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Abstract: Molecular interactions between respiratory syncytial virus (RSV) fusion protein (F protein)
and the cellular receptor Toll-like receptor 4 (TLR4) and myeloid differentiation factor-2 (MD-2)
protein complex are unknown. Thus, to reveal the detailed molecular interactions between them,
in silico analyses were performed using various bioinformatics techniques. The present simulation
data showed that the neutralizing antibody (NT-Ab) binding sites in both prefusion and postfusion
proteins at sites II and IV were involved in the interactions between them and the TLR4 molecule.
Moreover, the binding affinity between postfusion proteins and the TLR4/MD-2 complex was higher
than that between prefusion proteins and the TLR4/MD-2 complex. This increased binding affinity
due to conformational changes in the F protein may be able to form syncytium in RSV-infected
cells. These results may contribute to better understand the infectivity and pathogenicity (syncytium
formation) of RSV.

Keywords: respiratory syncytial virus; Toll-like receptor 4; myeloid differentiation factor-2; in silico;
docking simulation

1. Introduction

Respiratory syncytial virus (RSV), which belongs to the genus Orthopneumovirus of
Family Pneumoviridae, causes various respiratory illnesses, such as bronchitis, bronchioli-
tis, and pneumonia [1]. Moreover, RSV potentially causes fatal bronchiolitis/pneumonia
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in vulnerable populations, including infants, the elderly, and immunocompromised pa-
tients [2–4]. Thus, this viral infection is a major infectious disease burden, along with
influenza [5–7].

RSV consists of two major antigens: fusion protein (F protein) and attachment glyco-
protein (G protein) [1]. F protein plays essential roles in host cell infection and syncytium
formation [8]. Thus, this antigen is associated with the pathogenesis of the virus [9]. More-
over, two types of F proteins are confirmed: prefusion and postfusion proteins [1]. The
prefusion type changes into the postfusion type with drastic conformational changes [10,11].
The prefusion and postfusion proteins also show distinct antigenicity [12], but the molecu-
lar interactions among syncytium formation, prefusion proteins, and postfusion proteins
are unknown.

The F protein has antigenic domains defined by monoclonal antibody (mAb) competi-
tion and structural research of F protein-mAb complexes [13]. Moreover, the neutralizing
antibody (NT-Ab)-binding sites are divided into six non-overlapping regions (sites Ø, I, II,
III, IV, and V) on the prefusion protein [14]. Sites II and IV are displayed on the postfusion
protein surface, and specific mAbs against these sites have been used in clinical practice [15].
However, the precise mechanisms by which these antigenic sites cause RSV infection in
host cells have not been elucidated.

More than 10 types of Toll-like receptors have been found to be closely associated with
human innate immunity [16]. Among them, TLR4 (CD20) is mainly recognized in various
substances, including bacterial lipopolysaccharides (LPSs) and virus glycoproteins, leading
to innate immunity [17]. Moreover, TLR4 is a ligand for the RSV F protein [1,18]. However,
the detailed molecular interactions between the RSV F protein and TLR4 remain unclear.

Another molecule, myeloid differentiation factor-2 (MD-2), forms a complex with
TLR4 (TLR4/MD-2 complex) [19,20]. MD-2 molecules can bind to LPS and activate the
signaling pathways, including myeloid differentiation factor 88 (MyD88), resulting in a
response against bacterial infections [21,22]. However, the molecular interactions between
this molecule and the F protein are unknown.

Recent progress in bioinformatics technologies, i.e., the docking simulation method,
allows us to analyze detailed protein–protein interactions. Thus, to better understand the
molecular interactions between the RSV F protein and TLR4, detailed docking simulation
analyses were performed.

