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Abstract: Viroid and viroid-like satellite RNAs are infectious, circular, non-protein coding RNAs
reported in plants only so far. Some viroids (family Avsunviroidae) and viroid-like satellite RN As share
self-cleaving activity mediated by hammerhead ribozymes (HHRzs) endowed in both RNA polarity
strands. Using a homology-independent method based on the search for conserved structural motifs
of HHRzs in reads and contigs from high-throughput sequenced RNAseq libraries, we identified
a novel small (550 nt) viroid-like RNA in a library from a Citrus reticulata tree. Such a viroid-like
RNA contains a HHRz in both polarity strands. Northern blot hybridization assays showed that
circular forms of both polarity strands of this RNA (tentatively named citrus transiently-associated
hammerhead viroid-like RNA1 (CtaHVd-LR1)) exist, supporting its replication through a symmetric
pathway of the rolling circle mechanism. CtaHVd-LR1 adopts a rod-like conformation and has the
typical features of quasispecies. Its HHRzs were shown to be active during transcription and in the
absence of any protein. CtaHVd-LR1 was not graft-transmissible, and after its first identification, it
was not found again in the original citrus source when repeatedly searched in the following years,
suggesting that it was actually not directly associated with the plant. Therefore, the possibility that
this novel self-cleaving viroid-like RNA is actually associated with another organism (e.g., a fungus),
in turn, transiently associated with citrus plants, is proposed.

Keywords: circular RNAs; infectious non-coding RNAs; satellite RNAs; viroids; hammerhead
ribozyme; self-cleavage; high-throughput sequencing

1. Introduction

Viroids and viroid-like satellite RNAs (Vd-LsatRNAs) are small, infectious, non-
protein-coding and circular RNAs reported in plants only so far [1-4]. They differ from
each other at the biological level, with viroids replicating and infecting their hosts in the
absence of any helper virus, and Vd-LsatRNAs relying on a helper virus for their infectivity.
Other small, circular, non-coding RNAs containing hammerhead ribozymes, differing
from viroids and other infectious viroid-like RNAs, have been reported in plants, such
as (i) the retroviroid-like RNA known as carnation stunt-associated viroid-like RNA [5]
that is, however, non-infectious and has a DNA counterpart integrated in the genome of
a pararetrovirus [5,6] and of the host plant [7], and (ii) retrozymes, which are ribozyme-
containing retrotransposons [8].

According to structural, biological and functional features, viroids are classified in
the families Pospiviroidae and Avsunviroidae. Members of the family Pospiviroidae adopt a
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rod-like or quasirod-like conformation of minimal free energy, which contains a central
conserved region (CCR) involved in their nuclear replication mediated by an asymmetric
rolling circle mechanism [9]. This replication pathway contemplates the formation of
circular RNAs in only one polarity strand [10]. Viroids of the family Avsunviroidae lack
the CCR but contain in both polarity strands the structural elements needed to form
hammerhead ribozymes (HHRzs) [11]. These ribozymes are inactive in the rod-like or most
stable branched conformations adopted by the circular viroid RNAs, but adopt the active
conformation during transcription, thus, providing the self-cleaving activity needed to
complete the viroid replication through a symmetric rolling circle mechanism. The hallmark
of this replication mechanism is the accumulation in vivo of circular RNAs of both polarity
strands [12,13]. HHRzs have also been reported in Vd-LsatRNAs. However, while viroid
RNAs contain one HHRz in either polarity strand, VL-satRNAs may also contain the HHRz
in only one RNA polarity. The other polarity strand may lack self-cleaving activity or may
contain another ribozyme named hairpin [2]. Both viroid and Vd-LsatRNA populations
infecting a single host are composed of closely related sequence variants, thus, showing
the typical features of quasispecies [14] previously reported for viruses [15]. Sequence
variability observed in the populations of these infectious agents generally preserve the
most stable conformation of the RNA and some critical structural motifs of major relevance
for their infectivity [16].

Whether viroids or Vd-LsatRNAs also exist in organisms other than plants is not
known. However, indirect evidence was provided for two small circular RNAs containing
HHRz in each polarity strand (cscRNA1 and cscRNA2), which have been isolated from
cherry leaves [17,18]. They are not able to replicate autonomously in cherry plants and have
been proposed to be Vd-LsatRNAs of mycoviruses associated with a fungus (Apiognomonia
erythrostomam) infecting cherry leaves [19-24]. Recently, two new Vd-LRNAs containing
aHHRz in each polarity strand, named fig hammerhead viroid-like RNA 1 and 2 (FHVd-LR1
and FHVd-LR2), have been reported from fig trees grown in Hawaii, but their biological
nature remains undetermined [25]. These findings suggest that Vd-LRNAs containing
HHRzs may be more common than currently thought and that their hosts may include
organisms other than plants.

