beyotime, Shanghai, China) to strip previous antibodies, and was
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then incubated in the next primary antibody. The change in abundance was determined
by densitometric analysis. Anti–IFITM3, anti–GAPDH and anti–β–actin antibodies were
purchased from Proteintech (Wuhan, China); the anti–RV antibody was purchased from
Sata (Santa Cruz, Dallas, TX, USA).

2.12. Immunofluorescence

Cells (4 × 104) were grown in 24—well tissue culture plates and incubated with RV at
various MOI at 37 ◦C for an indicated time. Cells were fixed with 4% paraformaldehyde for
30 min and washed twice with PBS. Then cells were permeabilized with 0.1% Triton X–100,
and blocked in PBS with 2% bovine serum. Cells were then incubated with mouse anti–RV
antibodies (1:1000) in PBST for 1 h at room temperature and washed twice with PBS–T.
Subsequently, cells were incubated with the goat anti–mouse FITC–conjugated antibody
(1:1000) (Abcam, Cambridge, UK) in PBST for 1 h at room temperature. Cell nuclei were
stained by DAPI (Invitrogen, Carlsbad, CA, USA). Cells were washed twice with PBS.
Fluorescence was detected and imaged using a fluorescence microscope (EVOSTM M5000
imaging system; Thermo Fisher Scientific Bothell, WA, USA). Images were analyzed using
Adobe Illustrator software. All presented micrographs are representative images of three
representative experiments and field images were chosen at random, and the percentage of
infected cells was calculated using ImageJ.

2.13. Statistics and Reproducibility

Unless otherwise stated, all experiments were repeated at least three times. The
data were presented as means ± standard deviation (SD). SPSS 13.0 and GraphPad Prism
9 software were used for statistical analyses. All of the micrographs shown are representa-
tive images of three different experiments, as indicated by the legends in the figures. The
p–values between the two groups for the quantitative data of the indicated experiments
were determined using an unpaired t–test. Furthermore, for results involving multiple
groups, one–way ANOVA was used. p values of less than 0.05 were considered significant
between the two groups.

3. Results
3.1. Type I IFN Inhibits RV Infection

The effects of type I IFN on RV strain Wa were investigated by preincubating Caco2
cells with IFNa2b (Biolegend, San Diego, CA, USA) for 12 h. This was followed by RV
infection for a certain time. As shown in the RT–qPCR results, Wa infection was signif-
icantly limited by IFNa2b (5000 U/mL), and the inhibitory effect of IFNa2b treatment
group reached more than eight times that of the mock group at 6 h after viral infection.
(Figure 1A). Western blot results also showed that IFNa2b restricted and delayed RV repli-
cation, especially in the early stage of RV infection, because the RV–VP6 protein band in
the IFNa2b treated group was invisible for the first 6 h (Figure 1B).

3.2. Type I IFN and RV Infection Induce the Expression of IFITM3

IFITM3 acts as a type of ISG, as we mentioned above, and the mRNA and protein were
examined after IFNa2b (5000 U/mL) treatment on Caco2 cells. As shown in Figure 2A,
the RNA transcription of IFITM3 was upregulated after stimulation for 6 h, and was sig-
nificantly upregulated at 12 and 24 h. Subsequently, IFITM3 protein analysis indicated
that it also obviously increased with time before 24 h (Figure 2D). Altogether, these results
demonstrated that IFNa2b upregulated IFITM3 expression transcriptionally and trans-
lationally. IFITM3 exhibits a broad range of antiviral effects, and is highly expressed in
many mammalian cells. In order to analyze whether IFITM3 increased when Caco2 cells
were infected by the Wa strain, we tested the mRNA of IFITM3. It showed that Wa–NSP5
significantly increased after infection for 6 h, and reached the maximum at 24 h (Figure 2B).
At the same time, IFITM3 significantly increased after infection for 36 h (Figure 2C). It was
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shown that there was background IFITM3 expression in Caco2 cells, which was further
induced after infection (Figure 2E).
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analysis of the strain Wa–NSP5 in Caco2 cells infected with the strain Wa at 0.2 MOI for the indicated
time. (C) RT–qPCR analysis of IFITM3 in Caco2 cells infected with the strain Wa at 0.2 MOI for the
indicated time. (D) Western blot analysis of IFITM3 in Caco2 cells after being incubated with IFNa2b
(5000 U/mL) for the indicated time. (E) Western blot analysis of the strain Wa–VP6 and IFITM3 in
Caco2 cells infected with the Wa strain at 0.2 MOI for certain time (A–C) Results represented the
mean ± SD and were measured in technical duplicates, n = 3. *, p < 0.05; **, p < 0.01; ***, p < 0.001 and
****, p < 0.0001 (Student’s t test).