2. Materials and Methods
2.1. Protein Preparation

Three-dimensional (3D) structures of RSV prefusion protein (PDBID: 4JHW), post-
fusion protein (PDBID: 3RKI), and the human TLR4/MD-2/LPS complex (PDBID: 3FXI)
were obtained from Protein Data Bank Japan (PDBJ) (https://pdbj.org/, accessed on
16 September 2021). Subsequently, the 3D structures of TLR4/MD-2 and LPS were sep-
arated from the TLR4/MD-2/LPS complexes. Based on a previous report, six antigenic
sites in the prefusion protein were identified: site Ø: Ser62–Leu96 and Leu195–Asn227;
site I: Asn27–Leu45, Pro312–Thr318, and Glu378–Pro389; site II: Asn254–Asn277; site III:
Ser46–Thr54, Val301–Thr311, Asn345–Phe352, and Cys367–Glu378; site IV: Cys422–Gly471;
and site V: Ser55–Leu61, Ser146–Asp194, and Ser287–Val300 [23].

2.2. Protein–Protein Docking and Optimal Docking Model Selection

We employed the HDOCK web server (http://hdock.phys.hust.edu.cn/, accessed
on 1 October 2021) to perform molecular docking between the F protein and TLR4/MD-2.
Six antigenic sites (Ø and I–V) in the prefusion protein were specified as the binding sites
of the present docking simulation [24]. These binding site residues were not designated
in TLR4/MD-2. For the prefusion protein, the top 20 docking models were determined
from the generated models at each antigenic site based on the docking score of HDOCK,
and a total of 120 docking models were created. In addition to HDOCK, two indepen-
dent scoring functions, HawkDock (http://cadd.zju.edu.cn/hawkdock/, accessed on
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15 February 2022) and PPI-Affinity (https://protdcal.zmb.uni-due.de/PPIAffinity/BA/12
19/, accessed on 16 September 2022), were used to rescore the docking models generated
by HDOCK [25,26]. The optimal models for the prefusion protein were selected based
on the HDOCK, HawkDock, and PPI-Affinity ranking. Subsequently, the binding site in
the postfusion protein docking simulation was specified from two antigenic sites (II and
IV), which correspond to the specified binding site of the complex models selected in the
prefusion docking simulation. Finally, docking models were created using HDOCK, and
optimal models were determined in the postfusion protein, as described above. Next, the
3D protein–protein interactions were visualized using PyMOL 2.3.4. Detailed molecular
interactions, intermolecular distances, and interacting residues were also analyzed using
the PDBsum server (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/, accessed
on 20 September 2022) [27].

2.3. Calculation of the Binding Affinity

The binding affinity was calculated using the HADDOCK web server (https://alcazar.
science.uu.nl/services/HADDOCK2.2/, accessed on 20 September 2022), which uses amino
acid residue contact-based statistical functions to predict the binding affinity. This shows
that the contributions to binding affinity are inter-residue contacts (ICs) and the noninter-
acting surface (NIS) [28,29]. Based on these theories, the core formula for binding affinity
calculation implemented by HADDOCK was as follows:

∆Gpredicted = −0.09459 ICscharged/charged − 0.10007 ICscharged/apolar + 0.19577

ICspolar/polar − 0.22671 ICspolar/apolar + 0.18681 %NISapolar + 0.13810 %NIScharged − 15.9433
(1)

The %NIS represents the percentage of polar, apolar, and charged residues on NIS [28,29].
The residues were categorized according to a previous report as follows: polar: Cys, His,
Asn, Gln, Ser, Thr, and Trp; apolar: Ala, Phe, Ile, Met, Pro, Val, Leu, and Tyr; and charged:
Glu, Asp, Lys, and Arg [30].

2.4. Validation of the Present Docking Simulation

To validate the reliability of the present docking simulation, the docking model and
its native geometry were compared. However, as no structure of a complex of the F protein
from any virus and TLR4 has been registered in the Protein Data Bank, we could not
perform redocking between the F protein and TLR4. Thus, we used the TLR4/MD-2/LPS
complex and RSV prefusion protein/antibody complex for this validation approach.

First, a TLR4/MD-2/LPS complex model was constructed through docking simu-
lations between TLR4/MD-2 and LPS using HDOCK. The HDOCK best-scored model
was selected from the docking models. Subsequently, the molecular interactions and in-
teracting sites between the docking model and the X-ray crystallography structure of the
TLR4/MD-2/LPS complexes analyzed by PDBsum were compared.