In the last few years, several new viroids of the family Pospiviroidae have been identified
in plants by high-throughput sequencing and the following search for de novo assembled
contigs with sequence similarity to viroids previously annotated in databases [26-30].
However, this approach is unable to identify novel viroids and viroid-like RNAs not
sharing significant identity with those already known and is expected to be less efficient in
the identification of HHRz-containing viroids. In fact, members of the family Avsunviroidae
share little-to-no sequence identity. Instead, relationships between viroids of this family are
based on structural features, such as the quasirod-like or branched secondary structure,
tertiary interactions (i.e., kissing-loops) and the type of hammerhead ribozymes embedded
in both polarity strands of their circular RNAs [11]. Therefore, it is not surprising that the
most recently reported members of the family Avsunviroidae, apple hammerhead viroid,
and a potential new viroid of the same family, grapevine hammerhead viroid-like RNA,
were identified using HTS-based methods that are sequence homology-independent and
identify potential novel viroids and/or viroid-like RNAs by looking for de novo assembled
contigs with terminal direct repeats, a hallmark of potential circular RNAs [31,32].

In an attempt to identify novel viroids of the family Avsunviroidae and other viroid-like
RNAs, we focused our attention on HHRz, a specific hallmark of these infectious agents
to develop a homology-independent method to search for HHRzs in reads or de novo-
generated contigs from HTS libraries. By searching in the RNA preparations from a citrus
tree grown in the field, a novel Vd-LRNA containing one HHRz in either polarity strand was
identified. The molecular and biological features of such a novel circular RNA, tentatively
named citrus transiently-associated hammerhead viroid-like RNA 1 (CtaHVd-LR1) are
presented and discussed here.
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2. Materials and Methods
2.1. Plant Material, RNA Isolation and High-Throughput Sequencing

In the frame of a study aimed to identify the potential causal agent of cristacortis, a
virus-like disease of still unknown etiology, a Citrus reticulata plant grown in Southern
Italy (isolate 14A) and showing the typical symptoms of this disease was analyzed. Very
young green sprouts were collected in spring 2018 and stored at —80 °C. A sample of the
collected material (5 g) was extracted with buffer-saturated phenol and the preparation was
enriched in double-stranded (ds) RNAs partitioning the nucleic acids by chromatography
on non-ionic cellulose CF-11 (Whatman, Maidstone, UK) with STE (50 mM Tris-HC],
pH 7.2, 100 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA)) containing 16%
ethanol [33]. Following digestion with TURBO DNase (Ambion, Foster City, CA, USA) and
removing ribosomal RNAs (rRNAs) by the Ribo-Zero Plant leaf kit (Illumina, San Diego,
CA, USA), an RNA-seq cDNA library was generated using the ScriptSeq v2 RNA-Seq
Library Preparation Kit (Epicentre) according to the manufacturer’s protocol in which
an initial denaturation step (95 °C for 5 min) was added. The cDNA library was pair-
end sequenced (2 x 150) on an Illumina NextSeq500 analyzer (Illumina, San Diego, CA,
USA). Nucleic acid preparations enriched in highly structured RNAs were obtained with
buffer-saturated phenol followed by CF-11 chromatography, as described above [34], using
STE buffer containing 35% ethanol instead of 16%. DNA extracts were obtained with the
DNeasy Plant mini kit (Qiagen, Hilden, Germany) from 100 mg of tissue following the
manufacturer’s instructions.

2.2. Bioinformatics Analysis

Trimmed and high quality filtered reads from the sequenced RNAseq library were as-
sembled de novo using SPAdes [35], and to identify potential infecting viruses, the resulting
contigs were searched for similar sequences in the National Center for Technology Informa-
tion (NCBI) databases by BlastN and BlastX. The same datasets were used for searching for
RNAs potentially containing hammerhead ribozymes by using PatSearch [36] and applying
a specific pattern syntax developed to find conserved nucleotides and secondary structure
motifs conserved in these ribozymes. HTS reads were mapped to a reference sequence
using Bowtie [37]. Multiple alignments of nucleotide sequences were performed using
Clustal Omega [38]. The secondary structure of minimal free energy of RNAs was predicted
by RNAfold software [39]. Pairwise identities were calculated by Clustal Omega multiple
alignment [38]. Confidently predicted domains, motifs and features were searched for in
SMART [40].

