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Abstract: The rate of decline in the levels of neutralizing antibodies (NAbs) greatly varies among
patients who recover from Coronavirus disease 2019 (COVID-19). However, little is known about
factors associated with this phenomenon. The objective of this study is to investigate early factors at
admission that can influence long-term NAb levels in patients who recovered from COVID-19. A
total of 306 individuals who recovered from COVID-19 at the Tongji Hospital, Wuhan, China, were
included in this study. The patients were classified into two groups with high (NAbhigh, n = 153)
and low (NAblow, n = 153) levels of NAb, respectively based on the median NAb levels six months
after discharge. The majority (300/306, 98.0%) of the COVID-19 convalescents had detected NAbs.
The median NAb concentration was 63.1 (34.7, 108.9) AU/mL. Compared with the NAblow group,
a larger proportion of the NAbhigh group received corticosteroids (38.8% vs. 22.4%, p = 0.002) and
IVIG therapy (26.5% vs. 16.3%, p = 0.033), and presented with diabetes comorbidity (25.2% vs. 12.2%,
p = 0.004); high blood urea (median (IQR): 4.8 (3.7, 6.1) vs. 3.9 (3.5, 5.4) mmol/L; p = 0.017); CRP
(31.6 (4.0, 93.7) vs. 16.3 (2.7, 51.4) mg/L; p = 0.027); PCT (0.08 (0.05, 0.17) vs. 0.05 (0.03, 0.09) ng/mL;
p = 0.001); SF (838.5 (378.2, 1533.4) vs. 478.5 (222.0, 1133.4) µg/L; p = 0.035); and fibrinogen (5.1 (3.8,
6.4) vs. 4.5 (3.5, 5.7) g/L; p = 0.014) levels, but low SpO2 levels (96.0 (92.0, 98.0) vs. 97.0 (94.0, 98.0)%;
p = 0.009). The predictive model based on Gaussian mixture models, displayed an average accuracy
of 0.7117 in one of the 8191 formulas, and ROC analysis showed an AUC value of 0.715 (0.657–0.772),
and specificity and sensitivity were 72.5% and 67.3%, respectively. In conclusion, we found that
several factors at admission can contribute to the high level of NAbs in patients after discharge, and
constructed a predictive model for long-term NAb levels, which can provide guidance for clinical
treatment and monitoring.

Keywords: coronavirus disease 2019 (COVID-19); severe acute respiratory syndrome coronavirus
(SARS-CoV-2); neutralizing antibody (NAb); diabetes; corticosteroids

1. Introduction

The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic
has caused havoc around the world. Immunity after recovery from Coronavirus disease
2019 (COVID-19), is currently a subject of discussion in efforts to combat the pandemic.
Persistent high levels of protective antibodies in individuals who recover from COVID-19
are thought to guard against reinfection from the SARS-CoV-2 [1,2]. However, due to
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differences in infection conditions, treatment regimens, and individual immune status,
the production and duration of protective antibodies often tend to be poles apart among
recovered patients.

Several studies have confirmed that the protective antibodies, especially neutraliz-
ing antibodies (NAbs) against SARS-CoV-2, rapidly decline within a few months after
recovery from the disease, risking some patients at the edge of reinfection [3–6]. Inter-
estingly, the rate of decay and decline in protective antibodies is highly heterogeneous
across individuals [7,8]. The levels of neutralizing antibodies six months, or even more,
after recovery from COVID-19, remain high in a few individuals, which can help them
respond rapidly to prevent reinfection. A study that investigated recovered patients who
were infected with SARS-CoV-2 in the early stages, have reported that at least 90% of
convalescents retained positive NAbs and SARS-CoV-2-specific T-cell responses, 6 and
12 months after the disease onset, although varying in degree [9]. In addition to the im-
mune memory characteristics of survivors, factors during early hospitalization associated
with the persistence of high levels of NAb in patients six months or longer after recovery,
are still infancy and, thus, worth exploring. Given the social and economic implications of
the pandemic, estimating the efficacy and duration of long-term protective antibodies after
discharge from hospitals, based on early indicators, is attractive but challenging. It can also
facilitate appropriate medical treatment and care in the future.

