
Citation: Dings, C.; Götz, K.M.; Och,

K.; Sihinevich, I.; Werthner, Q.; Smola,

S.; Bliem, M.; Mahfoud, F.; Volk, T.;

Kreuer, S.; et al. Model-Based

Analysis of SARS-CoV-2 Infections,

Hospitalization and Outcome in

Germany, the Federal States and

Districts. Viruses 2022, 14, 2114.

https://doi.org/10.3390/v14102114

Academic Editors: Luis

Martinez-Sobrido and

Fernando Almazan Toral

Received: 11 August 2022

Accepted: 20 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Model-Based Analysis of SARS-CoV-2 Infections,
Hospitalization and Outcome in Germany, the Federal States
and Districts
Christiane Dings 1 , Katharina Martha Götz 1, Katharina Och 1, Iryna Sihinevich 1, Quirin Werthner 1,
Sigrun Smola 2,3 , Marc Bliem 4, Felix Mahfoud 5,6 , Thomas Volk 7 , Sascha Kreuer 7, Jürgen Rissland 2,
Dominik Selzer 1 and Thorsten Lehr 1,*

1 Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany
2 Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
3 Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI),

66123 Saarbrücken, Germany
4 CompuGroup Medical (CGM), 56070 Koblenz, Germany
5 Department of Internal Medicine III (Cardiology, Angiology, Intensive Care Medicine),

Saarland University Medical Center and Saarland University Faculty of Medicine, 66421 Homburg, Germany
6 Institute for Medical Engineering and Science, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA
7 Department of Anesthesiology, University Hospital of the Saarland, 66421 Homburg, Germany
* Correspondence: thorsten.lehr@mx.uni-saarland.de; Tel.: +49-681-302-70255

Abstract: The coronavirus disease 2019 (COVID-19) pandemic challenged many national health care
systems, with hospitals reaching capacity limits of intensive care units (ICU). Thus, the estimation of
acute local burden of ICUs is critical for appropriate management of health care resources. In this
work, we applied non-linear mixed effects modeling to develop an epidemiological SARS-CoV-2
infection model for Germany, with its 16 federal states and 400 districts, that describes infections as
well as COVID-19 inpatients, ICU patients with and without mechanical ventilation, recoveries, and
fatalities during the first two waves of the pandemic until April 2021. Based on model analyses, covari-
ates influencing the relation between infections and outcomes were explored. Non-pharmaceutical
interventions imposed by governments were found to have a major impact on the spreading of
SARS-CoV-2. Patient age and sex, the spread of variant B.1.1.7, and the testing strategy (number of
tests performed weekly, rate of positive tests) affected the severity and outcome of recorded cases and
could reduce the observed unexplained variability between the states. Modeling could reasonably
link the discrepancies between fine-grained model simulations of the 400 German districts and the
reported number of available ICU beds to coarse-grained COVID-19 patient distribution patterns
within German regions.

Keywords: coronavirus disease 2019 (COVID-19); SARS-CoV-2; mathematical model; age; sex; testing
strategy; variant of concern (VOC); intensive care; non-pharmaceutical interventions

1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was first identified
in December 2019 in Wuhan, China [1], and caused a worldwide pandemic with more
than 550,000,000 confirmed cases and 6,300,000 coronavirus disease (COVID-19)-related
deaths as of 21 July 2022 [2]. COVID-19 patients with severe courses of disease challenged
national health care systems, with hospitals reaching capacity limits of intensive care units
(ICUs) [3,4].

Because only a few countries successfully implemented major suppression or local
eradication strategies [5], for the vast majority of the world, staying ahead of the pandemic
regarding case management with non-pharmaceutical interventions (NPIs), vaccination
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programs, and health care resource management was and still is of vital importance [6].
The need for vigilance was particularly highlighted as new variants of concern (VOCs)
such as lineage B.1.1.7 (Alpha) emerged and quickly spread globally due to a significant
advantage in transmissibility compared to wild type [7]. Moreover, infections with some of
the VOCs were associated with a higher risk of critical care admission and mortality [8].

The risk for severe courses of COVID-19 differs vastly between individuals, with pre-
vious studies identifying age and sex as strong predictors for severity and outcome [9–12].
As national testing capacities varied throughout the pandemic due to the availability of
testing infrastructure [13], further longitudinal predictors might be needed to estimate
the prospective number of expected hospitalized patients and fatalities from a number of
confirmed SARS-CoV-2 infections. Here, mathematical modeling might be useful to ana-
lyze different predictors for COVID-19 hospitalizations and disease outcomes, connecting
longitudinal data on confirmed infections and individual risk factors (such as age and sex)
as well as systemic case-outcome-related factors (originating from, e.g., regional or national
testing strategies) [14–17].

In this work, we developed a mathematical infectious disease model that describes
the first two waves of the pandemic and the emergence of VOC B.1.1.7 in Germany until
April 2021. The impact of covariates such as testing strategy, age, sex, and VOC emergence
was evaluated to describe SARS-CoV-2 infections and the resulting number of COVID-19
inpatients, ICU patients with and without the need for mechanical ventilation, recoveries,
and fatalities for Germany’s 16 federal states and 400 districts. Moreover, the developed
model should serve as a foundation which can be adapted to changes in the pandemic,
such as the dynamics of infectiousness, the severity of the disease due to new variants,
improved therapy options, and advances in vaccination programs.

2. Materials and Methods
2.1. Epidemiological Data

The local ethics committee of the medical association of the Saarland granted ethical
approval for this study (Ärztekammer des Saarlandes, Short title: “CoSim”; Bu 78/20).
Data were gathered from several sources: Confirmed SARS-CoV-2 infections as well as
COVID-19-related deaths and recoveries were collected at the federal state level from the
database of the regional newspaper “Berliner Morgenpost”, which has compiled informa-
tion from the John Hopkins University CSSE, reports from German authorities, and data
from the Robert Koch Institute (RKI) and federal state health authorities since 27 January
2020 [18]. Data on confirmed cases at the district level as well as age- and sex-stratified
information on SARS-CoV-2 infections were available from the RKI (age groups 0–4, 5–14,
15–34, 35–59, 60–79, and >80 years) [19].

If information was available, the dataset included the number of current COVID-19
inpatients and daily new inpatients as reported by the health ministries of the 16 federal
states [20–32]. The number of occupied ICU beds with and without mechanical ventilation
was available from the German Intensive Care Register DIVI and the RKI [33,34]. A detailed
listing of epidemiological data sources can be found in Supplementary Table S1.

The model was informed by prior information on clinical outcomes obtained from the
hospital financial information system MetaKIS (CompuGroup Medical (CGM), Koblenz,
Germany). This database included a representative cohort of about 10% of all confirmed
SARS-CoV-2 cases in German hospitals and provided information about diagnosis (ICD-10
coding), age, sex, and duration of treatment at various hospital wards, as well as duration
of mechanical ventilation and outcome on a patient-specific level. In total, the database
contained data of 30,723 patients admitted to hospitals between 23 March 2020 and 1 March
2021 with a positive test for infection with SARS-CoV-2 (ICD-10 Code U07.1: COVID-19,
virus identified) and released from the hospital as recovered or perished (N = 23,810 and
N = 6913, respectively). Recovered inpatients with an unusually short hospital stay of
less than a day were excluded from the analysis (N = 1876). Patients with a record of ICU
stay for less than one hour were handled as inpatients that only required treatment in the
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general ward. The analysis of data from the resulting 28,847 COVID-19 patients provided
information about hospital admissions per confirmed case, admissions to the ICU, the need
for mechanical ventilation, length of stay, and rates of in-hospital death differentiated by
general ward, ICU, and need for mechanical ventilation. COVID-19 admission rates and
mortality were stratified by sex and age via post hoc analysis, with age groups following
the schema of the RKI (0–4, 5–14, 15–34, 35–59, 60–79, and >80 years). The duration of stay
was stratified by clinical ward and outcome.

2.2. Model Development

Non-linear mixed-effects modeling was applied for the stepwise parametrization and
development of a compartmental model consisting of three submodels for (I) infections,
(II) hospitalization, and (III) outcomes of SARS-CoV-2 infections. The model was developed
for Germany on a federal state level and subsequently applied to describe and analyze the
pandemic in the 400 German districts.