2.3. RT-PCR, Cloning and Sequencing

dsRNA enriched preparations were reverse transcribed using Superscript IV reverse
transcriptase (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) and random
primers following the manufacturer’s instructions. PCR amplification of the cDNA was
performed using 2 pL of the reverse transcription reaction, specific primers (Table S1) at a
final concentration of 0.5 uM, 200 uM of dNTPs, 3% of DMSQO, 1 x Phusion HF buffer and
0.4 units of Phusion High-Fidelity DNA polymerase (Thermo Fisher Scientific, Waltham,
MA, USA) in a final volume of 20 pL. The cycling conditions were initial denaturation at
98 °C for 30 s, followed by 33 cycles at 98 °C for 10 s, 63 °C for 15's, 72 °C for 15 s and a final
extension step at 72 °C for 7 min. Amplified cDNAs of the expected sizes were purified on
agarose-gel and an adenine-residue overhang was added at their 5’ ends by GoTaqg DNA
polymerase (Promega, Madison, WI, USA), cloned into a pGEM-T Easy vector (Promega,
Madison, WI, USA) and sequenced by Sanger Sequencing Custom Service (Macrogen,
Amsterdam, the Netherlands).

2.4. Northern Blot Hybridization Assays

Northern blot hybridization assays were performed as reported previously [41]. Briefly,
one pg of nucleic acid preparations enriched in highly structured RNAs were separated on
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5% polyacrylamide gel electrophoresis (PAGE) under denaturing conditions (8 M urea and
1x TBE buffer (89 mM Tris, 89 mM boric acid, 2.5 mM EDTA, pH 8.3)). RNA fragments
generated by in vitro transcription of a dimeric construct of (-) FHVd-LR [25] and an ss-
RNA ladder (New England Biolabs, Ipswich, MA, USA) were used as molecular markers.
After ethidium bromide staining of the gel, the nucleic acids were electrotransferred to
a nylon membrane (Hybond-N, Amersham, Little Chalfont, UK) in 0.5x TBE buffer and
hybridized in DIG easy Hyb (Roche Applied Science, Germany) at 65 °C with DIG-labeled
riboprobes complementary to each polarity strand of CtaHVd-LR1. Hybridization sig-
nals, revealed with an anti-DIG alkaline phosphatase conjugate (AB fragments) and the
chemiluminescence substrate CDP-star (Roche Diagnostics GmbH, Mannheim, Germany)
following the manufacturer’s instructions, were visualized and recorded with a ChemiDoc
Touch Imaging system (Bio-Rad, Hercules, CA, USA). The DIG riboprobes were generated
by in vitro transcription of the pGEM-T easy vector containing the full-length cDNA of
the sequence variant CtaHVd-LR1_3 (accession number OP418121) linearized with the
appropriated restriction enzymes using a Dig-RNA labeling mix and quantified through
direct detection via spot test following the protocol provided by the manufacturer (Roche
Diagnostics GmbH, Mannheim, Germany).

2.5. In Vitro Transcription, Self-Cleavage and 5’ Rapid Amplification of cDNA Ends
(RACE) Analysis

Monomeric transcripts of both polarity strands were obtained by in vitro transcription
of the pGemT-easy plasmid containing the full-length cDNA sequence of CtaHVd-LR1
(variant 3). The recombinant plasmid was linearized by digestion with Spel or Ncol and
transcribed with T7 (Thermo Fisher Scientific, Wattham, USA) or SP6 RNA polymerase
(New England Biolabs) to obtain HVd-VL1 RNA transcripts of plus and minus polarity,
respectively. After degradation of the DNA template with RQ DNase (Promega, Madison,
Wisconsin, USA), the in vitro transcription reaction was analyzed in a 5% PAGE under de-
naturing conditions (see above). The full-length monomeric RNAs and the 3’ self-cleavage
products generated during the in vitro transcription were eluted from the acrylamide gels
by excising the band and grinding with one volume of water-saturated phenol and one
volume of elution buffer (100 mM Tris-HCl pH 8.9, 1 mM EDTA, 0.5% SDS) [34]. The RNAs
were recovered by ethanol precipitation and used for analysis of self-cleavage and the 5
RACE, respectively.