Next, the 3D structure of the RSV prefusion protein/antibody CR9501/motavizumab
complex model (PDBID: 6OE5) was downloaded from the PDBJ. Then, the 3D structures
of the prefusion protein, antibody CR9501, and motavizumab were separated from the
complex model to perform a redocking simulation between the prefusion protein and
antibody CR9501. The molecular interactions and interacting sites between the docking
models generated by HDOCK and the Cryo-electron microscopy (cryo-EM) structure of
the prefusion protein/antibody CR9501 complexes were compared, as described above.

Furthermore, we evaluated the reliability of the interacting sites in the selected docking
models using ScanNet (http://bioinfo3d.cs.tau.ac.il/ScanNet/, accessed on 11 October
2022), which predicts the protein-binding sites from a structure and shows its binding
probability based on a deep learning approach [31]. The interacting sites between the
present docking models and those predicted by ScanNet were also compared. We then
evaluated the percentage correspondence between the interacting sites of the docking
model and sites with a binding probability > 0.5 as calculated by ScanNet.

https://protdcal.zmb.uni-due.de/PPIAffinity/BA/1219/
https://protdcal.zmb.uni-due.de/PPIAffinity/BA/1219/
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
https://alcazar.science.uu.nl/services/HADDOCK2.2/
https://alcazar.science.uu.nl/services/HADDOCK2.2/
http://bioinfo3d.cs.tau.ac.il/ScanNet/
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3. Results
3.1. Determination of Suitable Structures among the Candidates

• To validate the docking simulation, the docking models generated by HDOCK were
rescored using HawkDock and PPI-Affinity. As shown in Table 1(a,b), the top five
ranked docking models for the prefusion protein were all models in which sites II
and IV were designated as the binding site. Thus, the best-scored models in sites II
and IV were determined as the optimal models in the present docking simulation,
respectively. The rank of the selected model in site II was first, twenty-seventh, and
nineth, and in site IV, second, eighth, and tenth, based on the HDOCK, HawkDock,
and PPI-Affinity scores, respectively, in 120 docking models. Similarly, in postfusion
proteins, the optimal models were ranked and selected from among the top 20 docking
models based on the HDOCK, HawkDock, and PPI-Affinity scores-site II: first, third,
and third, respectively; site IV: first, third, and third, respectively. To understand the
3D structures of the F proteins (prefusion/postfusion) and TLR4/MD-2 complex easily,
the natural structures are illustrated in Figure 1.

Table 1. (a). Top five docking models of prefusion proteins based on HDOCK, HawkDock, and PPI-
Affinity scores. (b). Top five docking models of postfusion proteins based on HDOCK, HawkDock,
and PPI-Affinity scores.

(a)

Ranking HDOCK HawkDock PPI-Affinity Antigenic Sites

1st 2 8 10
Site IV

2nd 12 15 7

3rd 1 27 9

Site II3rd 15 12 10

5th 25 3 11

(b)

Ranking HDOCK HawkDock PPI-Affinity Antigenic Sites

1st 1 3 3

Site II

2nd 2 4 2

3rd 5 2 3

4th 4 6 4

4th 6 7 1

1st 1 3 3

Site IV

2nd 6 5 1

3rd 2 9 2

4th 5 7 3

5th 11 2 3
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Figure 1. Illustration showing three-dimensional (3D) structures of respiratory syncytial virus (RSV) 
fusion proteins and the Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD-2) com-
plexes. Six antigenic sites in RSV prefusion protein are depicted as follows: site Ø (light purple), site 
I (light yellow), site II (red), site III (light blue), site IV (dark blue), and site V (light orange). RSV 
postfusion protein possesses sites II and IV. The TLR4 and MD-2 are shown in pink and light green, 
respectively. 