3.3. Over–Expression of IFITM3 Limits RV Infection

In order to evaluate the role of IFITM3 in RV infection, MDCK–Tet3G–IFITM3 cells
stably over–expressing IFITM3 were previously generated based on the Tet–On 3G sys-
tem [35]. MDCK–Tet3G–IFITM3 cells were cultured in DMEM for 24 h, DMEM containing
Dox or DMSO, respectively. IFITM3 was tested by RT–qPCR and Western blot. Results indi-
cated that DMSO almost had no influence on the mRNA of IFITM3, and DOX significantly
stimulated IFITM3 expression (Figure 3A). Western blot showed that IFITM3 was higher in
Dox–treated cells than DMSO–treated cells (There is very low background IFITM3 expres-
sion in MDCK–Tet3G–IFITM3 cells, to the point of being invisible) (Figure 3I). Thereafter,
MDCK–Tet3G–IFITM3 cells were infected with different RV strains at 0.2 MOI for 24 h and
48 h, and VP6 were examined by RT–qPCR. This indicated that MDCK–Tet3G–IFITM3 cells
induced by Dox significantly limited the infection of MSLH14 strain, Wa strain and SA11
strain (Figure 3E–G). Next, viral titers were measured by TCID50, and the results showed
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that there were significant decreases in titers for different strains of RV in Dox–treated
MDCK–Tet3G–IFITM3 cells (Figure 3B–D). Furthermore, Wa–VP6 and MSLH14–VP6 were
further evaluated by Western blot after infection. A lower VP6 was observed in Dox–treated
cells than in DMSO–treated cells (Figure 3H,I). Therefore, these results showed that IFITM3
inhibited infection of different RV strains.
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Figure 3. Over–expression of IFITM3 inhibits RV replication in MDCK–Tet3G–IFITM3 cells.
(A) RT–qPCR analysis of IFITM3 in MDCK–Tet3G–IFITM3 cells after DOX and DMSO treatment.
(B–D) Infectious progeny viral titers in MDCK–Tet3G–IFITM3 cells with or without DOX treatment.
The viral titers of the Wa strain, SA11 strain and MSLH14 strain in cells were determined by TCID50.
(E–G) RT–qPCR analysis of VP6 in MDCK–Tet3G–IFITM3 cells infected with the Wa strain, SA11
strain and MSLH14 strain, respectively, at 0.2 MOI for the indicated time. (H) Western blot analysis
of Wa–VP6 in MDCK–Tet3G–IFITM3 cells after DOX and DMSO treatment. (I) Western blot analysis
of MSLH14–VP6 in MDCK–Tet3G–IFITM3 cells after DOX and DMSO treatment. (A–G) Results
represented the mean ± SD and were measured in technical duplicates, n = 3. *, p < 0.05; **, p < 0.01;
***, p <0.001 (Student’s t test).

3.4. Knockout of IFITM3 Enhances RV Infection

In order to further explore the intrinsic role of IFITM3 upon RV infection in Caco2
cells, CRISPR/Cas9 technology was utilized to generate Caco2–∆IFITM3 cell strains. After
DNA sequencing, a monoclonal cell strain was obtained, and Western blot also validated
that the IFITM3 protein was undetectable in Caco2–∆IFITM3 cells compared with WT cells,
even after IFNa2b treatment for 24 h (Figure 4A), suggesting that the IFITM3–knockout cell
strain is successfully generated. Next, Caco2–∆IFITM3 cells were infected with different
RV strains in order to further investigate the intrinsic effects of the IFITM3 protein on
RV infection. The RV–NSP5 was examined by RT–qPCR. The results indicated that the
infection of the Wa strain, SA11 strain and MSLH14 strain in Caco2–∆IFITM3 cells were
enhanced to different degrees in contrast with control cells (Figure 4E–G). Meanwhile, viral
titers were measured by TCID50, and results showed that viral titers were significantly
increased in Caco2–∆IFITM3 cells no matter which the strain was (Figure 4B–D). Then,
Wa–VP6 was further tested by Western blot after infection for different time. The higher
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VP6 protein level was observed in Caco2–∆IFITM3 cells, and the increase was most evident
at 6 h (Figure 4H). Overall, these results suggested that the absence of intrinsic IFITM3
protein promoted RV infection. Altogether, all of these results indicated that the absence of
IFITM3 promotes RV infection.
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Figure 4. Knockout of IFITM3 enhances RV replication in Caco2 cells. (A) Western blot analysis of
IFITM3 in Caco2 and Caco2–∆IFITM3 cells with or without IFNa2b pre–treatment. (B–D) Infectious
progeny viral titers in Caco2 and Caco2–∆IFITM3 cells. The viral titers of the Wa strain, SA11 strain
and MSLH14 strain were determined by TCID50. (E–G) RT–qPCR analysis of Wa–NSP5 in Caco2
and Caco2–∆IFITM3 cells infected with the Wa strain, SA11 strain and MSLH14 strain, respectively,
at 0.2 MOI for the indicated time. (H) Western blot analysis of Wa–VP6 in Caco2 and Caco2–∆IFITM3
cells after being infected with the Wa strain. (B–G) Results represented the mean ± SD and were
measured in technical duplicates, n = 3. ns, p > 0.05; *, p < 0.05; **, p < 0.01 (Student’s t test).