Non-linear mixed-effects modeling was performed using the software NONMEM
(7.4.3., ICON Development Solutions, Ellicott City, MD, USA). The statistical programming
language R 3.6.3 (The R Foundation for Statistical Computing, Vienna, Austria) was used
for dataset generation, statistical analysis, and visualization.

Model development was performed in two steps: First, the number of daily infections
was described, with dependence on NPIs and other influences causing changes in infec-
tiousness over time. Second, estimated parameters describing daily infections were fixed,
and the numbers of daily inpatients, ICU patients, ventilated patients, and fatalities were
described. A detailed description of submodel development is provided in the following
sections.

2.3. Infections

The number of daily infections was described using the classical epidemiological
compartment model [35], where the population is transferred through the stages susceptible
(S) and infected (I) before counting as a confirmed case (C), as depicted in Equations (1)–(3)

dS
dt

= −β(t) ∗ S(t)
N

∗ I(t) (1)

dI
dt

= β(t) ∗ S(t)
N

∗ I(t)− γ ∗ I(t) (2)

dC
dt

= y ∗ I(t) (3)

with N being the number of inhabitants. The transmission rate γ from the infectious stage
to confirmed cases was fixed to an infectious period of 7 days, with γ = 1/7 based on 6 days
of mean incubation time plus 1 day of lag between showing symptoms and registering a
positive test result [36]. The transmission rate β(t) for the transfer from the susceptible to
the infectious stage is related to γ and the infectiousness (Rα) as depicted in Equation (4):

β(t) = Rα(t) ∗ γ (4)

The infectiousness was described depending on intrinsic local changes implemented
at discrete points in time. Furthermore, when VOC B.1.1.7. started to emerge in Germany in
the winter of 2020/2021, VOC infections were set to have a 35% increase in infectiousness
compared to wild type, as estimated by Graham et al. [7].

2.4. Hospitalization and Outcome of COVID-19 Patients in Germany

To describe the number of hospitalized patients and ICU patients with and without
mechanical ventilation, the modeled confirmed infections were then split into the four
scenarios of interest: patients requiring no inpatient treatment (Q), patients requiring
inpatient treatment without treatment at ICU (H), patients requiring ICU treatment without
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mechanical ventilation (ICU), and patients requiring mechanical ventilation (V). Each group
was further split into the outcomes recovery and death. For each scenario and outcome, the
mean times until discharge were derived from the clinical database and used as the mean
transit time (MTT) for the transition of the population through the respective stages. Here,
transit rates were defined as (n + 1)/MTT, with n being the number of additional transit
compartments [37]. For this, models with one and two transit compartments and different
structural models were tested, resulting in 8 ∗ (n + 1) differential equations describing
the SARS-CoV-2-positive population transitioning through the disease stages. To compute
the total number of hospital inpatients at a certain time point, the numbers of patients
in the transit compartments for each ward and outcome were calculated as described in
Appendix A Equation (A54).

The covariates age, sex, fraction of cases infected with VOC B.1.1.7, testing strategy,
and the number of daily and weekly infections per 100,000 inhabitants were tested for their
impact on different model parameters. Model parameters for hospital ward admission and
death rates were stratified by age and sex according to rates derived for each age group
from the clinical database.

For example, to obtain the fraction of SARS-CoV-2-positive patients requiring inpatient
treatment at time t, the fraction of cases with a certain age and sex p(a, s, t), as reported
with the number of cases by the RKI, was multiplied by the age- and sex-stratified risk for
hospitalization according to the clinical database fh(a, s), resulting in the fraction of new
cases requiring hospitalization h(t) at a certain timepoint (Equation (5)).

h(t) = ∑s=Female
s=Male ∑a=Age 80+

a=Age 0−5 fh(a, s) ∗ p(a, s, t) (5)

ICU, ventilation, and fatality rates were calculated accordingly, as described in
Appendix A, Equations (A28), (A29), (A31), (A33) and (A35).

For other covariates, different linear, exponential, and sigmoid Emax models were
tested to describe the impact of the covariates on different model parameters [38]. If the anal-
ysis of the clinical data and model goodness-of-fit plots revealed the need for rate changes
at distinct time points that could not be explained by the previously discussed covariates,
rate changes were included in the model with time-dependent sigmoid Emax models.

2.5. Model Parametrization and Mixed-Effects Modeling

If possible, model parameters were informed by literature or metrics derived from
the clinical database. Missing parameters were estimated using first-order conditional
estimation with interaction (FOCEI) [39] implemented in NONMEM. The objective function
value (−2 log-likelihood; OFV), precision of parameter estimates reported as relative
standard errors (RSE) [38], as well as visual inspection of the goodness-of-fit plots [40] were
used as evaluation criteria for model selection.

Model parameters that could not be informed by literature or database analysis were
estimated using fixed effects and random effects. For this, unknown changepoints in infec-
tiousness and all hospitalization and outcome model parameters were estimated as fixed
effects. Random effects were estimated for local infectiousness for every changepoint and
the error models. Here, combined residual error models with additional and proportional
errors were used for each modeled outcome (hospital, ICU, ventilated, deaths) except for
the cumulative cases, where a combined additional and exponential error was assumed.

For the model describing the number of cases, the changepoints of infectiousness were
either fixed to dates of reported changes in federal or local policy regarding NPIs, or they
were estimated as fixed effects (see Supplementary Table S3). For the implementation of
changepoints, the NONMEM model event time parameter (MTIME) was used. A random
effect model was used to describe the differences in change of infectiousness between
federal states or districts, assuming a log-normal distribution with a prior of 30% CV.

The development of the infectiousness model was initiated at the beginning of the
pandemic in Germany and was updated weekly. Here, previously estimated changepoints
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and infectiousness were fixed, and only the latest three changepoints and R(t)s were
estimated every week. If the implementation of a new infectiousness changepoint led to a
significant improvement in the description of the data (p < 0.01, dOFV > 11.345 for 3 degrees
of freedom), it was retained in the model. Changepoint starting values were set to be at
least 5 days apart from the previous changepoint. For the estimation process, R(t) values
were clamped to a range between 0 and 3. For the simulation of infection trajectories for
every state and district, maximum a posteriori estimation was used to estimate individual
model parameters. The simulation of infections within the whole German population was
accomplished using the population estimates.

For the hospitalization and outcome models, the estimated individual parameters
from the infectiousness model were fixed. For the hospitalization and outcome models’
parametrization, only fixed effects were used (see Appendix B Table A1). Here, starting
values were set to assure that parameters ranged within reasonable boundaries (e.g., the
fraction of patients requiring inpatient treatment would not exceed 1).

3. Results
3.1. Clinical Database

The clinical database covered approximately 10% of all German COVID-19 inpatients
from 139 hospitals and included a total of 28,847 COVID-19 inpatients (53% males) with a
median age of 73 years (interquartile range of 57–83 years). A comprehensive summary
of the data can be found in Supplementary Table S2. During the study period, 18%
(N = 5235) of inpatients required ICU treatment, and 67% (N = 3508) of ICU inpatients
required mechanical ventilation. Overall, 24% (N = 6913) of inpatients died. The average
time until discharge and time spent on each ward were stratified by outcome (Table 1). The
mean time until discharge (recovery or death) was 2.1-fold longer for recovered patients
who needed ICU treatment compared with patients treated in the general ward. Patients
dying had a shorter duration of inpatient treatment in comparison to recovering inpatients.
In particular, patients requiring mechanical ventilation showed a 46% shorter hospital stay
compared with recovered patients. On average, inpatients required mechanical ventilation
for 28% of their stay until recovery (8 days), whereas patients dying were ventilated for 63%
of their hospital stay (9.8 days). Moreover, patients requiring ventilation spent on average
43% (12.7 days) or 68% (10.5 days) of their time as inpatients in the ICU if the outcome
was recovery or death, respectively. Patients without the need for mechanical ventilation
spent 29% (5.9 days) or 44% (8.8 days) of their hospital stay at the ICU when recovering or
dying, respectively.

Table 1. Mean time until discharge, proportion of time on ICU and on a mechanical ventilator as well
as standard deviations (sd) derived from the clinical database as used in the model for patients in
the general ward, ICU inpatients, and ICU inpatients who needed mechanical ventilation as well as
outcomes recovery and death.