For the analysis of RNA self-cleavage, the eluted RNAs were resuspended in 1 mM
EDTA pH 6, boiled for 2 min, snap-cooled on ice and then incubated at 40 °C for 1 h in
self-cleavage buffer (50 mM Tris-HCI, pH 8, 5 mM MgCl12, 0.5 mM EDTA). The self-cleavage
reaction was analyzed in 5% PAGE under denaturing conditions as indicated above. The 5/
terminal sequence of the eluted 3’ self-cleavage RNA products was determined by 5 RACE
as described [25] using the oligonucleotides indicated in Table S1.

3. Results and Discussion
3.1. Identification of an RNA Containing HHRzs by In Silico Search

Viroids of the family Avsunviroidae and most viroid-like RNAs contain one HHRz in
either RNA polarity strand. The active conformation of these catalytic motifs assume a
conserved secondary structure, with typical loops and stems. By comparing all natural
HHRzs known so far, we developed a specific pattern syntax (Figure S1) to look for se-
quences adopting a similar conformation in the reads and/or in the de novo assembled
contigs from RNAseq libraries sequenced by HTS. Since most HHRzs consist of approx-
imately 60 nucleotides, it is expected that some of the 150 nt-long reads generated by
HTS may contain the full-length HHRz sequence of an infecting viroid and or viroid-like
RNA. When the search was performed using the reads sequenced from an RNAseq li-
brary generated in 2018 from young sprouts of the C. reticulata tree isolate 14A, more than
600 redundant reads containing the signatures of HHRzs were found. Most of these reads
corresponded to two non-redundant reads that were mapped to a single contig of 651 nt
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(NODE_11827_length_651_cov_57.163636), which was composed of a sequence fragment
of 550 nt followed by a partial direct repeat of 101 nt (Figure 52). As mentioned before,
the presence of direct repeats in a contig is generally considered as a possible indication
that it could correspond to a multimeric or circular RNA in vivo. In this specific case,
the presence of a HHRz in each polarity strand of the same RNA further supported its
possible circularity because such a situation is a typical hallmark of viroids of the family
Avsunviroidae [11] and of most Vd-LsatRNAs and Vd-LRNAs reported so far [1,2]. However,
pairwise identity with these viroids ranged from 37.7 to 55.9% and no significant identity
with sequences in GenBank was found by BlastN searches.

The identified RNA contained one ORF encoding a potential polypeptide of approx-
imately 100 amino acids (aa) in the plus polarity strand that, however, does not show
any significant similarity with proteins in GenBank and does not contain any confidently
predicted domain, motif and feature according to a search in SMART [40]. These findings
supported the working hypothesis that the monomeric fragment could be a novel viroid-
like RNA that, also considering its biological features (see below), has been tentatively
named citrus transiently-associated hammerhead viroid-like RNA 1 (CtaHVd-LR1). Blast
searches also found contigs with sequences almost identical (99%) to the genomic RNAs of
citrus virus A (CiVA), a coguvirus previously reported in citrus [42], and contigs sharing
high sequence identity with several mycoviruses (i.e., partitiviruses, chrysoviruses and
totiviruses) that were likely only indirectly associated with the citrus isolate 14A, being
infectious agents of fungi or other organisms potentially hosted by the field tree.