3.5. Knockout of IFITM3 Attenuates the IFN–Induced Anti–RV Activity

As previously indicated, IFNa2b remarkably upregulated IFITM3 expression. Mean-
while, the infection of RV was significantly restricted by IFNa2b treatment. Therefore, in
order to examine whether IFN–induced anti–RV activity was influenced when IFITM3
was knocked out, RV infection was monitored in Caco2–∆IFITM3 and Caco2 cells with or
without IFNa2b treatment. The Wa strain was chosen to develop the study, and Caco2–
∆IFITM3 and Caco2 cells were treated with IFNa2b (5000 U/mL) for 12 h before cells
were infected with the Wa strain. Then, the Wa–NSP5 and Wa–VP6 were, respectively,
determined by RT–qPCR and Western blot at 12 h post–infection. As the RT–qPCR results
indicated, Caco2–∆IFITM3 cells were significantly less sensitive to IFNa2b in comparison to
Caco2 cells, since the Wa–NSP5 of infected Caco2 cells with IFNa2b pretreatment decreased,
on average, by 52 folds, while it only decreased by 2 folds on average in Caco2–∆IFITM3
cells. The reduction was significantly lower when IFITM3 was absent in cells (p < 0.01)
(Figure 5A). Wa–VP6 was simultaneously examined. As shown in Figure 5B, the antiviral
capacity of IFNa2b was also attenuated, because Wa–VP6 decreased more in Caco2 cells
than that in Caco2–∆IFITM3 cells (2.7–fold versus 1.6–fold) (Figure 5C). Meanwhile, an
immunofluorescence assay was taken in order to confirm this phenomenon, and, as the
exemplary images indicated, Caco2–∆IFITM3 cells still showed more severe infection after
IFNa2b treatment (Figure 5D). The number of infected cells in two groups was counted
using ImageJ, and the results also showed that there was a more dramatic decline in the
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proportion of infected Caco2 cells than that in Caco2–∆IFITM3 cells (Figure 5E). Consider-
ing all of the above results, it was found that IFNa2b still restricted Wa strain replication
in Caco2–∆IFITM3 cells even if IFITM3 was absent, which indicated that there were some
other anti–RV pathways in cells in response to Type I IFN.
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Figure 5. Knockout of IFITM3 attenuates the IFN–induced anti–RV activity. (A) RT–qPCR analysis
of Wa–NSP5 in Caco2 and Caco2–∆IFITM3 cells that were, respectively, infected with the Wa strain
at 0.2 MOI for 24 h after IFNa2b treatment for 12 h. (B) Western blot analysis of Wa–VP6 in Caco2
and Caco2–∆IFITM3 cells infected with the Wa strain, respectively, at 0.2 MOI for 24 h after IFNa2b
treatment for 12 h. (C) Bands analysis from panel B were quantified using ImageJ software and
normalized to the reference genes β–actin. (D) Immunofluorescence analysis (40×) of Wa strain
infection for 24 h in Caco2 and Caco2–∆IFITM3 cells after IFNa2b treatment for 12 h. (E) Declined per-
centages of infected cells in Caco2 and Caco2–∆IFITM3 cells after IFNa2b treatment. (A,C,E) Results
represented the mean ± SD and were measured in technical duplicates, n = 3. ns, p > 0.05; *, p < 0.05;
**, p < 0.01; ***, p <0.001 (Student’s t test).

3.6. IFITM3 Restricts RV Entry and Delays the Dynamics of RV into the Cytoplasm

Next, in order to determine in which stage IFITM3 restricts RV infection, it was
hypothesized that IFITM3 would act in the virion disassembly stage on endosomes and
not at the stage of receptor recognition and target cell binding. The assay was carried
out as follows in Figure 6A. Caco2 or Caco2–∆IFITM3 cells were adsorbed with the Wa
strain at 5 MOI at 4 ◦C for 1 h, and then binding viruses were detected by Wa–NSP5
using RT–qPCR. Results showed that no differences were observed in infected cells in the
presence or absence of IFITM3 (Figure 6B). After binding, cells were incubated for another
1 h at 37 ◦C, and mRNA of Wa–NSP5 was detected. As results indicated, there were more
infections in Caco2–∆IFITM3 than that in Caco2 cells by roughly two–fold (Figure 6C).