3.2. Molecular Interactions between Prefusion Proteins and TLR4/MD-2 
We analyzed the detailed molecular interactions between the F proteins (pre-

fusion/postfusion type) and TLR4/MD-2 complex in each suitably selected model. As 
shown in Figures 2–5 both sites II and IV in the prefusion proteins were involved in these 
interactions. 
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Figure 1. Illustration showing three-dimensional (3D) structures of respiratory syncytial virus (RSV)
fusion proteins and the Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD-2) complexes.
Six antigenic sites in RSV prefusion protein are depicted as follows: site Ø (light purple), site I (light
yellow), site II (red), site III (light blue), site IV (dark blue), and site V (light orange). RSV postfusion
protein possesses sites II and IV. The TLR4 and MD-2 are shown in pink and light green, respectively.

3.2. Molecular Interactions between Prefusion Proteins and TLR4/MD-2

We analyzed the detailed molecular interactions between the F proteins (prefusion/
postfusion type) and TLR4/MD-2 complex in each suitably selected model. As shown in
Figures 2–5 both sites II and IV in the prefusion proteins were involved in these interactions.
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docking models in which site II was designated as the binding site. (b) 3D structures of RSV pre-
fusion proteins, TLR4/MD-2 complexes, and the protein–protein docking models in which site IV 
was specified as the binding site. Sites II and IV in RSV fusion proteins are shown in red and dark 
blue, respectively. The TLR4 and MD-2 are colored pink and light green, respectively. 
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(3D) structures of RSV prefusion proteins, TLR4/MD-2 complexes, and the protein–protein docking
models in which site II was designated as the binding site. (b) 3D structures of RSV prefusion proteins,
TLR4/MD-2 complexes, and the protein–protein docking models in which site IV was specified as
the binding site. Sites II and IV in RSV fusion proteins are shown in red and dark blue, respectively.
The TLR4 and MD-2 are colored pink and light green, respectively.
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Figure 3. Illustration of the molecular interactions between respiratory syncytial virus (RSV) fusion 
proteins and Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD-2). (a) The molecular 
interactions between RSV prefusion proteins in which site II was designated as the binding site and 
TLR4/MD-2 complexes. (b) The molecular interactions between RSV prefusion proteins in which 
site IV was specified as the binding site and TLR4/MD-2 complexes. The molecular interactions are 
depicted as follows: salt bridge (red), hydrogen bonds (blue), and non-bonded contacts (orange). 
The number on lines represents the number of bonds in the 2D protein diagram. 

Figure 3. Illustration of the molecular interactions between respiratory syncytial virus (RSV) fusion
proteins and Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD-2). (a) The molecular
interactions between RSV prefusion proteins in which site II was designated as the binding site and
TLR4/MD-2 complexes. (b) The molecular interactions between RSV prefusion proteins in which
site IV was specified as the binding site and TLR4/MD-2 complexes. The molecular interactions are
depicted as follows: salt bridge (red), hydrogen bonds (blue), and non-bonded contacts (orange). The
number on lines represents the number of bonds in the 2D protein diagram.

In the site II-associated prefusion protein/TLR4/MD-2 complex model, the interactions
between the prefusion proteins and TLR4 were mediated by eight hydrogen bonds (two
hydrogen bonds between Gln361 and Ser521), two salt bridges, and 262 non-bonded contacts,
whereas the MD-2 molecules did not interact with the prefusion proteins (Figures 2a and 3a).
Lys272 and Asn276 at site II of the prefusion proteins formed hydrogen bonds with Lys541,
Arg496, Asn517, and Ser520 in the TLR4 molecule (Table 2). There was no salt bridge
between site II of the prefusion proteins and the TLR4 molecule. The intermolecular
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distances between site II of the prefusion proteins and TLR4 were 2.80–3.06Å (Table 2).
In the docking complex model in which site II was designated as the binding site, the
binding affinity between prefusion proteins and the TLR4/MD-2 complexes was calculated
to be −8.3 kcal/mol (Table 3). The number of ICs between site II of the prefusion proteins
and the TLR4/MD-2 complex was as follows: charged/charged, 14; charged/apolar, 28;
polar/polar, 33; and polar/apolar, 20. In this model, the %NIC values of the apolar and
charged were 34.42% and 24.39%, respectively.
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Figure 4. Diagram of binding conformations between respiratory syncytial virus (RSV) postfusion
proteins and Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD-2). (a) 3D structures of
RSV postfusion proteins, TLR4/MD-2 complexes, and the protein–protein docking models in which
site II was designated as the binding site. (b) 3D structures of RSV postfusion proteins, TLR4/MD-2
complexes, and the protein–protein docking models in which site IV was specified as the binding site.
Sites II and IV in RSV fusion proteins are shown in red and dark blue, respectively. The TLR4 and
MD-2 are colored pink and light green, respectively.
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proteins and Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD-2). (a) The molecular 
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TLR4/MD-2 complexes. (b) The molecular interactions between RSV postfusion proteins in which 
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Figure 5. Illustration of the molecular interactions between respiratory syncytial virus (RSV) fusion
proteins and Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD-2). (a) The molecular
interactions between RSV postfusion proteins in which site II was designated as the binding site and
TLR4/MD-2 complexes. (b) The molecular interactions between RSV postfusion proteins in which
site IV was specified as the binding site and TLR4/MD-2 complexes. The molecular interactions are
depicted as follows: salt bridge (red), hydrogen bonds (blue), and non-bonded contacts (orange). The
number on lines represents the number of bonds in the 2D protein diagram.
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Table 2. Key interactions, interacting residues, and intermolecular distances between the prefusion
proteins site II and TLR4 molecule.