Ward (Fraction
of Patients)

Outcome
(Fraction of Patients

by Ward)

Total Duration
until

Discharge
[Days] (sd)

Proportion of
Time in ICU

[%] (sd)

Proportion of
Time

Ventilated [%]
(sd)

General ward
only (81.8%)

Recovery (82.2%) 11.5 (11.4)

Death (17.8%) 10.6 (11.2)

ICU without
ventilation

(6.0%)

Recovery (76.1%) 20.4 (17.1) 29 (96)

Death (23.9%) 20.0 (20.5) 44 (33)

ICU with
ventilation

(12.2%)

Recovery (34.5%) 28.6 (18.3) 43 (39) 28 (21)

Death (65.5%) 15.5 (12.6) 68 (31) 63 (34)

3.2. Model Structure

The course of the COVID-19 pandemic in the 16 federal states and 400 districts of
Germany from the beginning of the pandemic (25 February 2020, first verified SARS-CoV-2



Viruses 2022, 14, 2114 6 of 26

infection in Germany leading to an outbreak with untraceable chains of infection) until
the beginning of the third wave (1 April 2021) was analyzed using a comprehensive epi-
demiological compartment model. The model consists of 29 ordinary differential equations
(ODEs) that describe the population transitioning through seven infection and disease-
relevant stages. Figure 1 illustrates a simplified representation with submodels for infec-
tions, hospitalizations, and outcomes. Figure 2 shows a comprehensive overview of all
model compartments and references to the ODEs listed in Appendix A. The NONMEM
model files (infection-only and full model) can be found in the Supplementary Materials.
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Figure 1. Schematic representation of the epidemiological compartment model. Solid arrows indicate
the flow of individuals between compartments during the infection/disease process. Covariates
influencing the flow rates are assigned to the respective arrows. Dashed arrows indicate the influence
of a compartment value on the rates. NPI: non-pharmaceutical interventions, VOC: fraction of cases
infected with the variant of concern B.1.1.7, number of tests: number of weekly performed PCR tests
in Germany.

As in classical epidemiological SIR compartment models [35], the population is as-
signed to one of the three stages: susceptible (S), infected (I), and recovered (R). In the
presented model, three new stages were implemented: quarantined patients in an ambu-
latory setting (Q), inpatients, and disease-related fatalities (D). Inpatients were divided
into patients in a general ward (H), ICU patients (IC), and patients who need mechanical
ventilation during any period of their ICU stay (V). Moreover, inpatients could recover
or die at each of these stages. Age, sex, the fraction of patients infected with VOC B.1.1.7,
the number of weekly PCR tests, and test positivity rate were identified as significant
covariates influencing the rate and distribution of new inpatients as well as outcomes.
Model parameters which were not informed by metrics derived from the clinical database
but estimated as fixed effects can be found in Table A1 of Appendix B. The model described
the number of hospitalizations (stratified by hospital ward and need for mechanical ventila-
tion), recoveries, and COVID-19-related deaths for Germany and the 16 federal states very
well. Figure 3 shows the time courses of all relevant observations and model predictions for
Germany and three selected federal states, and Supplementary Figure S1 shows all federal
states. Further details on the submodel structures are described in the following sections.

3.3. Infectiousness

Cases were described by a stepwise estimation of the infectiousness depending on
NPIs, estimated infectiousness changepoints, and the fraction of cases infected with VOC
B.1.1.7. In total, 24 significant infectiousness changepoints could be observed or estimated
over the 48 weeks of investigation, with a mean period of 15.5 days between changes
(minimum 6 days, maximum 30 days), as depicted in Figure 4.
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Figure 2. Detailed depiction of the compartmental model including flow rate constants. Numbers
represent the compartment numbers used in the NONMEM model file. Not depicted are compartment
numbers 18, 21, and 22, which were used for the computation of daily deaths, daily hospitalizations,
and cumulative ICU patients. The violet, orange, and yellow areas represent the compartments used
for the calculation of inpatients, ICU patients, and ventilated patients, respectively, according to
Equations (A52)–(A54) (see Appendix A).
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Figure 3. Descriptive performance plots for Germany and three selected federal states. Points:
observations, lines: individual model predictions. Information about the total number of inpatients
was not available for Germany in total.

For 15 out of 24 changepoints, variation in infectiousness could be attributed to changes
in NPI policies (e.g., inception or lifting of mandates by the federal or state governments).
Seven changepoints could be linked to other causes, such as local superspreading events
during periods with low daily confirmed cases or raised awareness and voluntary contact
reductions within the population at the beginning of the pandemic. For two changepoints
(4 October 2020 and 30 November 2020), no exogenous cause for the significant increase in
infectiousness could be identified. In our estimations, school closures at the beginning of the
pandemic led to an average reduction of infectiousness of approximately 31%. Furthermore,
curfew or contact-restraining orders that were reinforced on average 5 days after school closure
led to a further reduction of infectiousness by 42%. With the resolution of the nationwide
so-called “lockdown light” on 28 October 2020 (including the shutdown of restaurants, bars,
and leisure and sports facilities, as well as limitations for retail stores and contact restrictions),
the infectiousness was reduced on average by 28%.
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Figure 4. Changes in effective reproductive number over time for Germany (red line) and the federal
states (grey lines).

The coefficient of variation (CV) of the infectiousness between the states was on
average 17.7% (range 3.9–40.6%). When NPIs were reinforced by federal state governments,
the average CV was 23.2% (6.9–40.6%). After the reinforcement of nationwide NPIs,
the average inter-state variability was lower (11.2%, range 3.9–29%). All infectiousness
changepoints, the resulting effective reproductive numbers (R(t)), and associated events,
such as changes in NPI policies, are listed in Supplementary Table S3.

3.4. Hospitalization and Outcome of COVID-19 Patients in Germany

In the presented model, infected individuals were allocated to two different paths:
(i) a quarantine path for patients in home quarantine (Q) and (ii) a hospital path for
inpatients (T). Analysis of our clinical database and modeling outcomes revealed that the
hospitalization rate hosp(t) (Appendix A Equation (A8)) was dependent on the age and sex
of the infected individuals, the number of PCR tests (NT) performed weekly in Germany,
and the fraction of infections with VOC B.1.1.7. Furthermore, a changepoint could be
observed with a noticeable shift in the hospitalization rate. All effects are presented in
detail in the following sections.

Inpatients were split into three groups depending on severity of illness: patients
only treated in a general ward, patients in an ICU without ventilation, and patients being
ventilated. Furthermore, all three groups were stratified per outcome (recovery or death).
Hence, for inpatients, six groups of wards and outcomes were defined, with specific times
until discharge for each group. All patients recovering enter recovery transit compartments
(Appendix A Equations (A48) and (A49)) after their stay in the respective hospital ward
before they are counted as recovered (R) to adjust recovery time to the RKI definition
(14 days after discharge). In contrast to the recovered patients, inpatient fatalities (D) were
counted without delay. The model works under the simplification that recovered patients
are immune to reinfection with SARS-CoV-2 wild type and VOC B.1.1.7 [41].

3.5. Age and Sex

Age and sex were significant covariates impacting the severity of disease and outcome
(p < 0.001). We calculated the fractions of confirmed SARS-CoV-2 cases receiving inpatient
treatment by age and sex based on the clinical database and the reported cases from RKI.
The fractions of inpatients receiving treatment at the ICU and mechanical ventilation as well
as fatality rates stratified by age and sex were calculated based on the clinical database. An
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overview of the fractions is depicted in Figure 5 and listed in Supplementary Table S4. The
risk of hospitalization and death was highest in elderly male patients (50.3% for patients
> 80 years), and the risk of inpatients needing intensive care treatment increased with
age and was highest for patients aged 60 to 80 (54.1% for male patients). For most age
groups, female confirmed SARS-CoV-2 cases had a lower risk of hospitalization compared
to male cases (24% to 41% risk ratio). However, for female cases age 15 to 34, a higher
risk of hospitalization (females 2.38% vs. males 1.54%, 55% risk ratio) could be observed.
Figure 6 depicts the demographic changes of the confirmed cases over time and the resulting
changes in fractions of confirmed cases hospitalized, treated in an ICU, and ventilated, as
well as death rates.
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3.6. Variants of Concern

In winter 2020/2021, VOC B.1.1.7. started to emerge in Germany. In our model,
the fraction of infections with VOC B.1.1.7 (VOC(t)) was estimated using an exponential
growth function (Equation (6)) with a growth rate k = 0.072 and an initial fraction of
infections with VOC B.1.1.7 (Finitt) of 0.2% according to Volz et al. [42]. The initial time
(tinit) was estimated to fit the model to the fractions reported by the RKI at 17 February 2021
for the preceding 6 weeks [43]:

VOC(t) = 1/(1 +
1 − Finit

Finit
∗ e−k ∗ (t−tinit)). (6)

VOC B.1.1.7. was first detected on 24 December 2020 in Germany [44]. However,
retrospective analysis showed that it had already emerged in November 2020 [25]. Our
model estimated 0.02% of infections with VOC B.1.1.7 as of 3 December 2020.