3.2. Circular Forms of Both Polarity Strands of CtaHVd-LR1 Do Exist

Circular RNAs can be separated from the respective linear forms by polyacrylamide
gel electrophoresis (PAGE) under denaturing conditions that determine a delayed migration
of circular RN As with respect to the linear ones [43]. To ascertain whether CtaHVd-LR1
exist as a circular RNA, we performed northern blot assays using probes specific for each
polarity strand. Two major bands were detected in the nucleic acid preparations enriched
in highly structured RNAs extracted from citrus sprouts collected in 2018 using specific
probes for either polarity strand of this RNA (Figure 1), with the upper band identified as
the circular form and the faster migrating band as the monomeric CtaHVd-LR1 linear form
with an expected size of 550 nt. By preliminary northern blot assays using in vitro CtaHVd-
LR1 RNA transcripts, we excluded cross-hybridization between CtaHVd-LR1 strands of
the same polarity under the experimental conditions adopted in this study (Figure S3).
Therefore, since equalized probes and RNA preparations were used, the more intense
hybridization signal generated by one polarity strand also indicated that this is the polarity
accumulating at higher levels in vivo, to which, as previously conducted for viroids and
other viroid-like RNAs [1,2], the (+) polarity was assigned. These findings support the
view that CtaHVd-LR1 very likely replicates through the symmetric pathway of the rolling
circle replication mechanism previously proposed for viroids of family Avsunviroidae [44]
and other viroid-like RNAs containing self-cleaving ribozymes in both polarity strands [2].
Indeed, the detection of circular RNAs of both polarity strands, together with the presence
of self-cleaving ribozymes in both polarity strands, are generally considered the hallmark
of this replication mode [1].
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Figure 1. Detection of circular and linear forms of both polarity strands of CtaHVd-LR1 by northern
blot hybridization assays. Lane 1, RNA preparation from citrus isolate 14A tested positive to CtaHVd-
LR1 by HTS and RT-PCR; lane 2, RNA preparation from a sample of citrus isolate 140 tested negative
to CtaHVd-LR1 by RT-PCR (negative control); size of RNA markers are indicated on the left. Identical
aliquots of the same RNA preparations were loaded in parallel in the same gel; after nucleic acid
transfer, the membrane was cut vertically, and each half membrane was hybridized with equalized
DIG-probes to detect the (+) and the (—) polarity strand of CtaHVd-LR. Hybridization signals from
both membranes were recorded simultaneously. The positions of circular and linear forms of CtaHVd-
LR1 are indicated on the right. The (+) polarity was assigned, by convention, to the CtaHVd-LR1
polarity strand that accumulates at a higher level in vivo and generated a stronger hybridization
signal (left panel).

3.3. The Sequence Variability Detected in CtaHVd-LR1 Populations Preserves a Rod-Like
Secondary Structure of Minimal Free Energy

The existence of CtaHVd-LR1 in the original RNA preparations used for generating
the RN Aseq library was initially confirmed by RT-PCR using specific primers designed
in the contig (Table S1, data not shown). New total RNA preparations, extracted using
different aliquots of the original sample of young sprouts (collected in 2018 and stored at
—80 °C), were also tested by RT-PCR using three different specific primer pairs, adjacent
and of opposite polarity, that were designed to amplify full-length cDNAs of the circular
CtaHVd-LR1 (Table S1). With all primer pairs, amplicons of the expected size were obtained
(Figure 2), confirming the identification of circular CtaHVd-LR1 RNAs with an alternative
method. Cloning of the amplification products and sequencing of a total of 30 clones
(Figure S4) showed they corresponded to sequence variants of CtaHVd-LR1 identified in
silico and confirmed that their size is from 550 to 551 nt, with a G + C content of 49.5%,
which is a value typical of other VL-RNAs. Since the amplicons were generated using three
different primer pairs in independent reactions, we had the opportunity of investigating
the variability in the regions targeted by each primer pair by sequencing the amplicons
generated with the other pairs of primers, finally assessing the sequence variability of
the complete CtaHVd-LR1 RNA (Figure S4). The sequenced CtaHVd-LR1 variants were
between 99.1 and 99.7% identical to each other and their multiple alignment allowed
the identification of sequence variability at several positions in the CtaHVd-LR1, with
approximately 90 polymorphic positions identified in the multiple alignment (Figure S4).
The consensus sequence of the multiple alignment shared the highest identity with the
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PCR primers

14A

variant CtaHVd-LR1_3 that was, therefore, considered as the reference CtaHVd-LR1 variant
(accession number OP418121). The secondary structure of minimum free energy of this
variant corresponded to a rod-like conformation in which 73.8% of the residues were paired
(Figure 3).

140 C M 14A 140 Cc M 14A 140 C

I I I

CH1Rev/CH2For CH3Rev /CH4For CH5Rev/CH6For

@SAaG D

Figure 2. Amplification assays using RNA preparations from CtaHVd-LR1-positive (isolate 14A
in 2018) and -negative (140) samples and primer pairs CH1Rev/CH2For (left). CH3Rev/CH4F
(middle) or CH5Rev/CHE6F (right); C, negative control in which ddH,O instead of cDNA was added
to the amplification mix; M, molecular marker is a 100 bp DNA ladder.
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Figure 3. Primary and predicted secondary structures of lowest free energy of CtaHVd-LR1 reference
variant (accession number OP418121). Regions involved in the formation of (+) and (—) HHRz
structures and the respective self-cleavage sites are indicated by flags and thick arrows, respectively,
with bars demarking the nucleotides conserved in most natural hammerhead structures. Filled and
open symbols refer to (+) and (—) polarity, respectively. Polymorphic positions identified in the
multiple alignment with the other cloned variants are indicated by circles containing the mutated
nucleotide. Nucleotide changes preserving the proposed rod-like secondary structure are in red, with
insertions marked by thin arrows.