Interaction Type Fusion Protein TLR4 Distance (Å)

Hydrogen bonds

Lys272 Lys541 2.81

Asn276 Arg496 2.80

Asn276 Asn517 3.06

Asn276 Ser520 2.98
TLR4, Toll-like receptor 4.

Table 3. Number of ICs and %NIS, and binding affinity estimated by HADDOCK.

Fusion Protein Prefusion Postfusion

Antigenic Sites Site II Site IV Site II Site IV

ICs charged/charged (no.) 14 7 1 14

ICs charged/apolar (no.) 28 29 14 40

ICs polar/polar (no.) 33 13 14 21

ICs polar/apolar (no.) 20 25 46 30

%NIS apolar (%) 34.42 33.91 34.48 34.38

%NIS charged (%) 24.39 24.68 23.69 23.52

Binding Affinity (kcal/mol) −8.3 −12.9 −15.4 −14.3
ICs, Interfacial contacts; NIS, Non-interaction surfaces.

Next, in the site IV-associated prefusion protein/TLR4/MD-2 complex model, the prefusion
protein interacted with TLR4 through five hydrogen bonds, no salt bridge, and 197 non-bonded
contacts and with MD-2 through 21 non-bonded interactions (Figures 2b and 3b). At site IV of
the prefusion proteins, there were no hydrogen bond non-salt bridges connected to the TLR4
molecule. In this docking complex model, the predicted binding affinity between prefusion
proteins and TLR4/MD-2 complexes was −12.9 kcal/mol (Table 3). In the docking complex
models in which site IV was designated as the binding site, the number of ICs between the
prefusion proteins and TLR4/MD-2 was as follows: charged/charged, 7; charged/apolar, 29;
polar/polar, 13; and polar/apolar, 25. The %NIC values for apolar and charged elements were
33.91% and 24.68%, respectively. In addition, the 3D structural models and intermolecular
interactions between the TLR4/MD-2 complex and the prefusion protein in the best-scoring
models of other antigenic sites (Ø, I, III, and V) are shown in Figures S1 and S2.