Variant spreading and variant-associated infectiousness were fixed in our model to
be 35% higher in comparison to wild type as reported by Graham et al. [7] (Figure 7). The
stepwise change of infectiousness due to NPIs was estimated for the infectiousness of the
wild type RαWT, with Rα(t) = RαWT(t) before the emergence of B.1.1.7 at tinit with:

Rα(t) = RαWT(t) ∗ (1 + 0.35 ∗ VOC(t)). (7)
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Figure 7. Fraction of infections with VOC B.1.1.7 in Germany (left) and impact of VOC B.1.1.7 on the
infectiousness, fraction of patients requiring inpatient treatment, and fraction of inpatients requiring
ICU treatment (right). Points indicate observed fraction of infections in Germany. Lines indicate the
model-predicted fraction or rate changes.

The impact of VOC B.1.1.7 on disease severity was estimated by fitting VOC-dependent
changes in various model rates to the observed inpatient and fatality data from the fed-
eral states. As depicted in Figure 7, the fraction of patients requiring inpatient treatment
increased by 39.5% (RSE 14.1%, p < 0.001), and the fraction of inpatients requiring in-
tensive care treatment increased by 16.2% (RSE 33.1%, p < 0.001) for patients infected
with VOC B.1.1.7 in comparison to infections with the wild type. An additional change in
inpatient death rates due to VOC B.1.1.7 was not significant in our analysis.

3.7. Testing Strategy

The number of weekly performed PCR tests had a significant impact (p < 0.001) on the
fraction of hospitalized confirmed cases (more performed tests were positively correlated
with fewer hospitalizations, see Figure 8A). Moreover, the fraction of positive tests had
a significant effect (p < 0.001) on the fatality rate of outpatients and patients in a general
ward (higher positive ratios were associated with a higher fatality rate, see Figure 8B).
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Figure 8. (A) Weekly PCR tests in Germany. Blue lines indicate the change in the hospitalization
rate vs. the number of tests performed (left plot) and time (right plot). The histogram represents the
number of weeks with the respective number of weekly tests. The yellow line represents the weekly
tests vs. time. (B) Fraction of positive tests. Orange lines indicate the change in the death rate vs.
the number of tests (left plot) and time (right plot). The histogram represents the number of weeks
with the respective fraction of positive tests. The green line represents the fraction of positive tests
vs. time.

3.8. Hospitalization Rates and Time Effects

Investigation of inpatient data and model changepoint analysis revealed shifts in
disease stage transitions and outcome dynamics that could not solely be explained by the
already included covariates. The time until discharge of mechanically ventilated patients
decreased noticeably during the summer of 2020, and a changepoint was estimated by
the model on 10 June 2020, with a significant reduction of the time until discharge by 65%
(from 47.3 days to 16.7 days, p < 0.001).

Furthermore, comparing data from our clinical database and newly confirmed cases
over time, a drop in the fraction of patients requiring inpatient treatment could be observed
in September 2020, and the model estimated a significant decrease in the fraction requiring
inpatient treatment of 49.6% on 9 September 2020 (RSE 1.6%, p < 0.001). Simultaneously,
the rate of inpatients requiring ICU treatment increased (p < 0.001). This increase was
significantly higher in seven (Bavaria, Berlin, Bremen, Hamburg, Hesse, North Rhine-
Westphalia, and Saarland) of the 16 federal states (29.0% [RSE 4.2%] vs. 9.4% [RSE 10.2%]).
However, the overall fraction of confirmed cases requiring ICU treatment still declined by
33.7–43.8%. The rate of modeled outpatient deaths increased to 23% for male patients older
than 79 years during the second wave around 15 December 2020 and decreased again to
0% around 11 March 2021 (p < 0.001).

Figure 9 depicts the model flow rates that result from the incorporation of all previously
described covariates and time effects.
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3.9. German Districts

The model parameterized for Germany and the 16 federal states was subsequently applied
to the pandemic in the 400 German districts. The number of weekly cases in each district was
described very well using the estimated federal state model changepoints for infectiousness
with a district-specific random-effect estimation of the infectiousness (see Supplementary Figure
S2). Moreover, the number of ICU patients was calculated based on the estimated number of
local cases and the respective age and sex distributions. Figure 10 and Supplementary Figure S2
show that predictions of ICU patients and ventilated ICU patients are in reasonable agreement
with the observed number of patients for many, but not all districts. To investigate which
districts were not described well, we calculated the mean residuals of ICU predictions per
100,000 inhabitants for each district. Here, for 101 districts (25.3%) predictions were in good
agreement with the observed data (residuals between −0.5 and 0.5), whereas for 113 districts
(28.3%), larger underpredictions (residuals < −0.5) were seen, and for 182 districts (45.5%),
sizable overpredictions (residuals > 0.5) could be observed. For four rural districts (1%), no
information regarding the number of ICU inpatients was available. Discrepancies between
observed and predicted ICU inpatient numbers were consistent in both total ICU occupancy
and ICU patients receiving mechanical ventilation, with a Pearson correlation coefficient of the
residuals (ICU inpatients and mechanically ventilated inpatients) of R2 = 0.81 (p < 0.001). It
could be observed that the number of available ICU beds per inhabitant was significantly higher
in urban districts (German “Stadtkreise”, SK) compared to rural districts (German “Landkreise”,
LK; median 5.44 vs. 1.87 beds/1,000,000 inhabitants for SK and LK, respectively, p < 0.001).
Further investigations revealed a correlation between the mean discrepancies and the number of
ICU beds available per inhabitant (R2 = 0.62, p < 0.001). This relationship is also demonstrated
via a closer investigation of an exemplary region in the Midwest of Germany (Figure 10C,D).
The urban district Münster, which maintains a large academic hospital, hosts more ICU patients
than predicted based on the cases of this district, whereas the surrounding rural districts host
fewer patients than expected, especially at peak times of the pandemic.
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Figure 10. ICU prediction on the district level, (A): Mean residuals of ICU predictions per 100,000
inhabitants per district (NUTS-3). (B): Mean residuals of ICU predictions per 100,000 inhabitants
per government region (NUTS-2). (C): Mean residuals of ICU predictions in counties per 100,000
inhabitants in exemplary government region DEA3. (D): Observations and model predictions of
ICU occupancy for the full exemplary government region DEA3 and its districts. Points indicate
observations, and lines indicate model predictions. LK refers to “Landkreis” (rural district). SK refers
to “Stadtkreis” (urban district).

We also investigated the predictive performance at the regional level (NUTS-2). NUTS
(Nomenclature of Territorial Units for Statistics) is a European standard for the subdivi-
sion of countries into units of approximately the same population size while favoring
administrative units [45]. NUTS-2 aggregates the districts (NUTS-3) into regions with
0.8 to 3 million inhabitants, most of which are smaller than the federal states (NUTS-1).
In Germany, 38 NUTS-2 regions exist which correspond to governmental regions known
as “Regierungsbezirke” in Germany. Predictions on the NUTS-2 level showed that occu-
pied ICU beds were well predicted (Figure 10D), and over- or underprediction could be
eliminated for 92% (35 of 38) of the regions (Figure 10B).
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4. Discussion

In the presented work we developed a comprehensive mathematical model that
describes the number of SARS-CoV-2 infections, inpatients, ICU patients with and without
mechanical ventilation, recoveries, and fatalities for the first two waves of the SARS-CoV-2
pandemic in Germany, its 16 federal states, and its 400 districts. Here, the description of
hospitalized patients and fatalities was based solely on the number of infections and on the
age and sex of the patients, variant of concern B.1.1.7, and the testing strategy (number of
tests performed weekly, test positive rate) as covariates.