NH4Cl could restrict Wa strain disassembly by inhibiting the pH decrease required
for efficient infection in endosomes [29]. The effects of NH4Cl on the infectivity of the Wa
strain in Caco2 cells and Caco2–∆IFITM3 cells was tested in order to study whether IFITM3
had an effect on Wa release in endosomes. The monolayers of Caco2 and Caco2–∆IFITM3
cells were adsorbed with Wa at 4 ◦C for 1 h, and then cells were washed with cold PBS.
After adsorption, cells were treated with NH4Cl (0, 20, 40 and 60 mmol/L) in different
concentrations and incubated at 37 ◦C for 24 h in order to determine an appropriate
concentration, then they were analyzed by flow cytometry. As results indicated, 20 mM
NH4Cl could significantly inhibit Wa infection (Figure 6D), so 20 mM NH4Cl was chosen
to carry out the following experiments.
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Figure 6. IFITM3 inhibits RV entry and delays Wa strain release from endosomes to cytoplasm in
Caco2 cells. (A) The model of classical endocytic pathway of RV. Cell entry of the Wa strain began
with the binding with glycans on the cell surface. After fusion with the membrane, RV was delivered
from early endosomes to maturing endosomes, and finally reached late endosomes that provided
the environment to enter the cytosol [28]. (B) RT–qPCR analysis of Wa–NSP5 in Caco2 and Caco2–
∆IFITM3 cells that were infected with Wa strain, respectively, at 5 MOI at 4 ◦C for 1 h. (C) RT–qPCR
analysis of Wa–NSP5 in Caco2 and Caco2–∆IFITM3 cells that were incubated, respectively, at 37 ◦C
for a further 1 h after binding. (D) Flow cytometry analysis of the percentage of infected Caco2 cells
after NH4Cl treatment in different concentrations. (E) Flow cytometry analysis of the percentage
of infected Caco2 and Caco2–∆IFITM3 cells after 20 mM NH4Cl treatment. Results represented the
mean ± SD and were measured in technical duplicates, n = 3. ns, p > 0.05; *, p < 0.05; **, p < 0.01;
****, p < 0.001 (Student’s t test).

After adsorption, cells were either mock–treated or treated with NH4Cl (20 mM).
NH4Cl was added at various intervals (0, 30, 60 and 120 min) in order to prevent endosome
acidification. Then, cells were incubated for 12 h and scored for the percentage of infected
cells by flow cytometry (Figure 6E). The results showed that NH4Cl significantly limited
Wa infection at early stage, and Wa escaped the NH4Cl blockade at around 120 min in
Caco2–∆IFITM3 cells, while Wa infection was still significantly restricted at the same time
in Caco2 cells, which indicated that IFITM3 may delay the kinetics of RV endosomal escape.
Given the above results, these data indicate that IFITM3 may restrict RV infection at an
early stage.

4. Discussion

The type I IFN system limits viral infection through many mechanisms, and activation
of this signaling pathway induces the expression of hundreds of ISGs, which initiate or
regulate the immune response and, ultimately, perform antiviral functions [36]. IFITM3
was first identified in 1984 as an ISG, and was a member of the IFITM proteins family [37].
The distribution and expression level of IFITM3 in cells varies depending on cell or tissue
type. IFITM3 protein is predominantly expressed in endosomes, and co–localizes with late
endosomes and lysosomal markers, such as CD63 and LAMP2, in most cells [37]. Many
functional studies have revealed that IFITM3 has broad–spectrum antiviral activities, and
has been shown to resist a variety of viruses. Now there is a crucial question of why it
has broad–spectrum antiviral properties. Although different viruses enter into the cells in
different ways, there are still some similar mechanisms required for viruses to penetrate
into host cells. Both enveloped and non–enveloped viruses enter cells through clathrin or
caveolae dependent as well as non–caveolae, non–clathrin mediated endocytosis [38]. After



Viruses 2022, 14, 2407 11 of 13

endocytosis, enveloped viral penetration involves membrane fusion, and non–enveloped
viruses are mediated by pore formation or membrane lysis [39–42]. Accordingly, some
similar pathway requirements of viruses in their entry provide favorable targets for cellular
antiviral mechanisms, as certain protein families may resist many potential viruses. We
hypothesized that IFITM3 alters RV escape dynamics, possibly by directly or indirectly af-
fecting endosomal function. As expected, the results are also consistent with the prediction
that IFITM3 may affect RV in endosomes. A large number of enveloped and non–enveloped
viruses enter cells via the endosomal pathway, such as SARS-Cov-2 [43], HIV-1 [44] and Re-
ovirus [21], which probably explains why IFITM3 has broad–spectrum antiviral functions.
Therefore, IFITM3 plays a significant role in preventing viral penetration into cells.

Those viruses restricted by IFITM3 protein are more likely to fuse with host cell mem-
branes in endosomes. Previous studies have shown that influenza viruses penetrated into
cells through endosomal fusion, and IFITM3 has been widely shown to have an inhibitory
effect on influenza viruses. IFITM3 also slowed down the proteolysis of reovirus capsid
proteins in endosomes, preventing reovirus releasing to the cytoplasm. In fact, infectious
subvirion particles (ISVPs) with equivalent infectivity to reovirus virions, which bypass the
endosomal proteases, fuse at the plasma membrane, since there are no differences in the
percentage of cells infected by ISVPs regardless of the presence or absence of IFITM3 [21].
When retroviruses, consisting of SARS coronavirus entry proteins, were induced by trypsin
to bypass endosomes penetrate cells, IFITM3–mediated resistance was bypassed. However,
as an enveloped virus penetrating cells through the endosomal route, IFITM3 does not
have effects on adenovirus [1]. In this study, the Wa strain, a non–enveloped virus, was also
shown to enter cells through endosomal penetration. Results showed that IFITM3 inhibited
RV infection both in Caco2 cells and MDCK cells, despite deriving from different species
with different genotypes, including the human–derived Wa strain, simian strain SA11 and
bat strain MSLH14. In summary, it is not definite that IFITM3 restricts viruses through
endosomal penetration, and thus, how these unaffected viruses escape the affection of
IFITM3 needs further study, which may be helpful in explaining the accurate mechanism.
In addition, since the RV genome includes 11 segments, it is more likely to have a large
number of cross–recombination variants, which also has been proven [45]. Hence, whether
IFITM3 resists other RV variants is unclear, and more studies are necessary in the future.