In the proposed rod-like structure, the central region contains the HHRzs of the two
polarity strands that were located one in front of the other. Interestingly, most polymorphic
positions did not modify the proposed rod-like secondary structure because they were
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co-variations, conversions of canonical into wobble base-pairs or were located into loops
(Figure 3). It is worthy of note that several polymorphic positions map to the central
hammerhead region (see below). Altogether, data on the sequence variability of CtaHVd-
LR1 populations preserving the predicted rod-like secondary structure suggest a major role
of this structural feature for its survival.

3.4. HHRzs Embedded in CtaHVd-LR1 Are Active during Transcription and in the Absence
of Proteins

The CtaHVd-LR1 hammerhead ribozymes have a central catalytic core surrounded
by three hairpins, two of which (hairpin I and II) are closed by small loops (Figure 4). The
self-cleavage site is preceded by atypical GUA and AUA trinucleotides in the (+) and (—) po-
larity strands, respectively. Such a combination of trinucleotides preceding the self-cleavage
site was previously only reported in the (+) and (—) HHRzs of cscRNA1 and cscRNA2,
two viroid-like RNAs reported to most likely be satellite RNAs of a mycovirus [24]. The
GUA trinucleotide was also present at the same positions of the (+) HHRz of FHVd-LR [25]
and in the (—) HHRz of the Vd-LsatRNAs of velvet tobacco mottle virus and lucerne
transient streak virus [45,46]. The AUA was previously reported in the (+)-strand RNA
of the satellite of barley yellow dwarf virus [47] and two novel viroid-like RNAs likely
associated with carrot red leaf virus [48]. The sequence variability observed in the HHRzs
always preserved the predicted active ribozyme structure because most changes were
mapped at the hammerhead loops, preserving the potential tertiary interactions between
some nucleotides, or did not modify base pairing of the stems (Figure 4). In four of the
sequenced variants, one change was found in the catalytic core of the (—) HHRz where the
U at position 377 was replaced by a C, thus, modifying the conserved CUGA motif into a
CCGA motif (Figure 4). The same mutation has been previously reported in one variant
of peach latent mosaic viroid (PLMVd), and it has been shown that it did not affect the
self-cleaving capability of the mutated HHRz [49].
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Figure 4. Primary and secondary structure of hammerhead ribozymes (HHRzs) of (+) and (—)
CtaHVd-LR1. The nucleotides of the catalytic core conserved in most natural hammerhead structures
are in blue. The cleavage site of each ribozyme is indicated by an arrow. Nucleotides in the loops
of both HHRzs potentially involved in tertiary interactions are marked by blue lines. Nucleotides
in the (+) and (—) polarity are numerated considering their positions in the variant CtaHVd-LR1_3.
Mutations observed in other variants are indicated in circles, with the compensatory mutations and
those not modifying the proposed secondary structure of the HHRzs reported in red.



Viruses 2022, 14, 2265

9 of 14

A

The preservation of the hammerhead active structure, regardless of the sequence
variability, is indirect evidence that these motifs play a key biological role. We provided
experimental evidence that the HHRzs of CtaHVd-LR1 of both polarity strands are active
during transcription, generating RNA fragments with sizes consistent with those expected
considering the activity of HHRzs in the nascent RNA transcript (Figure 5). Moreover, when
monomeric RNA transcripts were eluted from the gel, denatured and slowly cooled in a
self-cleavage buffer containing 5 mM MgCl,, most of the transcript self-cleaved, generating
the expected RNA fragments (Figure 5). Therefore, the HHRzs of both polarity strands
of CtaHVd-LR1 are also active in the absence of any protein, confirming the ribozymatic
nature of these catalytic motifs.

Self-cleavage Transcription
Transcript of (+) polarity Transcript of (-) polarity (+) (') L (+) (')
T7 promoter,, 550 1 140S| SP6 promotery o 399 98 141
pel Ncol
i 823" e
610 M.(+),
Spel digestion lNcoI digestion 35;.F (+) ——
— ) X — - l —_—
|T7 RNA pol 1SP6 RNA pol
% @ 358 e
M(+) S 616 nt M(-) e—— G40 nt
Self-cleavage lSelf-cleavage
5'F(+) mm—71 nt 5'F (- ) —370 nt 251 -
3'F(+)  ==145nt 3'F(-) s 273 nt

!

