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Martyna Krupińska 1, Jakub Borkowski 2 , Aleksander Goll 1, Joanna Nowicka 1 , Karolina Baranowicz 1 ,
Vincent Bourret 3,4,5 , Tomas Strandin 3 , Sanna Mäki 3, Ravi Kant 3,4 , Tarja Sironen 3,4

and Maciej Grzybek 1,*

1 Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University
of Gdansk, 81-519 Gdynia, Poland

2 Department of Forestry and Forest Ecology, University of Warmia and Mazury, 10-727 Olsztyn, Poland
3 Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
4 Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki,

00790 Helsinki, Finland
5 INRAE-Université de Toulouse UR 0035 CEFS, 31326 Castanet Tolosan, France
* Correspondence: maciej.grzybek@gumed.edu.pl; Tel.: +48-583-491-941

Abstract: Several studies reported a high prevalence of SARS-CoV-2 among white-tailed deer in North
America. Monitoring cervids in all regions to better understand SARS-CoV-2 infection and circulation
in other deer populations has been urged. To evaluate deer exposure and/or infection to/by SARS-
CoV-2 in Poland, we sampled 90 red deer shot by hunters in five hunting districts in north-eastern
Poland. Serum and nasopharyngeal swabs were collected, and then an immunofluorescent assay
(IFA) to detect anti-SARS-CoV-2 antibodies was performed as well as real-time PCR with reverse
transcription for direct virus detection. No positive samples were detected. There is no evidence of
spillover of SARS-CoV-2 from the human to deer population in Poland.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible
for the COVID-19 pandemic, can infect multiple wild and domestic animals [1–6]. Due to
the possible maintenance, dissemination and evolution of the virus, there is an urgent need
to identify and monitor species susceptible to SARS-CoV-2. Animal reservoirs constitute a
threat by contributing to animal–animal and animal–human transmission of viruses. Such
transmissions can lead to reverse zoonosis (spillback) of novel animal-adapted variants
that the human immune system has not encountered before [7,8]. This phenomenon
is well documented for SARS-CoV-2 infections of farmed mink (Neovison vison). After
the first detection of the virus in mink in the Netherlands [4], extensive surveillance of
mink farms has been implemented, and SARS-CoV-2-infected mink have been detected
worldwide [9,10]. Additionally, in the Netherlands, Denmark and Poland, SARS-CoV-2
strains with an animal sequence signature were detected among farm employees and
other contact individuals, indicating spillback from mink to humans [11–14]. Likewise,
the circulation of SARS-CoV-2 among free-roaming wild animals poses challenges for
surveillance and control, and abundant animals living close to urban settlements should be
paid the utmost attention [8].

In July 2021, antibodies against SARS-CoV-2 were detected among 40% (152/624 sam-
ples) of studied white-tailed deer (Odocoileus virginianus) during wildlife disease surveil-
lance operations in the United States [15]. Previous studies had shown that white-tailed
deer fawns, when experimentally inoculated with SARS-CoV-2, shed infective virus up
to 5 days after infection and developed antibodies against the virus [16]. Vertical and
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horizontal virus transmission has also been documented [17]. In September 2021, Hale et al.
employed the real-time PCR method and detected SARS-CoV-2 in 35.8% of 360 free-range
white-tailed deer [18]. Moreover, white-tailed deer have been reported to have been ex-
posed to different SARS-CoV-2 variants during separate events [18,19]. Further serological
and molecular studies have also investigated the role of white-tailed deer as a reservoir of
SARS-CoV-2 [20–23], and the first suspected deer-to-human transmission has been reported
recently [24].

In response to the high numbers of infected deer in North America, the World Or-
ganisation for Animal Health (WOAH) recommended monitoring cervids in all regions
to better understand SARS-CoV-2 infection and circulation in other deer populations [25].
Recent European efforts have sought to determine whether other deer species can also act
as reservoirs for the SARS-CoV-2 virus. Serological studies conducted in Germany, Austria
and the United Kingdom found no evidence of spillover of SARS-CoV-2 to cervid species
in these regions [26–28].

The red deer (Cervus elaphus) is one of the most widespread large mammals in Eu-
rope [29]. According to the Central Statistical Office in Poland, the national population of
red deer increased significantly from 180 thousand to 281.9 thousand over the last eleven
years, increasing the risk of exposure to deer in urban environments [30]. Furthermore, an
in silico study of ACE2 (angiotensin-I-converting enzyme 2) receptors demonstrated that
ACE2 from all three studied Cervidae species—the white-tailed deer, reindeer (Rangifer
tarandus) and Père David’s deer (Elaphurus davidianus)—are at high risk of binding SARS-
CoV-2 receptor-binding domain [29]. Apart from K-N substitution, no differences have
been found between the red deer and white-tailed deer ACE2 amino acid sequence [28].

As a means for proactive, targeted monitoring of wildlife, we investigated whether a
spillover of SARS-CoV-2 occurred among red deer in Poland.

2. Materials and Methods
2.1. Material Collection and RNA Isolation

Samples were collected from 90 red deer (Cervus elaphus) individuals shot by hunters
in Warminsko-Mazurskie Voivodeship in north-eastern Poland (Figure 1).