To describe the number of infections, the change in infectiousness was estimated at
discrete changepoints considering inter-state and inter-district variability over time. The use
of changepoints allowed us to accurately describe the number of infections without a daily
infectiousness reevaluation and to only incorporate and analyze significant epidemiological
changes in the infection dynamics. Still, the average estimated infectiousness was similar
to the infectiousness estimated using continuous (daily) variations [46].

Over the 48 weeks of investigation, 24 significant changepoints of infectiousness
could be observed or estimated, with a mean period of 15.5 days between consecutive
changepoints. During the winter months (October until February), the period between
changepoints was smaller (mean 18.3 days, range 7–30 days and mean 11.8 days, range
6.2–18.4 days in summer and winter, respectively), which can be attributed to the faster
spread of SARS-CoV-2 due to seasonality and the consequential high frequency of changes
in NPIs. When the German government initiated nationwide measures to control the
pandemic in October 2020 [47], the inter-state variability in R(t) decreased in comparison
to the beginning of the pandemic, when federal state governments enacted individual
measures that were only effective locally (23.2% CV and 11.2% CV before and after October
2020, respectively).

A total of 21 of the 24 changepoints of infectiousness could be attributed to changes in
NPI policies. The closing of schools in the spring of 2020, for example, led to an average
decrease in infectiousness of 31%, which is in line with several other studies where a
decrease between 0% and 60% was documented [48]. Contact restrictions at the beginning
of the pandemic reduced infectiousness by 42%. However, because other NPIs were stacked
and nested during these times, the results regarding the extent of these effects are likely
biased. The reopening and closure of schools during the summer and fall of 2020 were
subject to different local regulations and were implemented at different points in time,
which rendered evaluation of the effects of school reopening and closure on R(t) impossible
for the summer and fall of 2020.

The numbers of inpatients, ICU patients, ventilated patients, recoveries, and fatalities
were well described based on the predicted number of infections and the age and sex of
the infected patients, VOC B.1.1.7, the number of weekly performed PCR tests, and the test
positivity rate. Here, the analysis of metrics derived from the clinical database MetaKIS
allowed the analysis of the typical hospital stay of inpatients with COVID-19, including
the time until discharge and time spent in the ICU and with mechanical ventilation. With
a mean length of hospital and ICU stay of 12.7 and 9.3 days, respectively, our analysis of
individual inpatient data was in line with observations from Berger et al. [49], which were
obtained by dividing the respective current number of patients by the respective cumulative
number of patients (length of hospital and ICU stay of 14.3 and 12.8 days, respectively).

Moreover, our analysis is in line with other studies showing that the risk of hospital-
ization and death increases exponentially with increasing age [9–11,14,15,50]. The risk of
ICU treatment among hospitalized patients was highest in the age group 60–80, which is in
agreement with results from Switzerland and the United States, where patients aged 55–74
had the highest risk of ICU treatment [15,50]. The higher risk of more severe outcomes in
older patients (such as the need for inpatient treatment, need for ICU treatment, and fatal-
ity) might be driven by two main factors: (i) older patients often have more comorbidities
such as obesity, hypertension, diabetes, cardiovascular diseases, and chronic respiratory
diseases which impose a higher risk of severe disease [51]; and (ii) the ageing immune
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system results in hyperinflammatory, pathological innate responses as well as ineffective
T cell response and diminished antibody maturation [50,51]. Differences in the immune
response might also explain the higher risk of severe disease in male patients [52]. Herein,
the highest risk was observed among elderly male patients, which is in line with previous
findings [50].

The length of hospital stay and duration of ICU treatment or mechanical ventilation
were also explored and stratified by the age and sex of the patients. The mean length of
stay was similar for females and males (12.3 and 13.1 days, respectively), which is in line
with findings from the United States by Ohsfeldt et al. [53] of 8.5 and 9.6 days for females
and males, respectively. The difference between female and male patients was even smaller
when analyzed by ward, as more male patients received ICU treatment, which is associated
with a longer stay. For patients staying in a general ward only, both male and female
patients had an average length of stay of 11.2 days; for ICU patients, the average length of
stay was 19.6 days for females and 19.7 days for males.

Older patients stayed in the hospital for a longer period (e.g., 7.4 days and 13.1 days
for patients < 35 and ≥35 years, respectively). However, this difference was smaller when
considering the higher fraction of older patients requiring ICU treatment: Patients not
requiring ICU treatment stayed on average 6.7 and 11.5 days, for ages < 35 and ≥35 years,
respectively. ICU patients had an average stay of 16.5 and 19.8 days for ages <35 and ≥35
years, respectively. Furthermore, patients younger than 35 years old only represented 6.5%
of all inpatients. Hence, the impact of correcting the duration of stay for the age of the
patients was very small in comparison to the added level of complexity to the model.

VOC B.1.1.7 has been shown to have increased ACE2 binding and cell infectivity due
to a mutation on the spike protein which results in an advantage in transmissibility and an
increase in disease severity compared to the wild type. By assessment of the proportion
of B.1.1.7 cases and the number of reinfections, Graham et al. estimated the increase in
the effective reproduction number to be 35% based on data from the United Kingdom [7],
which we used to describe the number of cases in our model, resulting in a good correlation
between the increase of cases and the appearance of VOC B.1.1.7.

At the time of model development, the impact of VOC B.1.1.7 on the severity of
disease was not clear. A study from Denmark reported a relative risk of hospital admission
of 1.42 [54], and a study from the United Kingdom reported a mortality hazard ratio of
1.64 in comparison to the wild type [55]. Both studies adjusted for confounding patient
characteristics such as age and sex. Using our multivariate approach, we differentiated
between the increase in the fraction of patients hospitalized (39.5%) and the fraction treated
in an ICU (16.2%) in Germany while also considering other model covariates, such as age,
sex, and testing strategy. The increase in hospitalization was similar to the increase found
in Denmark [54]. In our model, no significant rise in death rates in the respective hospital
wards could be observed. However, due to the increase in the fractions hospitalized and
treated in an ICU, which are both linked to higher fatality rates, the apparent case fatality
rate increased.

A comprehensive testing strategy was anticipated to result in a lower dark figure
of cases and consequently a lower fraction of severe cases, as the fraction of detected
asymptomatic infections would increase accordingly. This hypothesis was confirmed by
our model, as the number of weekly tests was associated with a decrease in the fraction of
hospitalized patients, and the test positivity rate was correlated with an increase in death
rates. Here, both covariates improved the model performance significantly. The impact of
the testing strategy has been previously discussed by Modi et al., who estimated infection
rates based on the number of fatalities in Italy [56]. Liang et al. observed a similar link
between mortality and the number of tests per 100 inhabitants in a dataset comprising
169 countries [57].

The combination of information from the clinical dataset and mathematical modeling
allowed us to identify and quantify changes in the dynamics of the pandemic, which
could not solely be explained by changes in the age and sex distribution of the infected
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population over time or other covariates. A significant decrease in the time until discharge
for recovering of ventilated patients of 64.8% could be discovered in the summer of 2020.
The date of change (8 August 2020) corresponded well to the time at which dexamethasone
treatment for severe COVID-19 cases was first discussed and clinical guidelines were
revised [58]. The model-estimated decrease of the time until discharge is in line with the
work of Tomazini et al., who observed in 299 patients with COVID-19–associated acute
respiratory distress syndrome that treatment with dexamethasone increased the number of
ventilator-free days in recovered patients by 65.0% without decreasing mortality [59].