In this study, we investigate the demographic and clinical factors at admission, or
the early stage of patients’ hospitalization, associated with prolonged high levels of NAb
against SARS-CoV-2. Data for patients that recovered from COVID-19 for at least six months
were analyzed. Additionally, a model for predicting the long-term levels of NAb against
COVID-19 after recovery was also constructed using the Gaussian mixture model. This
model helps to guide treatment strategies and monitor responses to COVID-19 therapy, and
infer long-term antibody protective efficacy from the earliest indications of hospitalization.

2. Materials and Methods
2.1. Study Population

A total of 306 individuals who recovered from COVID-19 were enrolled in this study.
As described in the previous study [10], these patients were hospitalized and discharged
from Tongji Hospital of the Huazhong University of Science and Technology, Wuhan, China,
during 2020, as a result of laboratory-confirmed COVID-19. Given that the hospital is a local
designated hospital for severe and critical illnesses, the patients had suffered moderate,
severe, to critical COVID-19 infection. The disease severity was assessed at admission
according to the “Chinese management guideline for COVID-19 (version 7.0)” [11]. All the
convalescents included in this study were discharged from the hospital for more than six
months, and none were exposed to the SARS-CoV-2 virus or suffered reinfection during
the follow-up period. Simultaneously, cases included also met (1) age ≥ 18 years, (2) non-
history of major medical or surgical conditions, such as malignant carcinoma (liver cancer,
lung cancer, and so on), or organic transplantation and (3) non-psychiatric conditions, and
were available for follow-up and evaluation.

Patients’ categories of severity were defined as follows: moderate: patients diagnosed
with COVID-19 present with fever and respiratory symptoms, and pneumonia manifes-
tations visible via imaging. Severe: patients diagnosed with COVID-19 met any of the
following criteria: (1) respiratory distress with RR ≥ 30 times/min; (2) peripheral oxygen
saturation (SpO2) ≤ 93% at rest; and (3) arterial partial pressure of oxygen (PaO2)/fraction
of inspired oxygen (FiO2) ≤ 300 mmHg (1 mmHg = 0.133 kPa). Critical: meeting any of
the following: (1) respiratory failure, requiring mechanical ventilation; (2) shock; (3) other
organ failures, requiring intensive care unit (ICU) monitoring; or (4) death.

2.2. Data Collection

Patient data collected at baseline included: (1) demographic characteristics (age, gen-
der, and so forth); (2) time from onset of illness to hospital admission, length of hospital stay,
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and disease severity; (3) clinical signs and symptoms at admission, underlying comorbidi-
ties, and treatments regimen; and (4) findings for clinical and biochemical tests at the early
stage of hospitalization (initial systematic examination and comprehensive assessment
of the COVID-19 patient at admission, usually within three days of hospitalization), as
well as the physiological status of the patients, which were extracted from the patient’s
electronic medical records. Furthermore, the patient-related indicators in (1), (2), and (3)
were generalized as “patient factors”.

2.3. Classification of Patients

Six months after patients were discharged from the hospital, blood samples were
collected from the recovered patients and assayed for NAb levels. The patients were
classified into four groups based on the level of NAb against COVID-19. First, patients
were classified into the NAbhigh (high levels of NAb, n = 153) and NAblow group (low
levels of NAb, n = 153), based on the median level of NAb against COVID-19. Furthermore,
patients in the fourth quartile (top 25% of the NAb levels) and the first quartile (the bottom
25% of the NAb levels) were further classified into the NAbhigher (n = 76) and NAblower

group (n = 76), respectively (Figure 1).
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Figure 1. The level of SARS-CoV-2 NAb in 306 individuals 6 months after recovering from COVID-19.
Patients were divided into NAbhigh (median (IQR): 108.8 (85.0, 161.8) AU/mL) and NAblow groups
(34.9 (23.1, 48.1) AU/mL), based on the median NAb levels. In addition, 50% of individuals in the up-
per NAbhigh and lower NAblow, were further classified into NAbhigher (155.3 (116.6, 200.7) AU/mL)
and NAblower groups (23.2 (16.2, 30.1) AU/mL). NAb, neutralizing antibody.