3.3. Molecular Interactions between Postfusion Proteins and TLR4/MD-2

The molecular interactions between the postfusion proteins and TLR4/MD-2 were
analyzed (Figure 4). In the site II-associated postfusion protein/TLR4/MD-2 complex
model, the postfusion proteins interacted with TLR4 mediated by three hydrogen bonds
(two hydrogen bonds between Thr374 and Glu89), no salt bridge, and 130 non-bonded
contacts and with MD-2 through 41 non-bonded contacts (Figures 4a and 5a). No in-
teraction by hydrogen bonds, salt bridges, or non-bonded contacts existed between the
postfusion protein site II and the TLR4 molecule. There were 23 non-bonded contacts
between the postfusion protein site IV and MD-2 molecules. In this docking complex
model, the estimated binding affinity between the post-fusion proteins and TLR4/MD-2
was −15.4 kcal/mol (Table 3). The results indicated that the molecular affinity between
the postfusion proteins and TLR4/MD-2 complexes was considerably higher than that
between the prefusion proteins and TLR4/MD-2 complexes in the docking complex model
in which site II was designated as the binding site. The ICs found between the postfusion
proteins and TLR4/MD-2 complexes in this model were as follows: charged/charged, 1;
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charged/apolar, 14; polar/polar, 14; and polar/apolar, 46. The percentages of apolar and
charged NICs in this model were 34.48% and 23.69%, respectively.

Subsequently, in the site IV-associated postfusion protein/TLR4/MD-2 complex model,
the postfusion proteins interacted with TLR4 via 12 hydrogen bonds (two hydrogen bonds
between Lys75 and Asp238), 4 salt bridges, and 275 non-bonded contacts and with MD-2
through 23 non-bonded contacts and one hydrogen bond (Figures 4b and 5b). Lys465 in site
IV of postfusion proteins interacted with Glu79 in TLR4 salt bridges. Likewise, Lys465 at
site IV of postfusion proteins hydrogen-bonded to Pro78 and Glu79 in the TLR4 molecules.
The calculated distance between the postfusion proteins site IV and TLR4/MD-2 complexes
was between 2.51 and 3.13 Å. (Table 4). In this docking model, the binding affinity between
the postfusion proteins and TLR4/MD-2 was −14.3 kcal/mol (Table 3). The results revealed
that the molecular affinity between the postfusion proteins and TLR4/MD-2 complexes was
increased in the docking complex model in which site IV was designated as the binding site.
In this model, postfusion proteins and TLR4/MD-2 complexes had 14 charged/charged,
40 charged/apolar, 21 polar/polar, and 30 polar/apolar ICs. The percentage of apolar and
charged NICs was 34.38% and 23.52%, respectively.

Table 4. Key interactions, interacting residues, and intermolecular distances between the postfusion
protein site IV and TLR4 molecule.

Interaction Type Fusion Protein TLR4 Distance (Å)

Hydrogen bonds
Lys465 Pro78 3.13

Lys465 Glu79 2.51

Salt bridges Lys465 Glu79 2.51
TLR4, Toll-like receptor 4.

3.4. Molecular Docking between TLR4/MD-2 and LPS, and RSV Prefusion Protein and
Antibody CR9501

Molecular docking was performed between TLR4/MD-2 and LPS to compare it with
an experimentally determined 3D structure (Figure S3). As shown in Table S1, 41 out of
57 molecular interactions and interacting sites in the TLR4/MD-2/LPS complex docking
model were consistent with those in the TLR4/MD-2/LPS complex structure determined by
X-ray crystallography. Similarly, a docking simulation was conducted between the RSV pre-
fusion protein and antibody CR9501 (Figure S4). Table S2 shows that 49 out of 75 molecular
interactions and interacting sites in the prefusion protein/antibody complex docking model
correspond to those in the cryo-EM structure of the prefusion protein/antibody complex.

3.5. Comparison of Interacting Sites between the Present Docking Models and Prediction
by ScanNet

ScanNet was used to predict the binding probability of all residues in the prefusion
and postfusion proteins. Among the 449 residues in the prefusion protein, the sites with
a binding probability > 0.5 were 64 residues (14.3%) (Table S3). In addition, among the
441 residues in the postfusion protein, the sites with a binding probability > 0.5 were
153 residues (34.7%) (Table S3). In the site II-associated F protein/TLR4/MD-2 complex
docking model, the number of interacting sites corresponding to sites with a binding
probability > 0.5 was five out of 34 interacting sites (14.7%) in the prefusion protein and
10 out of 26 interacting sites (38.5%) in the postfusion protein. In the site IV-associated F
protein/TLR4/MD-2 complex docking model, the number of interacting sites correspond-
ing to sites with a binding probability > 0.5 was 11 out of 33 interacting sites (33.3%) in the
prefusion protein and 25 out of 50 interacting sites (50.0%) in the postfusion protein.