During the second wave of the pandemic in September 2020, the fraction of confirmed
cases requiring inpatient and ICU treatment decreased. This trend was observed in the
clinical database and confirmed by our model, with an estimated decrease in the hospital-
ization rate of 49.6% and of the patients requiring ICU treatment of 41.9% on 28 September
2020. While the underlying causes remain unknown, these changes might have been driven
by an increased awareness of the disease and higher acceptance of comprehensive testing.
Subsequently, the number of detected asymptomatic cases might have increased. For seven
states, a significantly higher fraction of inpatients treated in an ICU could be observed
(29% vs. 9%, p < 0.01). However, no explicit cause for the difference between these states
was found.

Daily fatalities during the second wave could not be explained by the model’s covari-
ates, nor could an increase in death rates be observed for hospitalized patients recorded
in the clinical database. To describe excess fatalities, we assumed that this increase might
have occurred for the death rate of outpatients, for which no explicit data were available
in Germany. This assumption is in line with press reports that covered the high fatality
rates in nursing homes and press critiques regarding nursing home residents not receiving
adequate inpatient treatment during the time of unexplainable excess deaths [60].

In contrast to previously published epidemiological modeling approaches [14,15,61],
the presented model was developed using data from the federal states (NUTS-1 level) and
was successfully applied to describe the number of ICU patients in the whole country
(NUTS-0 level), regions (NUTS-2 level), and districts (NUTS-3 level). The prediction of the
district ICU and ventilated patient numbers underlines the importance of the covariate
effects (age and sex) for the cases. However, for some districts, discrepancies between
observations and model predictions could be observed. This was more pronounced for
districts neighboring each other and correlated with the number of available ICU beds per
inhabitant in the respective districts. Districts with overpredicted ICU occupancies were
mostly rural districts with smaller or less specialized hospitals. Districts reporting higher
ICU occupancies than predicted were often urban districts with larger hospitals (some of
which are university hospitals) and higher ICU capacities. Hence, it seems plausible that
small hospitals in districts with fewer ICU beds available tended to transfer patients to
neighboring districts with larger hospitals and higher ICU capacities. Despite the observed
discrepancies for some districts (NUTS-3 level), the model provided valuable information
for the management of regional ICU capacities (NUTS-2 level).

Epidemiological ODE models describing the SARS-CoV-2 pandemic in other countries
that were published previously used only stratification of infected patients by age [14,15,61]
and ignored stratification by sex. However, some models used a more comprehensive
stratification for age groups [15,61]. Here, our analysis was limited to the seven age
groups for which the RKI provided the number of daily cases. Further limitations of our
analysis originate from restricted access to information concerning the number of German
COVID-19 inpatients, the background of fatalities, and further demographic information of
all patients. For VOC B.1.1.7, only data for the nationwide average spread were available.
Additionally, anonymization of the clinical database patient data prevented the tracking of
transferred patients. Hence, the exclusion of patients with unknown outcomes from the
analysis might have introduced bias regarding the estimation of inpatient outcome rates
and duration of stay.
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5. Conclusions

The presented mathematical model is an accurate tool for describing and analyzing the
COVID-19 pandemic in Germany. It provides valuable insights into the expected number
of inpatients and allows the simulation of different scenarios not only considering different
levels of infectiousness but also the investigated covariates. Thereby, the model displayed
the high effectiveness of NPIs to reduce the number of cases. Furthermore, the model could
successfully be applied to describe the number of cases and ICU patients at the regional
level (NUTS-2), highlighting the sufficiency of the covariates and the generalizable character
of the model. Hence, the model might be applicable to other countries with similar health
care systems. Furthermore, through the modeling process and when analyzing the patient
data from the clinical database, changes in the course of the pandemic due to VOC B.1.1.7
and improved treatment modalities could be implemented successfully, demonstrating
the flexibility of the model in adapting to further dynamic changes. The adaption to other
VOCs and vaccinations has been ongoing over the past year, and the resulting model is
available as a publicly accessible online simulation tool at https://covid-simulator.com/
(accessed on 1 September 2022).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/v14102114/s1, Figure S1: Descriptive performance plots
for Germany and all federal states; Figure S2: Descriptive performance plots for German counties
(NUTS-3); Model file S1: NONMEM model file of the infectiousness model; Model file S2: NONMEM
model file of the full model; Table S1: Data Sources; Table S2: Summary of MetaKIS data. Age is
summarized as median and interquartile range; Table S3: Changes in infectiousness according to
NPIs and model-estimated changepoints; Table S4: Fractions of confirmed cases hospitalized, treated
in an ICU, and ventilated and death rates as functions of age and sex as extracted from the MetaKIS
database.

Author Contributions: Conceptualization, C.D., S.S., M.B., F.M., T.V., S.K., J.R., D.S. and T.L.; data
curation, C.D., K.M.G., K.O., I.S., Q.W., M.B. and T.L.; formal analysis, C.D., K.M.G., K.O., J.R., D.S.
and T.L.; methodology, C.D., D.S. and T.L.; project administration, T.L.; resources, T.L.; supervision,
T.L.; visualization, C.D.; writing—original draft, C.D., D.S. and T.L.; writing—review and editing,
C.D., S.S., M.B., F.M., T.V., S.K., J.R., D.S. and T.L. All authors have read and agreed to the published
version of the manuscript.

Funding: No funding was received for the development of this project. S.S. received funding from
the Saarland Staatskanzlei and the Dr. Rolf M. Schwiete Stiftung. F.M. is supported by Deutsche
Gesellschaft für Kardiologie (DGK), Deutsche Forschungsgemeinschaft (SFB TRR219), and Deutsche
Herzstiftung. He has received scientific support from Medronic and ReCor Medical and speaker hon-
oraria from Astra-Zeneca, Bayer, Boehringer Ingelheim, Inari, Medtronic, Merck, and ReCor Medical.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the local ethics committee of the medical association of the Saarland
(Ärztekammer des Saarlandes, Bu 78/20).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be made available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The differential equations depicting the transfer of COVID-19 patients through differ-
ent disease stages are shown below.

dS
dt

= −β(t) ∗ S(t)
N

∗ I(t) (A1)

dI
dt

= β(t) ∗ S(t)
N

∗ I(t)− γ ∗ I(t) (A2)

https://covid-simulator.com/
https://www.mdpi.com/article/10.3390/v14102114/s1
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dC
dt

= y ∗ I(t) (A3)

with N being the number of inhabitants. The transmission rate γ from the infectious stage
(I) to confirmed cases (C) was fixed to an infectious period of 7 days, with γ = 1/7 based
on 6 days of mean incubation time plus 1 day of lag between showing symptoms and
registering a positive test result [36]. B(t) is defined as the transmission rate from the
susceptible (S) to the infectious stage by contact with an infected subject and is related to γ

and the infectiousness (Rα) as depicted in Equation (A4):

β(t) = Rα(t) ∗ γ (A4)

The effective reproduction number R(t) was defined as

R(t) = Rα(t) ∗ S(t)
N

(A5)

The transmission rate ι from the allocator compartment (A) to the quarantine or
hospital pathway was fixed to a high value (100 day−1) to model a short time lag.

dA
dt

= γ ∗ I(t)− ι ∗ A(t) (A6)

The age- and sex-specific fraction of hospitalized COVID-19 patients (fh(a, s)) was de-
rived from the number of hospitalized COVID-19 patients recorded in the clinical database
and the number of cases according to RKI data as shown in Supplementary Table S4. The
fraction hospitalized was corrected by an estimated fixed effect factor (Hosp), as the clinical
database only included information on approximately 10% of German COVID-19 inpatients.
The age-, sex-, and time-dependent hospitalization rate h(t) was calculated as the sum
of each age- and sex-specific rate (fh(a, s)) multiplied by the fraction of newly infected
patients assigned to the respective age group at each time (p(a, s, t)):

h(t) = ∑s=Female
s=Male ∑a=Age 80+

a=Age 0−5 fh(a, s) ∗ p(a, s, t) (A7)

For the influence of the numbers of weekly performed PCR tests in Germany, an
exponential effect model with factor FntestHosp, normalized for the average number of
1,000,000 tests per week, described the data best. The effect (fHVOC) of the fraction of
VOC B.1.1.7 infections on the hospitalization rate was estimated using a linear effect
model. Furthermore, a decrease in the hospitalization rate was observed both in the
clinical database as well as in the number of occupied hospital beds. This decrease was
implemented using a time-dependent hill equation, with fKH as the relative decrease in
hospitalization rate and CPHosp as the timepoint at which the half-maximum change
occurred. Hence, the final hospitalization rate hosp(t) considering all covariates can be
depicted as:

hosp(t) = h(t) ∗ Ch(t) (A8)