2.4. Neutralizing Antibody Assay

To evaluate the level of NAb against COVID-19, the blood samples of COVID-19
convalescents were collected and centrifuged with the assistance of a medical professional.
The extracted plasma was stored at 4 ◦C and analyzed within 24 h. Samples that could not
be analyzed within this period were stored at −80 ◦C and assayed within one week. The
iFlash-2019-nCoV NAb kit (YHLO, Shenzhen, China, Cat: C86109) and the full-automatic
chemiluminescent analyzer (iFlash 3000) were applied to assess the level of SARS-CoV-2
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NAbs in plasma samples. This approach was a one-step competitive strategy chemilumi-
nescent immunoassay (CLIA) for the quantitative detection of NAb that blocks the binding
between the receptor-binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2).
According to the manufacturer’s instructions, briefly, the plasma of samples was firstly
incubated with the SARS-CoV-2 RBD antigen-coated paramagnetic microparticles. If the
plasma sample contained NAb against the antigens, an antigen–antibody complex forms.
The ACE2 protein acridine ester marker was then added to competitively bind the remain-
ing RBD antigens, forming a bead-coated reaction complex. Upon introducing a magnetic
field, the micro-magnetic particles were adsorbed to the reaction tube wall, but the unbound
materials were washed away by the detergent. A chemiluminescent substrate was added
to the immunoreactive complex, and the relative luminescence intensity (RLU) detected
was inversely proportional to the number of NAbs in the plasma, which was automatically
calculated and determined using the calibration curve. In particular, ≥10 AU/mL indi-
cated a positive result of NAb. The superior sensitivity and specificity of this method have
been validated in several studies [12–14].

2.5. Model for Predicting Levels of COVID-19 NAb

The model for predicting long-term levels of COVID-19 NAb was developed using the
machine learning method of the Gaussian mixture model. After comparing the differences
between the NAbhigh group and the NAblow group, factors with relative significant distinc-
tion (p < 0.1), namely the type of therapy received (corticosteroids therapy and intravenous
immunoglobulin (IVIG) therapy); diabetes comorbidity as well as pulse oxygen saturation
(SpO2); lactate dehydrogenase (LDH) level; urea; C-reactive protein (CRP); procalcitonin
(PCT); fibrinogen; and serum ferritin (SF) levels, were incorporated in the model. For the
accuracy of the model, SF was not included in the model because data for many patients
were missing. In addition, gender, age, and disease severity (classified as severe or above
and non-severe) were also included to calibrate the model. A total of twelve candidate
variables were incorporated into the model. Before modeling, continuous clinical vari-
ables were dichotomized according to the optimum cutoff value, by using the receiver
operating characteristic (ROC) analysis (Table S3). The Gaussian mixture model (GMM)
categorizes variables based on the hierarchical clustering of models, which features sound
clustering performance and is a feasible screening method. As an unsupervised clustering,
the Gaussian mixture model allows an intuitive observation of the distribution model
under different combinations. Briefly, it was assumed that Gaussian distributions existed
in the collected data and each distribution represented a cluster. Data points of the same
distribution were first grouped together. The new probability for each data point was then
assessed, followed by iterative re-classification. The highest rank in the optimal clustering
would be selected after repeated training. The relationship between the various factors and
levels of NAbs was assessed using univariate and multivariate regression analyses. ROC
curves with AUC were constructed to assess the predictive validity of the model. Data
were analyzed using the mclust package of R software (version 4.0.1).