5. Conclusions

In conclusion, it was demonstrated that IFITM3 restricted RV infection for the first
time and inhibited the cell entry of the human strain Wa. Additionally, IFITM3 possi-
bly functioned in endosomes to delay the dynamics of endosomal escape to cytoplasm.
However, data on the more precise antiviral mechanism of IFITM3 is still a long way off.

Author Contributions: Conceptualization, C.L. and N.J.; methodology, Z.P. and P.H.; validation,
Q.Q., L.L. and Y.J.; formal analysis, Z.P.; writing–original draft preparation, Z.P.; review and editing,
Z.P.; supervision, S.X.; C.L. and N.J.; project administration, C.L. and N.J.; funding acquisition, C.L.
and N.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program
of China [No. 2021YFD1801103–6], and the National Natural Science Foundation of China [No.
31972719]. The funders had no role in study design, data collection and analysis, decision to publish
or preparation of the manuscript.

Institutional Review Board Statement: This article does not contain any experiments with human
or animal subjects performed by any of the authors.

Informed Consent Statement: Written informed consent was obtained from all subjects involved in
the study. Written informed consent has been obtained from the subjects to publish this paper.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors upon request, with consideration of the participants’ privacy and ethical rights.

Conflicts of Interest: The authors declare no conflict of interest.



Viruses 2022, 14, 2407 12 of 13

References
1. Diamond, M.S.; Farzan, M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 2013, 13, 46–57.

[CrossRef] [PubMed]
2. Schonfelder, K.; Breuckmann, K.; Elsner, C.; Dittmer, U.; Fistera, D.; Herbstreit, F.; Risse, J.; Schmidt, K.; Sutharsan, S.; Taube,

C.; et al. The influence of IFITM3 polymorphisms on susceptibility to SARS-CoV-2 infection and severity of COVID-19. Cytokine
2021, 142, 155492. [CrossRef] [PubMed]

3. Lu, J.; Pan, Q.; Rong, L.; He, W.; Liu, S.L.; Liang, C. The IFITM proteins inhibit HIV-1 infection. J. Virol. 2011, 85, 2126–2137.
[CrossRef] [PubMed]

4. Brass, A.L.; Huang, I.C.; Benita, Y.; John, S.P.; Krishnan, M.N.; Feeley, E.M.; Ryan, B.J.; Weyer, J.L.; van der Weyden, L.; Fikrig,
E.; et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 2009,
139, 1243–1254. [CrossRef] [PubMed]

5. Savidis, G.; Perreira, J.M.; Portmann, J.M.; Meraner, P.; Guo, Z.; Green, S.; Brass, A.L. The IFITMs Inhibit Zika Virus Replication.
Cell Rep. 2016, 15, 2323–2330. [CrossRef] [PubMed]

6. Everitt, A.R.; Clare, S.; Pertel, T.; John, S.P.; Wash, R.S.; Smith, S.E.; Chin, C.R.; Feeley, E.M.; Sims, J.S.; Adams, D.J.; et al. IFITM3
restricts the morbidity and mortality associated with influenza. Nature 2012, 484, 519–523. [CrossRef] [PubMed]

7. Allen, E.K.; Randolph, A.G.; Bhangale, T.; Dogra, P.; Ohlson, M.; Oshansky, C.M.; Zamora, A.E.; Shannon, J.P.; Finkelstein, D.;
Dressen, A.; et al. SNP-mediated disruption of CTCF binding at the IFITM3 promoter is associated with risk of severe influenza
in humans. Nat. Med. 2017, 23, 975–983. [CrossRef]

8. Gorman, M.J.; Poddar, S.; Farzan, M.; Diamond, M.S. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection
and Pathogenesis. J. Virol. 2016, 90, 8212–8225. [CrossRef]

9. Foster, T.L.; Wilson, H.; Iyer, S.S.; Coss, K.; Doores, K.; Smith, S.; Kellam, P.; Finzi, A.; Borrow, P.; Hahn, B.H.; et al. Resistance of
Transmitted Founder HIV-1 to IFITM-Mediated Restriction. Cell Host Microbe 2016, 20, 429–442. [CrossRef]

10. Desai, T.M.; Marin, M.; Chin, C.R.; Savidis, G.; Brass, A.L.; Melikyan, G.B. IFITM3 restricts influenza A virus entry by blocking
the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog. 2014, 10, e1004048. [CrossRef]