Ch(t) = e−FntestHosp ∗ NT(t)
1,000,000 ∗ (1 + VOC(t) ∗ fHVOC) ∗

(
1 − fKH ∗ thill

CPHosphill + thill

)
(A9)

The average delay between a positive test result and the deterioration of COVID-19
patients leading to hospitalization was implemented via two transit compartments (T1hosp,
T2hosp) and the transit rate τ.

dT1hosp

dt
= hosp(t) ∗ ι ∗ A(t)− τ ∗ T1hosp(t) (A10)

dT2hosp

dt
= τ ∗ T1hosp(t)− τ ∗ T2hosp(t) (A11)
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Quarantined individuals in an ambulatory setting (QR) were counted as recovered
patients after 14 days, per the RKI definition of recovered cases; thus, the transit rate
through the recovery compartments was defined as ρa = 2/14 day−1. The fraction of
death among the outpatients (fa(t)) was estimated as dependent on age and sex (similar to
calculations of the hospitalization rate, with fda(a, s) as age- and sex-specific death rate)
and multiplied by the fraction of outpatients of each age group:

fa(t) = ∑s=Female
s=Male ∑a=Age 80+

a=Age 0−5 fda(a, s) ∗ (1 − fh(a, s, t) ∗ Ch(t)) ∗ p(a, s, t) (A12)

Due to the lack of information regarding the course of COVID-19 in outpatients, it was
assumed to be similar to the course of inpatients in a general ward. Hence, the average time
to death for outpatients (TDH,D) was set to the average time to death observed in inpatients
in a general ward; the transit rate κaκa = 2/TDH,D for outpatients with outcome death was
calculated as κa = 2/TDH,D. Due to the lack of data on outpatient deaths in Germany, this
death rate was estimated as a fixed effect.

Over time, several changes in death rates could be observed. Data from the clinical
database showed a clear correlation between the death rate in general wards and the
number of new infections as well as the positivity rate of PCR tests for SARS-CoV-2 (PR).
Hence, both parameters were tested as covariates using different empirical effect models.
The influence of PR on the death rate of general ward patients as well as outpatients
improved the model performance significantly and was implemented using an exponential
function with the estimated fixed effects PQmax, PQmin, and PQrate:

PQDeath(t) = PQmax ∗
(

1 − PQmin ∗ e−PR(t) ∗ PQrate
)

(A13)

Initially, the model included only inpatient fatalities. All ambulatory patients re-
covered. However, at the beginning of the year 2021, we noticed an underestimation of
COVID-19-related deaths by the model. At that time, reports about COVID-19-related
deaths in German nursing homes accumulated [60]. Therefore, different rate changes in
the death rate in an ambulatory setting were tested during this period. A model with
an increase at the beginning of November 2020 followed by a decrease in February 2021
described the data best. These changes were implemented using empirical time-dependent
hill functions with fixed effects regarding the extent (DOUT), the slope (hillD), and the
timepoints (CPD1, CPD2) of the rate change:

DeathA(t) = fa(t) ∗ DOUT ∗ thillD

CPD1
hillD + thillD

∗
(

1 − thillD

CPD2
hillD + thillD

)
∗ PQDeath(t) (A14)

Equations (A15)–(A18) describe the transit of patients in an ambulatory setting until
they count as recovered (Equations (A15) and (A16)) or dead (Equations (A17) and (A18)).

dQR
dt

= (1 − DeathA(t)) ∗ (1 − hosp(t)) ∗ ι ∗ A(t)− ρa ∗ QR(t) (A15)

dQR2
dt

= ρa ∗ QR(t)− ρa ∗ QR2(t) (A16)

dQD
dt

= DeathA(t) ∗ (1 − hosp(t)) ∗ ι ∗ A(t)− κa ∗ QD(t) (A17)

dQD2
dt

= κa ∗ QD(t)− κa ∗ QD2(t) (A18)

Transit rates for each ward were calculated by dividing the number of transit com-
partments by the time until discharge, with κ depicting the rates for dying patients, ρ for
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recovering patients, and suffixes H, ICU, and V for patients in a general ward, in an ICU,
and receiving mechanical ventilation, respectively.

κH =
2

TDH,D
(A19)

ρH =
2

TDH,R
(A20)

κICU =
2

TDI,D
(A21)

ρICU =
2

TDI,R
(A22)

κV =
2

TDV,D
(A23)

ρV(t) =
2

TDV,R(t)
(A24)

Observational data from the clinical database showed a change in the time until
discharge of recovering ventilated patients. This change was implemented into the model
using a hill equation with estimated fixed effects fVent1, fVent2, CPVent, and hill:

TDV,R(t) = TDV,R,base ∗ fVent1 ∗
(

1 +
fVent2 ∗ thill

CPVent
hill + thill

)
(A25)

To describe the number of patients requiring treatment in an ICU, the rate had to be
adapted with estimated fixed effects toICU1 and toICU2 at the timepoint CPHosp at which
the change in the hospitalization rate occurred. Furthermore, including an effect of VOC(t)
improved the description of occupied ICU beds significantly. Therefore, the fraction of
patients requiring ICU treatment was calculated from the age- and sex-specific fraction I(t)
and the covariate effects Ci(t):

toICU(t) = I(t) ∗ Ci(t) (A26)

Ci(t) = toICU1 ∗
(

1 +
toICU2 ∗ thill

CPHosp
hill + thill

)
∗ (1 + VOC(t) ∗ fICUVOC) (A27)

I(t) = ∑s=Female
s=Male ∑a=Age 80+

a=Age 0−5 fh(a, s) ∗ Ch(t) ∗ fi(a, s) ∗ p(a, s, t) (A28)

The fraction of patients requiring mechanical ventilation was dependent on the age
and sex of the patients in an ICU:

toV(t) = ∑s=Female
s=Male ∑a=Age 80+

a=Age 0−5
h(a, s) ∗ Ch(t) ∗ fi(a, s) ∗
Ci(t) ∗ fv(a, s) ∗ p(a, s, t)

(A29)

As described previously, the death rate in general wards (DeathH) was dependent on
the age and sex of the patients hd(t) and changed with the rate of positive tests:

DeathH(t) = hd(t) ∗ PQDeath(t) (A30)

hd(t) = ∑s=Female
s=Male ∑a=Age 80+

a=Age 0−5 fh(a, s) ∗ Ch(t) ∗ fdh(a, s) ∗ p(a, s, t) (A31)

To assure a stable relation between the median death rates in each ward, the death
rates for ICU id(t) and ventilated patients vd(t) extracted from the clinical database were
corrected for the implantation of the covariate PR on the death rate in general wards by
multiplying them with the influence of the median observed PR of 3.12% during the time
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of the investigation. The resulting death rates for ICU patients (DeathI) and ventilated
patients (DeathV) are depicted in Equations (A32) and (A34).