2.6. Statistical Method

Differences between groups for categorical variables expressed as counts and percent-
ages were analyzed using the χ2 test or Fisher’s exact test, as appropriate. Continuous
variables were expressed using medians and inter-quartile range (IQR), and were analyzed
using the Mann–Whitney U test. Statistical significance was set at two-tailed p < 0.05. Data
were analyzed using SPSS 26.0 (IBM Corp., Armonk, NY, USA) and R software.

3. Results

3.1. Factors at Admission Associated with NAbhigh and NAblow

Among the 306 study participants who recovered from COVID-19, 138 cases were
males (45.1%). The convalescents were predominantly middle-aged and elderly persons,
with a median (IQR) age of 62 (53, 68) years. NAbs were detected in the majority of the
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individuals (300/306, 98.0%), 6 months after their discharge. The median concentration for
the NAbs was 63.1 (34.7, 108.9) AU/mL. At admission, 56.6% of patients were moderately
ill, 40.7% were severely ill, and only 2.7% were critically ill. The majority of patients
presented with fever (84.1%) and cough (80.5%) on admission and were appropriately
treated as needed (Table S1).

Patients were divided into NAbhigh and NAblow groups, according to the median
level of NAb (Figure 2e). To uncover the clinical indicators and factors associated with the
persistence of high levels of NAb after hospital discharge, we compared those two groups
of COVID-19 recovered patients across various parameters. Although there was a relatively
high proportion of patients with severe and critical illness in the NAbhigh group, no signif-
icant difference was found in the severity between the two groups (p = 0.06) (Figure 2a).
It was observed that the patients in the NAbhigh group were more likely to receive corti-
costeroids (38.8% vs. 22.4%, p = 0.002) and IVIG therapy (26.5% vs. 16.3%, p = 0.033) than
the NAblow group (Figure 2b,d). Moreover, compared to the NAblow group, a substantially
higher proportion of patients in the NAbhigh group presented with underlying diabetes
(25.2% vs. 12.2%, p = 0.004) (Figure 2c). Analysis of the physiological and biochemical test
results revealed that the serum SpO2 levels (median (IQR): 96.0 (92.0, 98.0) vs. 97.0 (94.0,
98.0)%; p = 0.009) at admission were relatively low in the NAbhigh group individuals, in
contrast with urea (4.8 (3.7, 6.1) vs. 3.9 (3.5, 5.4) mmol/L; p = 0.017); CRP (31.6 (4.0, 93.7) vs.
16.3 (2.7, 51.4) mg/L; p = 0.027); PCT (0.08 (0.05, 0.17) vs. 0.05 (0.03, 0.09) ng/mL; p = 0.001);
SF (838.5 (378.2, 1533.4) vs. 478.5 (222.0, 1133.4) µg/L; p = 0.035); and fibrinogen (5.1 (3.8,
6.4) vs. 4.5 (3.5, 5.7) g/L; p = 0.014) levels, which were significantly high (Figure 2f–k). The
comparison between the groups regarding other parameters is shown in Table S2.
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procalcitonin; and SF, serum ferritin.



Viruses 2022, 14, 80 6 of 12

3.2. The Relationship between Long-Term Serum NAb Levels and Clinical Indicators

To further investigate the correlation between long-term NAb levels against COVID-19
after recovery and the clinical indicators at admission, we compared the factors between
individuals in the top 25% and the bottom 25% (NAbhigher and NAblower group) (Figure 3d).
There was no significant difference in disease severity between the NAbhigher and NAblower