11. Suddala, K.C.; Lee, C.C.; Meraner, P.; Marin, M.; Markosyan, R.M.; Desai, T.M.; Cohen, F.S.; Brass, A.L.; Melikyan, G.B.
Interferon-induced transmembrane protein 3 blocks fusion of sensitive but not resistant viruses by partitioning into virus-carrying
endosomes. PLoS Pathog. 2019, 15, e1007532. [CrossRef] [PubMed]

12. Li, K.; Markosyan, R.M.; Zheng, Y.M.; Golfetto, O.; Bungart, B.; Li, M.; Ding, S.; He, Y.; Liang, C.; Lee, J.C.; et al. IFITM proteins
restrict viral membrane hemifusion. PLoS Pathog. 2013, 9, e1003124. [CrossRef]

13. Lin, T.Y.; Chin, C.R.; Everitt, A.R.; Clare, S.; Perreira, J.M.; Savidis, G.; Aker, A.M.; John, S.P.; Sarlah, D.; Carreira, E.M.; et al.
Amphotericin B increases influenza A virus infection by preventing IFITM3-mediated restriction. Cell Rep. 2013, 5, 895–908.
[CrossRef] [PubMed]

14. Rahman, K.; Coomer, C.A.; Majdoul, S.; Ding, S.Y.; Padilla-Parra, S.; Compton, A.A. Homology-guided identification of a
conserved motif linking the antiviral functions of IFITM3 to its oligomeric state. eLife 2020, 9, e58537. [CrossRef] [PubMed]

15. Tartour, K.; Appourchaux, R.; Gaillard, J.; Nguyen, X.N.; Durand, S.; Turpin, J.; Beaumont, E.; Roch, E.; Berger, G.; Mahieux,
R.; et al. IFITM proteins are incorporated onto HIV-1 virion particles and negatively imprint their infectivity. Retrovirology 2014,
11, 103. [CrossRef] [PubMed]

16. Compton, A.A.; Bruel, T.; Porrot, F.; Mallet, A.; Sachse, M.; Euvrard, M.; Liang, C.; Casartelli, N.; Schwartz, O. IFITM proteins
incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe 2014, 16, 736–747. [CrossRef]

17. Lanz, C.; Schotsaert, M.; Magnus, C.; Karakus, U.; Hunziker, A.; Sempere Borau, M.; Martinez-Romero, C.; Spieler, E.E.; Gunther,
S.C.; Moritz, E.; et al. IFITM3 incorporation sensitizes influenza A virus to antibody-mediated neutralization. J. Exp. Med. 2021,
218, e20200303. [CrossRef]

18. Tartour, K.; Nguyen, X.N.; Appourchaux, R.; Assil, S.; Barateau, V.; Bloyet, L.M.; Gaillard, J.B.; Confort, M.P.; Escudero-Perez, B.;
Gruffat, H.; et al. Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly
conserved antiviral properties of IFITMs. PLoS Pathog. 2017, 13, e1006610. [CrossRef]

19. Ahi, Y.S.; Yimer, D.; Shi, G.; Majdoul, S.; Rahman, K.; Rein, A.; Compton, A.A. IFITM3 Reduces Retroviral Envelope Abundance
and Function and Is Counteracted by glycoGag. mBio 2020, 11, e03088-19. [CrossRef]

20. Wang, X.; Wu, Z.; Li, Y.; Yang, Y.; Xiao, C.; Liu, X.; Xiang, X.; Wei, J.; Shao, D.; Liu, K.; et al. p53 promotes ZDHHC1-mediated
IFITM3 palmitoylation to inhibit Japanese encephalitis virus replication. PLoS Pathog. 2020, 16, e1009035. [CrossRef]

21. Anafu, A.A.; Bowen, C.H.; Chin, C.R.; Brass, A.L.; Holm, G.H. Interferon-inducible transmembrane protein 3 (IFITM3) restricts
reovirus cell entry. J. Biol. Chem. 2013, 288, 17261–17271. [CrossRef] [PubMed]

22. Xu, J.; Qian, P.; Wu, Q.; Liu, S.; Fan, W.; Zhang, K.; Wang, R.; Zhang, H.; Chen, H.; Li, X. Swine interferon-induced transmembrane
protein, sIFITM3, inhibits foot-and-mouth disease virus infection in vitro and in vivo. Antivir. Res. 2014, 109, 22–29. [CrossRef]
[PubMed]

23. Xing, H.; Ye, L.; Fan, J.; Fu, T.; Li, C.; Zhang, S.; Ren, L.; Bai, J. IFITMs of African Green Monkey Can Inhibit Replication of SFTSV
but Not MNV In Vitro. Viral Immunol. 2020, 33, 634–641. [CrossRef] [PubMed]

24. Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global,
regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic
analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [CrossRef]

http://doi.org/10.1038/nri3344
http://www.ncbi.nlm.nih.gov/pubmed/23237964
http://doi.org/10.1016/j.cyto.2021.155492
http://www.ncbi.nlm.nih.gov/pubmed/33711707
http://doi.org/10.1128/JVI.01531-10
http://www.ncbi.nlm.nih.gov/pubmed/21177806
http://doi.org/10.1016/j.cell.2009.12.017
http://www.ncbi.nlm.nih.gov/pubmed/20064371
http://doi.org/10.1016/j.celrep.2016.05.074
http://www.ncbi.nlm.nih.gov/pubmed/27268505
http://doi.org/10.1038/nature10921
http://www.ncbi.nlm.nih.gov/pubmed/22446628
http://doi.org/10.1038/nm.4370
http://doi.org/10.1128/JVI.00581-16
http://doi.org/10.1016/j.chom.2016.08.006
http://doi.org/10.1371/journal.ppat.1004048
http://doi.org/10.1371/journal.ppat.1007532
http://www.ncbi.nlm.nih.gov/pubmed/30640957
http://doi.org/10.1371/journal.ppat.1003124
http://doi.org/10.1016/j.celrep.2013.10.033
http://www.ncbi.nlm.nih.gov/pubmed/24268777
http://doi.org/10.7554/eLife.58537
http://www.ncbi.nlm.nih.gov/pubmed/33112230
http://doi.org/10.1186/s12977-014-0103-y
http://www.ncbi.nlm.nih.gov/pubmed/25422070
http://doi.org/10.1016/j.chom.2014.11.001
http://doi.org/10.1084/jem.20200303
http://doi.org/10.1371/journal.ppat.1006610
http://doi.org/10.1128/mBio.03088-19
http://doi.org/10.1371/journal.ppat.1009035
http://doi.org/10.1074/jbc.M112.438515
http://www.ncbi.nlm.nih.gov/pubmed/23649619
http://doi.org/10.1016/j.antiviral.2014.06.008
http://www.ncbi.nlm.nih.gov/pubmed/24973762
http://doi.org/10.1089/vim.2020.0132
http://www.ncbi.nlm.nih.gov/pubmed/33185509
http://doi.org/10.1016/S0140-6736(16)31678-6


Viruses 2022, 14, 2407 13 of 13

25. Cates, J.E.; Tate, J.E.; Parashar, U. Rotavirus vaccines: Progress and new developments. Expert Opin. Biol. Ther. 2022, 22, 423–432.
[CrossRef]

26. Angel, J.; Franco, M.A.; Greenberg, H.B. Rotavirus vaccines: Recent developments and future considerations. Nat. Rev. Microbiol.
2007, 5, 529–539. [CrossRef]

27. Rodriguez, J.M.; Luque, D. Structural Insights into Rotavirus Entry. Adv. Exp. Med. Biol. 2019, 1215, 45–68. [CrossRef]
28. Arias, C.F.; Lopez, S. Rotavirus cell entry: Not so simple after all. Curr. Opin. Virol. 2021, 48, 42–48. [CrossRef]
29. Gutierrez, M.; Isa, P.; Martin, C.S.-S.; Perez-Vargas, J.; Espinosa, R.; Arias, C.F.; Lopez, S. Different rotavirus strains enter MA104

cells through different endocytic pathways: The role of clathrin-mediated endocytosis. J. Virol. 2010, 84, 9161–9169. [CrossRef]
30. Arias, C.F.; Silva-Ayala, D.; López, S. Rotavirus entry: A deep journey into the cell with several exits. J. Virol. 2015, 89, 890–893.

[CrossRef]
31. Settembre, E.C.; Chen, J.Z.; Dormitzer, P.R.; Grigorieff, N.; Harrison, S.C. Atomic model of an infectious rotavirus particle. EMBO

J. 2011, 30, 408–416. [CrossRef] [PubMed]
32. He, H.; Zhou, D.; Fan, W.; Fu, X.; Zhang, J.; Shen, Z.; Li, J.; Li, J.; Wu, Y. Cyclophilin A inhibits rotavirus replication by facilitating

host IFN-I production. Biochem. Biophys. Res. Commun. 2012, 422, 664–669. [CrossRef] [PubMed]
33. Tian, Z.; Zhang, J.; He, H.; Li, J.; Wu, Y.; Shen, Z. MiR-525-3p mediates antiviral defense to rotavirus infection by targeting

nonstructural protein 1. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 3212–3225. [CrossRef] [PubMed]
34. Li, C.; Du, S.; Tian, M.; Wang, Y.; Bai, J.; Tan, P.; Liu, W.; Yin, R.; Wang, M.; Jiang, Y.; et al. The Host Restriction Factor

Interferon-Inducible Transmembrane Protein 3 Inhibits Vaccinia Virus Infection. Front. Immunol. 2018, 9, 228. [CrossRef]
[PubMed]

35. Cao, T.T.; Du, S.W.; Xu, W.; Xing, B.; Zhao, F.; Wang, M.P.; Zhu, Y.L.; Bai, J.Y.; Tian, Y.F.; Liu, L.M.; et al. Establishment and
Functional Analysis of MDCK Cell Line Induced IFITM3 Expression Based on Tet-On 3G System. Chem. J. Chin. Univ. 2017, 38,
770–777.