4. Discussion

The detailed molecular interactions among RSV prefusion proteins, postfusion pro-
teins, and the host cellular receptor TLR4/MD-2 complex were analyzed using authentic
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bioinformatics technologies. First, both sites II and IV of the prefusion and postfusion
proteins interacted with the TLR4/MD-2 complex. The NT-Ab binding sites of sites II
and IV of the proteins (prefusion and postfusion) were fully involved in the interactions
between these proteins and the TLR4 molecule. Second, the binding affinity between
postfusion proteins and the TLR4/MD-2 complexes was increased compared to that of
prefusion proteins and the TLR4/MD-2 complexes. To the best of our knowledge, a previ-
ous report suggested that the host cellular receptors against the RSV fusion protein were
TLR4 molecules using only cell biological and immunological methods [18]. Therefore, the
detailed molecular interactions among RSV prefusion proteins, postfusion proteins, and
the TLR4/MD-2 complexes using in silico technologies in this study may be the first.

Previous reports suggested that distinct antigenicity of RSV was found between
prefusion and postfusion proteins [12]. Moreover, prefusion proteins may be associated
with the RSV infection to the host cells, but postfusion proteins may not be associated [12].
Indeed, a representative NT-Ab agent, such as palivizumab, can bind to the NT-Ab binding
sites (Site II) of prefusion proteins, leading to the prevention of RSV infection to host
cells [32]. However, the molecular interactions based on detailed 3D structures among
prefusion proteins, postfusion proteins, and the TLR4/MD-2 complexes may be little
understood. The present simulation data clearly showed that the NT-Ab binding sites of
prefusion and postfusion proteins were completely involved in F proteins and ligands of
TLR4/MD-2 complexes (Figures 2–5). These compatibilities between the NT-Ab binding
sites of virus proteins and cellular receptor binding sites (TLR4/MD-2 complexes) may
explain why palivizumab prevents the infection to host cells.

In this study, both models, in which sites II and IV were designated as the binding sites,
showed an increasing binding affinity for the TLR4/MD-2 complex as prefusion changed
to postfusion. Moreover, the selected docking models at sites II and IV differed from each
other. This may indicate that binding to the TLR4/MD-2 complex occurs independently at
sites II and IV of RSV. Furthermore, the increased binding affinity appears to be consistent
with binding to TLR4, triggering the change from prefusion to postfusion in the F protein.
These results suggest that conformational changes in the F protein promote viral adsorption
to the host cell. However, the mechanism by which F proteins change from prefusion to
postfusion after binding of TLR4 to F proteins may need to be elucidated for further studies.

The binding sites of the TLR4/MD-2 complex for binding to the F protein differed
from those for binding to LPS (Table S1). TLR4 is one of the leading receptors for innate
immune responses, and LPS is a well-known agonist of TLR4. A previous report showed
that the LPS-binding site for the TLR4/MD-2 complex is located mainly on MD-2 [33]. In
contrast, in the present study, the F-proteins bound mainly to TLR4 in the TLR4/MD-2
complex. This suggests that RSV entry into cells does not necessarily promote an innate
immune response to TLR4, although the relationships between the active sites of TLR4 and
the F protein may not be known.