groups (Figure 3a). Interestingly, we found that some clinical indicators still differed
between these two groups. It was observed that compared with NAblower individuals,
a higher proportion of patients in the NAbhigher group received corticosteroids therapy
during hospitalization (45.8% vs. 21.6%, p = 0.002) (Figure 3b). As for comorbidity, a larger
proportion of patients in the NAbhigher group experienced a history of diabetes at the time
of admission than in the NAblower group (31.9% vs. 8.1%, p < 0.0001) (Figure 3c). Moreover,
patients in the NAbhigher group displayed significantly higher levels of serum CRP (median
(IQR): 24.4 (4.9, 90.3) vs. 8.5 (1.9, 32.8) mg/L; p = 0.003); PCT (0.07 (0.05, 0.12) vs. 0.05 (0.03,
0.07) ng/mL; p = 0.009); and fibrinogen (5.2 (3.8, 6.5) vs. 3.8 (3.3, 4.8) g/L; p < 0.0001), but
lower SpO2 (96.0 (92.0, 98.0) vs. 97.0 (95.0, 98.0) %; p = 0.049) levels, relative to the NAblower

counterparts (Figure 3e–h).
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These findings suggest that corticosteroids therapy and diabetes comorbidity can
promote the sustained production of NAb in patients who recover from COVID-19. Addi-
tionally, the acute inflammation-related factors, such as CRP, PCT, as well as fibrinogen,
and the SpO2 levels in the initial stage of COVID-19 infection, influence the long-term
production of NAb against the virus.

3.3. Model for Predicting Long-Term NAb Levels

For the establishment of the clinical predictive model of long-term NAb after recovery,
logistic regression analyses were performed to assess the screened 12 candidate indicators.
The logistic regression models for the 12 factors associated with consistently high levels
of NAb had a total of 8191 formulas. Based on GMM, the 12 factors were divided into
7 clusters. After repeated training, the cluster with the highest AUC was selected for the
prediction of the NAb levels of patients six months after discharge (Figure 4).
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models for predicting the levels of NAb six months after recovery from COVID-19. There are
7 clusters of 8091 combinations; the optimal model has an average accuracy of 0.7117. Each color or
shape represents a different cluster clustered by Gaussian clustering, and the horizontal coordinates
represents the number of combinatorial models generated. The asterisks represent the core positions
in the clusters, and the covariance matrices of the clusters bind together to form circular class clusters.
The shape of the n-dimensional Gaussian distribution is determined by the covariance of each
class cluster.

Overall, the developed predictive model consisted of 9 clinical indicators, including
age; gender; disease severity; corticosteroids therapy; IVIG; and diabetes comorbidity, as
well as the SpO2, urea, and CRP level, which were found to influence the NAb levels six
months after recovery from COVID-19. The model displayed an average accuracy of 0.7117
for the GMM classifier (Figure 4). To validate the predictive effect of the combination indi-
cators, the ROC analysis was conducted. The predictive model had an AUC value of 0.715
(0.657–0.772), whereas its specificity and sensitivity were 72.5% and 67.3%, respectively
(Figure 5).
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Figure 5. ROC curve for the model predicting the level of SARS-CoV-2 NAbs. The model incorporates
the age and gender of the patients, the severity of the illness, therapy received (corticosteroids and
IVIG), and diabetes comorbidity, as well as serum SpO2, urea, and CRP levels. The AUC for
the predictive model is 0.715 (0.657–0.772), whereas its specificity and sensitivity are 72.5% and
67.3%, respectively. IVIG, intravenous immunoglobin; SpO2, pulse oxygen saturation; and CRP,
C-reactive protein.

4. Discussion

The presence and level of SARS-CoV-2-induced neutralizing antibodies varied widely
among recovered patients based on patient and treatment factors. It has been reported
that serum NAb peaks within 3–5 weeks after SARS-CoV-2 infection. However, the titers
and neutralizing activity decline rapidly within 1–6 months and, in some patients, the
NAbs are completely undetectable several months after infection [15]. Surprisingly, in
some convalescents, the titer and activity of the NAbs remain high and stable, respectively
extensively beyond the follow-up period after recovery [16]. In this study, NAbs against
SARS-CoV-2 were detected in 98.0% of study participants, 6 months after discharge from
the hospital, despite individual differences in the levels. Earlier research also indicated
consistent neutralizing activity in most subjects for as long as 6 months [17]. A study from
Wuhan, China indicated that NAb concentrations in recovered patients were relatively
stable for at least 9 months, regardless of whether they were symptomatic or not [8].