CCCCCCCCCCCCTG

IG(

3'F (+)

CCTGTCGCCGGGCGCCTG GG ( CCCCCCCCCCCCGGOGCCTGTCGCTGGCTGCCCTG ATGAGACTTTT

Figure 5. (A) Schematic representation of the plasmids and the RNA products generated by in vitro
transcription. Plasmids containing the monomeric cDNA sequence of CtaHVd-LR1_3 in opposite
orientations were linearized and transcribed to produce monomeric RNAs (M) of (+) and (—) polarity
strands and the respective 5 (5'F) and 3’ (3'F) fragments (left and right, respectively) derived from
the HHRz self-cleaving activity. Plasmid sequences are depicted in green, while in yellow and blue
are the polymerase promoter and CtaHVd-LR1 sequences, respectively. The scissors and arrowhead
mark the position of the self-cleavage sites. The expected size of each fragment is reported on the
right. (B) Analysis by 5% PAGE under denaturing conditions of the in vitro transcription (left) and
self-cleavage reaction in the absence of any protein (right) of the plasmids containing (+) or (—)
monomeric CtaHVd-LR1_3 cDNA. L, RNA ladder with sizes indicated on the left; see panel A for
the abbreviations M, 3'F and 5'F. (C) Determination of self-cleavage site by 5 RACE of 3'F fragment.
Sequencing electropherograms of 5 RACE products of the (+) and (—) 3'F fragments are shown on
the left and right, respectively, with the 5’ terminal nucleotide (G) indicated by the arrow. The extra
T observed at the terminal end of the (+) 3'F fragment cDNA (left) correspond to a non-template
nucleotide that has likely been added by the reverse transcriptase during the cDNA synthesis [50].

5’ RACE experiments followed by cloning and sequencing of the amplification prod-
ucts showed that the 3’ fragment resulting from the HHRz activity in the (—) polarity
strand had the expected nucleotide at the 5’ terminus. In the (+) polarity strand, an extra
nucleotide was observed at the 5’ terminus of the 3’ fragment generated by the (+) HHRz
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(Figure 5). However, this is a non-template nucleotide added to the 3’ end of the synthe-
sized cDNA by the well-documented terminal nucleotidyl transferase activity of reverse
transcriptases [50]. Altogether these data confirmed the predicted self-cleavage sites for
the HHRz of both polarity strands of CtaHVd-LR1, thus, supporting their major role in the
replication of this RNA.

3.5. CtaHVd-LR1 Is Not Associated with a DNA Counterpart

Since HHRzs have also been reported in circular RNAs that have a DNA counterpart
integrated in the host genome (i.e., retrozymes or retroviroids) [5-8], we investigated
whether this is the case for CtaHVd-LR1. DNA and dsRNAs were extracted from the
original young sprouts of isolate 14A (collected in 2018 and stored at —80 °C) and tested by
PCR and RT-PCR, respectively, using the primer pair CH2 For/CHS5 Rev (Table S1). The
expected amplicons were detected only by RT-PCR. In contrast, no amplicon was generated
by PCR using the DNA preparation, thus, excluding the presence of a CtaHVd-LR1 DNA
counterpart (Figure S5).

3.6. Assessment of the Biological Nature of CtaHVd-LR1

While RT-PCR assays performed using RNA preparations from the original sample
of sprouts collected in 2018 from the isolate 14A were always positive, regardless of the
primer pair (Table S1) used, all the attempts to detect CtaHVd-LR1 with the same primers
in samples collected in 2019, 2020 and 2021 (early spring) from the same isolate always
failed. The RT-PCR assays repeated in all seasons during 2020, including several times in
early spring in 2021, always tested negative to CtaHVd-LR1. To exclude that the viroid-like
RNA was not detected due to its low concentration, a new RNA library was prepared from
sprouts of the isolate 14A collected in 2021 and sequenced by HTS. Contigs of CiVA were
easily identified by de novo assembling of the sequenced reads followed by BlastN and
BlastX searches. Moreover, when the sequenced reads were mapped on the CiVA reference
genomic RNAs by Bowtie, a full coverage of the virus genome (average coverage depth 52
and 121 for RNA1 and RNA2, respectively) was observed, showing that the HTS was deep.
Although 2 contigs related to partitiviruses were identified, no contig sharing significant
sequence identity with chrysoviruses and totiviruses were identified in this second RNAseq
library, suggesting that the mycoviruses detected in 2018 were not associated with the
isolate 14A in 2021, likely because their primary host(s) was not infecting the plant when the
samples were collected. Importantly, no contig sharing sequence identity with CtaHVd-LR1
was found, and no read was retrieved when the mapping by Bowtie was performed using
CtaHVd-LR1 as a reference sequence, confirming the absence of this viroid-like RNA in the
isolate 14A in the sample collected in 2021 and tested by HTS.