Samples were collected in Strzalowo, Olsztyn, Milomlun, Nidzica and Nowe Ramuki.
Table 1 shows the number and status of sampled individuals.

Table 1. Location, status, and number of red deer (Cervus elaphus) individuals sampled.

Hunting District/Deer Doe Bull Fawn Total

Strzalowo 16 2 0 18

Olsztyn 12 4 3 19

Milomlyn 4 0 1 5

Nidzica 8 4 4 16

Nowe Ramuki 20 7 5 32

Total 60 17 13 90

Blood or blood clots were collected and centrifuged to obtain serum. Since animal
carcasses were stiff, we used a sterile plastic speculum to open the nasal cavity; then, using a
thick swab, we collected nasopharyngeal swabs and preserved them in a virus deactivation
buffer at +4 ◦C. A total of 150 µL from each sample of a swab in inactivation buffer was
added to 300 µL of RLT lysis buffer (RNeasy Mini kit, Qiagen, Germany). Samples were
mixed by vortexing and incubated for 10 min at room temperature. After incubation,
400 µL of 70% ethanol was added to each sample and mixed by pipetting. The lysate was
transferred to a RNeasy Mini spin column with a collection tube and centrifuged for 1 min
at 13,000 RPM. Columns were washed once with 700 µL RW1 and twice with 500 µL RPE.
Between every wash, the columns were centrifuged and the flow-through was discarded.
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Elution was performed by adding 50 µL of PCR-grade water to the column and incubating
for 2 min. Columns were placed into new tubes and centrifuged at 13,000 RPM for 1 min.
After isolation, the samples were processed. We tested 90 nasopharyngeal swab samples
by RT-rtPCR and 90 serum samples by immunofluorescent assay (IFA). No human-origin
samples were processed at the same time in the laboratory.
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2.2. SARS-CoV-2 Case Definition

A SARS-CoV-2-positive individual was defined as suggested by WOAH [31]. Deer are
considered SARS-CoV-2 positive if: SARS-CoV-2 has been isolated from a sample taken
directly from an animal (nasal swab, oropharyngeal swab) or viral nucleic acid has been
identified in a sample taken directly from an animal, giving cause for the suspicion of
a previous association or contact with SARS-CoV-2 by (a) targeting at least two specific
genomic regions at a level indicating the presence of infectious virus or (b) targeting a
single genomic region followed by sequencing of a secondary target.

2.3. Real-Time RT-PCR

For each sample, the reaction mixture was prepared using a TaqPath™ 1-Step RT-
qPCR Master Mix (ThermoFisher Scientific, Waltham, MA, USA), polymerase, DEPC-
treated water (EURx, Gdańsk, Poland), primers and probes for the RNA-dependent RNA
polymerase (RdRp) and envelope (E) genes [31] in white 8-well qPCR strips with optical
clear caps. Positive control plasmids were prepared in-house with the RdRp and E genes
and a no-template control (NTC) containing DEPC-treated water instead of template
reactions. Reactions were mixed and loaded into a Light Cycler 480 (Applied Biosystems,
Waltham, USA). Cycling conditions were Uracil N-glycosylase (UNG) incubation for 2 min
at 25 ◦C, RT incubation for 15 min at 50 ◦C, and enzyme activation for 2 minutes at 95 ◦C,
followed by 40 amplification cycles consisting of 3 seconds at 95 ◦C, and 30 s at 60 ◦C. After
each amplification cycle, the signal from each sample was measured in both the FAM (RdRp
gene) and HEX (E gene) channels. Samples with Cp < 35 for either gene were considered
positive for SARS-CoV-2.
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2.4. Immunofluorescent Assay (IFA) for Antibodies against SARS-CoV-2 Detection

Deer serum samples were analysed using an immunofluorescence assay (IFA) with
seropositive human serum as a positive control as previously described [3,32–34]. Serum
samples were diluted 1:10 in PBS, and the reactivity of the samples to SARS-CoV-2 was
tested with SARS-CoV-2-IFA. Infected Vero E6 cells were detached with trypsin, mixed
with uninfected Vero E6 cells (in a ratio of 1:3), washed with PBS, spotted on IFA slides,
air-dried, and fixed with acetone. The slides were stored at –70 °C until use. We used rabbit
anti-deer IgG fluoresceinisothiocyanate labeled as a conjugate (LGC Sera Care, Milford, CT,
USA). The slides were read under a fluorescence microscope, and pictures were taken with
a ZOETM fluorescent cell imager (BioRad, Hercules, USA).

3. Results

Real-time RT-PCR and IFA approach failed to detect any SARS-CoV-2 positive samples
among the 90 assayed. The estimated prevalence and seroprevalence for SARS-CoV-2 in
the investigated red deer population was 0% [0.0–6.7].