36. Mesev, E.V.; LeDesma, R.A.; Ploss, A. Decoding type I and III interferon signalling during viral infection. Nat. Microbiol. 2019, 4,
914–924. [CrossRef]

37. Bailey, C.C.; Zhong, G.; Huang, I.C.; Farzan, M. IFITM-Family Proteins: The Cell’s First Line of Antiviral Defense. Annu. Rev.
Virol. 2014, 1, 261–283. [CrossRef]

38. Gruenberg, J.; van der Goot, F.G. Mechanisms of pathogen entry through the endosomal compartments. Nat. Rev. Mol. Cell Biol.
2006, 7, 495–504. [CrossRef]

39. Tsai, B. Penetration of nonenveloped viruses into the cytoplasm. Annu. Rev. Cell Dev. Biol. 2007, 23, 23–43. [CrossRef]
40. Más, V.; Melero, J.A. Entry of enveloped viruses into host cells: Membrane fusion. Sub-Cell. Biochem. 2013, 68, 467–487. [CrossRef]
41. Suomalainen, M.; Greber, U.F. Uncoating of non-enveloped viruses. Curr. Opin. Virol. 2013, 3, 27–33. [CrossRef] [PubMed]
42. Xia, X.; Wu, W.; Cui, Y.; Roy, P.; Zhou, Z.H. Bluetongue virus capsid protein VP5 perforates membranes at low endosomal pH

during viral entry. Nat. Microbiol. 2021, 6, 1424–1432. [CrossRef] [PubMed]
43. Prabhakara, C.; Godbole, R.; Sil, P.; Jahnavi, S.; Gulzar, S.E.; van Zanten, T.S.; Sheth, D.; Subhash, N.; Chandra, A.; Shivaraj,

A.; et al. Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors.
PLoS Pathog. 2021, 17, e1009706. [CrossRef] [PubMed]

44. Fredericksen, B.L.; Wei, B.L.; Yao, J.; Luo, T.; Garcia, J.V. Inhibition of endosomal/lysosomal degradation increases the infectivity
of human immunodeficiency virus. J. Virol. 2002, 76, 11440–11446. [CrossRef]

45. Simsek, C.; Corman, V.M.; Everling, H.U.; Lukashev, A.N.; Rasche, A.; Maganga, G.D.; Binger, T.; Jansen, D.; Beller, L.; Deboutte,
W.; et al. At Least Seven Distinct Rotavirus Genotype Constellations in Bats with Evidence of Reassortment and Zoonotic
Transmissions. mBio 2021, 12, e02755-20. [CrossRef]

http://doi.org/10.1080/14712598.2021.1977279
http://doi.org/10.1038/nrmicro1692
http://doi.org/10.1007/978-3-030-14741-9_3
http://doi.org/10.1016/j.coviro.2021.03.011
http://doi.org/10.1128/JVI.00731-10
http://doi.org/10.1128/JVI.01787-14
http://doi.org/10.1038/emboj.2010.322
http://www.ncbi.nlm.nih.gov/pubmed/21157433
http://doi.org/10.1016/j.bbrc.2012.05.050
http://www.ncbi.nlm.nih.gov/pubmed/22609402
http://doi.org/10.1016/j.bbadis.2017.09.003
http://www.ncbi.nlm.nih.gov/pubmed/28890396
http://doi.org/10.3389/fimmu.2018.00228
http://www.ncbi.nlm.nih.gov/pubmed/29503647
http://doi.org/10.1038/s41564-019-0421-x
http://doi.org/10.1146/annurev-virology-031413-085537
http://doi.org/10.1038/nrm1959
http://doi.org/10.1146/annurev.cellbio.23.090506.123454
http://doi.org/10.1007/978-94-007-6552-8_16
http://doi.org/10.1016/j.coviro.2012.12.004
http://www.ncbi.nlm.nih.gov/pubmed/23332135
http://doi.org/10.1038/s41564-021-00988-8
http://www.ncbi.nlm.nih.gov/pubmed/34702979
http://doi.org/10.1371/journal.ppat.1009706
http://www.ncbi.nlm.nih.gov/pubmed/34252168
http://doi.org/10.1128/JVI.76.22.11440-11446.2002
http://doi.org/10.1128/mBio.02755-20

	Introduction 
	Materials and Methods 
	Cells 
	Viruses 
	Virus Titration 
	RV Infection 
	Over–Expression of IFITM3 in MDCK Cells 
	Knockout of IFITM3 in Caco2 Cells 
	Virus Binding and Entrying Assay 
	Endosomal Acidification Inhibition Assay 
	Analysis of Interferon Sensitivity 
	Quantitative Real–Time PCR 
	Western Blotting 
	Immunofluorescence 
	Statistics and Reproducibility 

	Results 
	Type I IFN Inhibits RV Infection 
	Type I IFN and RV Infection Induce the Expression of IFITM3 
	Over–Expression of IFITM3 Limits RV Infection 
	Knockout of IFITM3 Enhances RV Infection 
	Knockout of IFITM3 Attenuates the IFN–Induced Anti–RV Activity 
	IFITM3 Restricts RV Entry and Delays the Dynamics of RV into the Cytoplasm 

	Discussion 
	Conclusions 
	References