In general, cell membranes composed of phospholipid bilayers have strongly similar
polarity [34]. Therefore, cell membrane fusion may hard syncytiumly occur due to electric
repulsion with each other [35]. Previous reports showed that postfusion proteins are as-
sociated with syncytium formation due to cell membrane fusion in RSV-infected cells [8].
Although statistical analysis of the binding affinity was not available due to the method of
docking simulation, drastic changes in binding affinity were observed due to conforma-
tional changes between prefusion and postfusion proteins. In this study, the binding affinity
was calculated based on the equation involved in the HADDOCK web server (Equation (1)).
The present data showed that the number of polar/polar ICs were drastically decreased
in inter-residue contacts between postfusion proteins and the TLR4/MD-2 complexes
compared to those in inter-residue contacts between prefusion proteins and the TLR4/MD-
2 complexes in the site II-associated F protein/TLR4/MD-2 complex model (Table 3).
In contrast, at site IV, there was an increase in the number of polar/polar ICs in inter-
residue contacts between postfusion proteins and the TLR4/MD-2 complexes compared to
those in inter-residue contacts between prefusion proteins and the TLR4/MD-2 complexes
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(Table 3). However, at the same time, the number of charged/charged, charged/apolar,
and polar/apolar IC complexes were increased in inter-residue contacts between postfu-
sion proteins and the TLR4/MD-2 complexes compared to those in inter-residue contacts
between prefusion proteins and the TLR4/MD-2 complexes in the site IV-associated F
protein/TLR4/MD-2 complex model (Table 3). These changes affected the molecular affin-
ity values, although, the effect of these differences in changing the manner of inter-residue
contacts between sites II and IV is not known. These binding affinity changes may con-
tribute to syncytium formation in virus-infected cells, including RSV, measles virus, and
mumps virus, although further in silico studies may be needed for other viruses with
fusion proteins.

The docking models generated by HDOCK were rescored to obtain suitable simula-
tion data. The scoring function, which plunks near-native solutions from thousands of
possible solutions created by docking algorithms, plays a pivotal role in the reliability of
docking simulation [36]. Hence, combining the results from multiple distinct scoring func-
tions may allow us to obtain better solutions than using a single scoring function [37]. The
scoring functions can be roughly divided into four categories: force-field-based, empirical,
knowledge-based, and machine-learning-based [38]. HDOCK, HawkDock, and PPI-Affinity
use knowledge, force field, and machine learning-based scoring functions, respectively [24–26].
Thus, in addition to HDOCK, HawkDock and PPI-Affinity were used to determine the
optimal docking model.

Next, HDOCK data were validated by redocking and binding site predictions. HDOCK
employs knowledge-based scoring functions, which can provide discrepancies in the re-
liability of results depending on a given protein due to limited training sets of crystal
structures [24,36,39]. Thus, a validation approach was also performed on the molecular
interactions between the TLR4/MD-2 complexes and LPS, and the RSV prefusion protein
and antibody in the present study (Tables S1 and S2). Consequently, the present simula-
tion data are compatible with the experimentally determined structure [33,40]. Thus, our
simulation data may be relevant to native structures, although other physicochemical anal-
yses, such as X-ray diffraction analysis, were not performed. Furthermore, we validated
the interacting sites in the docking models by using ScanNet. In the site IV-associated F
protein/TLR4/MD-2 complex model, the percentage correspondence between the interact-
ing sites of the docking model and sites for which a high binding probability was predicted
by ScanNet was relatively high, whereas that in the site II-associated F protein/TLR4/MD-2
complex model was not as high. Although these validation approaches could increase the
reliability of the docking simulation, additional analysis of the F protein/TLR4/MD2 com-
plex structure may refine the present findings. Molecular dynamics simulation may be a
powerful tool for obtaining a near-native docking model. However, this may be difficult to
perform in authentic bioinformatic laboratories. This could be an issue for future research.

Finally, docking models in which TLR4/MD2 bound to sites II and IV of the F protein
were selected for the present study. In contrast, based on the binding site probability
prediction and the ranking of docking models by multiple scoring functions, it is possible
that TLR4 binds more readily to site IV in the F protein. However, elucidation of this
through in silico methodologies is limited; interdisciplinary approaches, including in vitro
and in vivo, may be needed for future studies.

5. Conclusions

We studied the detailed molecular interactions between RSV F proteins and TLR4/MD-
2 complexes in silico. The NT-Ab binding sites in both prefusion and postfusion proteins
at sites II and IV may be involved in counter ligands as the TLR4/MD-2 complexes.
Furthermore, the present simulation models suggested that F proteins could strongly bind
to the TLR4/MD-2 complexes due to conformational changes from prefusion to postfusion
proteins, increasing the binding affinity. These new findings may contribute to better
understand the infectivity and pathogenicity (syncytium formation) of RSV infection.
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