In line with the results reported above, the attempts of transmitting CtaHVd-LR1 to
two grapefruit and two sour orange seedlings by grafting bark tissues from stems collected
from the isolate 14A in early spring 2018 also failed, as confirmed by the negative results
obtained when samples from the inoculated seedlings were tested for the next four years by
RT-PCR. In contrast, in all the inoculated seedlings, CiVA was detected by RT-PCR already
six months post-inoculation and during the following years, confirming that this virus
was effectively graft-transmitted to the indicator plants and that the infection was stably
maintained over time.

Altogether, these data support the view that CtaHVd-LR1 was only transiently asso-
ciated with the citrus isolate 14A in 2018 and, possibly, that this circular RNA is not able
to infect this host. Instead, considering the results of this study, the alternative possibility
that CtaHVd-LR1 was infecting another organism transiently associated to the isolate 14A
appears more feasible.

4. Conclusions

The identification of CtaHVd-LR1, by looking for conserved motifs of HHRzs, showed
that homology-independent methods based on the identification of structural elements
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may be an effective method to find new viroid-like RNAs. With respect to the previously
reported homology-independent methods, the one used in this study does not rely on
the effective de novo assembly of the full genome plus terminal repeats of the viroid or
viroid-like RNA for its identification. Indeed, when a HHRz is identified in a read that is
not assembled in a contig with terminal repeats, adjacent primers of opposite polarities
can be designed in the read of interest to check, by RT-PCR, whether the HHRz is part of a
potential circular RNA that can be further characterized by sequencing full-length cDNAs
and by northern blot hybridization assays.

By showing that CtaHVd-LR1 is a circular RNA endowed of an active HHRz in either
polarity strand, we provided solid evidence that it is indeed a novel viroid-like RNA,
confirming the reliability of the searching method. The detection of circular RNA forms
of both polarity strands strongly support that this RNA replicates through the symmetric
pathway of a rolling circle mechanism previously reported for several viroids and viroid-
like RNAs [1,2]. The biological nature of CtaHVd-LR1 remains unknown. In this respect,
CtaHVd-LR1 resembles cscRNAs and FHVd-LRs reported previously from cherry and
fig trees, respectively [17,25]. As in the case of CtaHVd-LR1, these RNAs were also not
graft-transmissible and were associated with mycoviruses [24,25]. In the case of cscRNAs,
the mycoviruses were characterized as new species in the genera Chrysovirus, Partitivirus
and Totivirus [19-23]. Interestingly, CtaHVd-LR1 was also identified in the isolate 14A
together with contigs with the highest sequence identity to viruses of the genera Chrysovirus,
Partitivirus and Totivirus. The fact that CtaHVd-LR1 was not found in the same isolate in the
following years strongly supports the conclusion that it was only transiently, and possibly
indirectly, associated with citrus plants. In this respect, the possibility that it could be an
infectious agent of an organism other than citrus is quite likely. In conclusion, our study
highlights the high sensitivity of HTS approaches associated with homology-independent
bioinformatics tools to identify novel viroid-like RNAs. At the same time, we showed that
the finding of a novel viroid-like RNA in a plant RNAseq library must not be considered as
evidence of a direct association of the former with the latter. As also previously reported
for plant viruses [51,52], the possibility that the viroid-like RNAs are only transiently
associated with the plant, because actually infecting another organism must be considered,
thus, highlights the need for implementing bioinformatics with biological data to clarify
the nature of novel viroid-like RNAs.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/v14102265/s1, Table S1: Primers used in this study; Figure S1:
Pattern syntax used to search for hammerhead ribozyme structure in citrus RNA seq library; Figure S2:
Contig containing the sequences conserved in most natural hammerhead ribozymes in each polarity
strand and a terminal direct repeat; Figure S3: CtaHVd-LR1 (+) or (—) transcript RNAs detected by
northern-blot hybridization; Figure S4: Multiple-sequence alignment of full-length cDNAs of citrus
transiently associated hammerhead viroid-like RNA 1 variants; Figure S5: PCR and RT-PCR assays
using DNA preparations from isolate 14A.
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