DeathI(t) = id(t) ∗ PQmax ∗
(

1 − PQmin ∗ e−3.12∗PQrate
)

(A32)

id(t) = ∑s=Female
s=Male ∑a=Age 80+

a=Age 0−5
fh(a, s) ∗ Ch(t) ∗ fi(a, s) ∗
Ci(t) ∗ fdi(a, s) ∗ p(a, s, t)

(A33)

DeathV(t) = vd(t) ∗ PQmax ∗
(

1 − PQmin ∗ e−3.12∗PQrate
)

(A34)

vd(t) = ∑s=Female
s=Male ∑a=Age 80+

a=Age 0−5
fh(a, s) ∗ Ch(t) ∗ fi(a, s) ∗ Ci(t) ∗

fv(a, s) ∗ fdv(a, s) ∗ p(a, s, t)
(A35)

The following ODE system was used for the description of COVID-19 inpatients, with
H depicting patients in a general ward only, ICU depicting patients in an ICU during any
portion of their stay, and V depicting patients requiring mechanical ventilation during their
stay, with the suffixes death and recovery for the outcome of the patients:

dHdeath
dt

= DeathH(t) ∗ τ ∗ (1 − toICU(t)) ∗ T2hosp(t)− κH ∗ Hdeath(t) (A36)

dH2death
dt

= κH ∗ Hdeath(t)− κH ∗ H2death(t) (A37)

dICUdeath
dt

= DeathI(t) ∗ τ ∗ toICU(t) ∗ (1 − toV(t)) ∗ T2hosp(t)− κICU ∗ ICUdeath(t) (A38)

dICU2death
dt

= κICU ∗ ICUdeath(t)− κICU ∗ ICU2death(t) (A39)

dVdeath
dt

= DeathV(t) ∗ τ ∗ toICU(t) ∗ toV(t) ∗ T2hosp(t)− κV ∗ Vdeath(t) (A40)

dV2death
dt

= κV ∗ Vdeath(t)− κV ∗ V2death(t) (A41)

dHrecovery

dt
= (1 − DeathH(t)) ∗ τ ∗ (1 − toICU(t)) ∗ T2hosp(t)− ρH ∗ Hrecovery(t) (A42)

dH2recovery

dt
= ρH ∗ Hrecovery(t)− ρH ∗ H2recovery(t) (A43)

dICUrecovery

dt
= (1 − DeathI(t)) ∗ τ ∗ toICU(t) ∗ (1 − toV(t)) ∗ T2hosp(t) − ρICU ∗ ICUrecovery(t) (A44)

dICU2recovery

dt
= ρICU ∗ ICUrecovery(t)− ρICU ∗ ICU2recovery(t) (A45)

dVrecovery

dt
= (1 − DeathV(t)) ∗ τ ∗ toICU(t) ∗ toV(t) ∗ T2hosp(t) − ρV(t) ∗ Vrecovery(t) (A46)

dV2alive
dt

= ρV(t) ∗ Vrecovery(t)− ρV(t) ∗ V2recovery(t) (A47)

All patients recovering enter the recovery transit compartments (Equations (A48)
and (A49)) after their stay in their respective hospital wards before they are counted as
recovered (R) to adjust recovery time to the RKI definition (14 days), with the transit rate
ρ = 2/14.

dRhospital

dt
= ρH ∗ H2recovery(t) + ρICU ∗ ICU2recovery(t)+ρV ∗ V2recovery(t)− ρ ∗ Rhospital(t)t) (A48)

dR2hospital

dt
= ρ ∗ Rhospital(t)− ρ ∗ R2hospital(t) (A49)
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The total number of recovered patients is calculated by Equation (A50):

dR
dt

= ρa ∗ QR2(t) + ρ ∗ Rhospital(t) (A50)

In contrast to the recovered patients, fatalities (D) in hospitals were counted
without delay.

dD
dt

= κH ∗ H2death(t) + κICU ∗ ICU2death(t) + κV ∗ V2death(t)+ κa ∗ QD2(t) (A51)

For all federal states, the number of patients currently in an ICU and being venti-
lated was multiplied by the fraction of time the patients stayed in the respective wards
(Equations (A54)–(A56)). The ministries of the city-states of Berlin, Hamburg, and Bremen
explicitly commented that a notable fraction of COVID-19 inpatients were not registered
residents of the respective cities and hence did not contribute to the respective case counts.
To account for this bias, correcting factors for Berlin, Bremen, and Hamburg were calcu-
lated: The number of resident inpatients in each city and the total number of inpatients
(city residents and non-city residents) were available from 17 December 2020 to 7 January
2021. The factors fBLBerlin, fBLBremen, and fBLHamburg were calculated as the mean ratio of
total inpatients to resident inpatients. Furthermore, for the federal state Hesse, the only
inpatient data available consisted of the sum of confirmed and suspected COVID-19 cases
in hospitals. Hence, the factor for Hesse inpatients fBLHesse was calculated as the mean
ratio of confirmed COVID-19 patients to the sum of suspected and confirmed cases.

The number of currently ventilated patients (Ventilated(t), Equation (A52)), current
ICU patients (ICU(t), Equation (A53)), and currently hospitalized patients (Hospitalized(t),
Equation (A54)) can be calculated by multiplying the number of patients in the ODE system
(as depicted by Equations (A36)–(A47)) at time t with the time fractions spent in each ward
as depicted in Table 1, with:

Ventilated(t) =
(

PVentV,R ∗ (Valive(t) + V2alive(t))+
PVentV,D ∗ (Vdeath(t) + V2death(t))

)
∗ fBLState (A52)

ICU(t) =


PICUI,R ∗ (ICUalive(t) + ICU2alive(t))+

PICUI,D ∗ (ICUdeath(t) + ICU2death(t))+
PICUV,R ∗ (Valive(t) + V2alive(t))+
PICUV,D ∗ ( Vdeath(t) + V2death(t))

 ∗ fBLState (A53)

Hospitalized(t) =



Halive(t) + H2alive(t)+
Hdeath(t) + H2death(t)+

ICUalive(t) + ICU2alive(t)+
ICUdeath(t) + ICU2death (t)+

Valive(t) + V2alive(t)+
Vdeath(t) + V2death(t)

 ∗ fBLState (A54)

Appendix B

Table A1. Model parameter estimates for the hospitalization and outcome model.

Model
Parameter Unit Population

Estimate RSE [%] Parameter Description

Population Parameters (Fixed Effects)

Hosp - 0.99 - Factor on the age-specific hospitalization rates

fKH - −0.496 1.6 Relative change in hospitalization rate at CPHosp

CPHosp Day * 281 0.2 Time of hospitalization rate change

hill - 100 - Hill factor of time-dependent hospitalization and ICU rate change
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Table A1. Cont.

Model
Parameter Unit Population

Estimate RSE [%] Parameter Description

FntestHosp 106/Tests 0.344 3.7 Slope of death rate change per 1,000,000 PCR tests performed

fVent1 - 1.69 0.9 Factor time to discharge of recovering ventilated patients

fVent2 - −0.648 1.6 Relative change in fBEAT1 at CPVent

CPVent Day * 228 0.5 Time of change in fVent1

toICU1 - 0.476 0.9 Factor on the age-specific ICU rates

toICU2α - 0.29 4.2 Relative change of toICU for some states ** at CPHosp

toICU2β - 0.0904 10.2 Relative change of toICU for the states other than ** at CPHosp

toICU2γ - 0.153 0.0 Relative change of toICU Germany at CPHosp

PQmax - 1.05 2.1 Maximum death rate change depending on the test positivity rate

PQmin - 0.48 2.7 Minimum death rate change depending on the test positivity rate

PQrate 1/% 0.129 9.9 Slope of death rate change depending on the test positivity rate

DOUT day−1 0.226 5.4 Death rate of outpatients between CPD1 and CPD2

CPD1 Day * 348 0.6 Time of change in DOUT

CPD2 Day * 446 0.8 Time of change in DOUT

hillD - 27 10.6 Hill factor of time-dependent death rate changes

fHVOC - 0.395 14.1 Relative hospitalization rate change for VOC B.1.1.7

fICUVOC - 0.162 33.1 Relative rate change to ICU for VOC B.1.1.7

τ - 100 - Transit rate from confirmed case to inpatient

Residual Errors

Ecases %CV 0.55 3 Exponential error cases

Acases SD 32.6 4.6 Additive error cases

PICU %CV 23.3 2.8 Proportional error ICU

AICU SD 4.56 5 Additive error ICU

Pdeath %CV 9.78 2.9 Proportional error fatalities

Adeath SD 11.8 6.8 Additive error fatalities

Phosp %CV 35.2 3.5 Proportional error hospitalizations

Ahosp SD 11.8 13 Additive error hospitalizations

Pvent %CV 29.7 2.6 Proportional error ventilated patients

Avent SD 1.48 9.3 Additive error ventilated patients

Pdailydeath %CV 80.4 2.7 Proportional error daily fatalities

Adailydeath SD 0.36 6.4 Additive error daily fatalities

Pdailyhosp %CV 261 3.5 Proportional error daily fatalities and hospitalizations

Adailyhosp SD 1.46 17 Additive error daily fatalities and hospitalizations

* as days since 22 December 2019; ** Bavaria, Berlin, Bremen, Hamburg, Hesse, North Rhine-Westphalia, and
Saarland.
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