4. Discussion

We did not detect either the SARS-CoV-2 virus or antibodies against the virus in wild
red deer in Poland. There is no evidence that spillover of SARS-CoV-2 from human to
deer populations occurred in the studied territory. Our results align with other European
countries’ reports on wild deer populations [26–28]. Comprehensive studies from the
United Kingdom [26], Austria and Germany [28] showed no sign of SARS-CoV-2 in several
deer species. This result supports the hypothesis that wild deer are not currently a reservoir
for SARS-CoV-2 in Europe.

In contrast to European results, the high prevalence and seroprevalence of SARS-CoV-2
in white-tailed deer in North America have been reported in several studies [15,18]. Multi-
ple spillovers of SARS-CoV-2 from humans to white-tailed deer have been documented,
along with deer-to-deer transmission. A recent report by Pickering et al. [24] found an
epidemiologically linked human case indicating spillback from deer to humans.

There are several factors to consider to explain observed differences in infection rates
in deer populations from North America and Europe. The high prevalence in white-tailed
deer may be explained by its ACE2 receptor specificity. In silico modelling studies suggest
that other deer species might also be susceptible to SARS-CoV-2 [28,35]. Although K-
N substitution between red deer and white-tailed deer ACE2 sequence occurs, it fails
to explain the lack of detected infections in other European deer species with an ACE2
receptor sequence identical to white-tailed deer. Crucial factors to consider are the deer
population distribution, ecology, and behavioural differences. White-tailed deer are often
reported to inhabit urban and peri-urban environments [36–38].

In contrast, red deer found in European forests are rarely reported to visit human
settlements [39]. They are considered to be timid and avoid contact with humans. This
may explain our and other groups’ results, where red deer were found to be negative for
SARS-CoV-2 screening [26–28]. Although routes of white-tailed deer infection are unclear,
deer social behaviour might be the factor facilitating the quick spread of the pathogen.
Female white-tailed deer live in small herds, while males have broader territories and
social contacts, increasing the risk of contact with the virus [40]. Intermediate hosts, such as
mink, enabling transmission also cannot be ruled out [24]. Differences in hunting practices
should also be considered; for example, animal baiting is allowed in over 20 out of 50 states
in North America, which may cause indirect contact with humans, while this practice is
forbidden in Poland, as in many other European countries [28].

This study suggests that common wild European red deer are not currently supporting
SARS-CoV-2 infections. However, considering reports from North America, it is necessary
to monitor wildlife for spillover and spillbacks. Biomonitoring is one of the most effective
methods of predicting and preventing possible epidemics [33,41–44]. Searching for novel
hosts or reservoirs of zoonotic pathogens should be a priority for public health and wildlife
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management institutions [32,45]. The introduction of SARS-CoV-2 to wildlife has caused
the establishment of animal reservoirs (i.e., white-tail deer). Therefore, all efforts should
be made to reduce the risk of new variant emergence and to protect both humans and
wildlife (FAO, WHO, WOAH, 2021 [46]). We believe that preparation for a “Pathogen X”
pandemic should employ a “One Health” approach with a strong emphasis on monitoring
both domestic and wild animals.
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44. Tołkacz, K.; Alsarraf, M.; Kowalec, M.; Dwużnik, D.; Grzybek, M.; Behnke, J.M.; Bajer, A. Bartonella infections in three species of
Microtus: Prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its
success. Parasit. Vectors 2018, 11, 491. [CrossRef]

45. Grzybek, M.; Cybulska, A.; Tołkacz, K.; Alsarraf, M.; Behnke-Borowczyk, J.; Szczepaniak, K.; Strachecka, A.; Paleolog, J.; Moskwa,
B.; Behnke, J.M.; et al. Seroprevalence of Trichinella spp. infection in bank voles (Myodes glareolus)-A long term study. Int. J.
Parasitol. Parasites Wildl. 2019, 9, 144–148. [CrossRef]

46. Food and Agriculture Organization, World Organisation for Animal Health, and World Health Organization. Joint Statement on
the Prioritisation of Monitoring SARS-CoV-2 Infection in Wildlife and Preventing the Formation of Animal Reservoirs; World Organisation
for Animal Health: Paris, France, 2022.

http://doi.org/10.3390/ani10101820
http://www.ncbi.nlm.nih.gov/pubmed/33036253
http://doi.org/10.1073/pnas.2010146117
http://www.ncbi.nlm.nih.gov/pubmed/32826334
http://doi.org/10.2307/3802878
http://doi.org/10.1002/jwmg.521
http://doi.org/10.2307/3803183
http://doi.org/10.1371/journal.pone.0175134
http://doi.org/10.1111/j.1365-2664.2010.01813.x
http://doi.org/10.1111/1365-2664.12671
http://doi.org/10.1038/s41426-018-0149-3
http://doi.org/10.7589/2019-02-048
http://doi.org/10.1186/s13071-018-3047-6
http://doi.org/10.1016/j.ijppaw.2019.03.005

	Introduction 
	Materials and Methods 
	Material Collection and RNA Isolation 
	SARS-CoV-2 Case Definition 
	Real-Time RT-PCR 
	Immunofluorescent Assay (IFA) for Antibodies against SARS-CoV-2 Detection 

	Results 
	Discussion 
	References