Existing studies suggest that NAb titers in COVID-19 survivors generally positively
correlate with disease severity [18,19]. Nevertheless, in our cohort, NAb levels did not
exhibit significant differences overall in patients of different disease severities (Figure S2).
This discrepancy can be because all of the participants included in this study were all inpa-
tients, who suffered from a moderate-to-critical illness. Lacking mild and asymptomatic
patients for comparison, the difference in terms of disease severity was relatively small.
Overall, numerous factors influence disease severity, and this complex phenomenon needs
further exploration. In particular, when disease severity is similar in the infected popu-
lation, the impact of clinical therapy, patient immune response, and other comorbidities
during hospitalization are of concern. Diabetes comorbidity and corticosteroids therapy can
contribute to high levels of NAb, six months after recovery from COVID-19. For diabetes
patients, several speculations can help to explain this: (1) the disease is highly prevalent in
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the elderly with a natural susceptibility to COVID-19 and are likely to experience severe
illness, resulting in a poor prognosis; (2) the persistent chronic inflammatory response
induced by diabetes can amplify the immune response against SARS-CoV-2, resulting in
more intensive and prolonged inflammatory responses that enhances the generation of
memory T and B cells; and (3) the imbalance of coagulation and the fibrinolytic system in di-
abetic patients impairs the vascular endothelial function, which further affects the immune
function and secretion of related factors. As no significant difference in disease severity
was found between patients with diabetes and non-diabetes (Figure S1), the distinction of
NAb levels could be due to diabetes itself.

In one study in Mexico, among 32,583 patients, diabetes was found to increase the
risk of SARS-CoV-2 infection and the subsequent development of serious illness, and
was related to inflammation and high mortality [20]. As a chronic inflammatory disease
characterized by multiple metabolic and vascular abnormalities, diabetes promotes the
production of tissue inflammation-mediated adhesion molecules and is linked with the
acceleration and worsening of atherothrombosis. This increases advanced glycation end
products (AGEs) and pro-inflammatory cytokines, further influencing immune responses
to viral infections [21]. Pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-α) produced under viral infections, can exacerbate the severity
of illness, resulting in poor prognosis, including cytokine storms.

In this study, we found that corticosteroid therapy affects the long-term production
of neutralizing antibodies in different patients, but this phenomenon has not aroused
concern. Corticosteroids are often widely used in the treatment of COVID-19 patients
in ICU [22]. It inhibits the transcription and action of several cytokines, and modulates
the proliferation, activation, differentiation, and survival of T cells and macrophages.
Corticosteroids restrain the secretion of several pro-inflammatory cytokines produced
by Th1 and macrophages, including IL-1β, IL-2, IL-6, and TNF-α. Patients subjected to
corticosteroid therapy during hospitalization are usually in pressing need of improving
clinical symptoms and oxygenation, and when the virus invades the lung epithelium, the
organism is stimulated to activate specific immune cells, macrophages, and natural killer
cells to produce abundant cytokines and chemokines [23]. The application of corticosteroids
can alleviate chronic obstructive pulmonary disease (COPD) by modulating inflammation
in the lungs [24]. Although corticosteroids can reduce the need for mechanical ventilation,
they do not fully improve oxygenation in the body. Corticosteroid therapy can excessively
suppress the functioning of the immune cell, thus delaying viral clearance and inducing the
slow but continuous stimulation of T and B lymphocytes. Combined, these events sustain
the production of numerous NAbs.

Many factors, including SpO2, urea, CRP, PCT, SF, and fibrinogen levels, varied
substantially between patients with long-term high and low levels of NAbs, and this was
closely related to hypoxia, inflammation, and coagulation disorder. These indicators have
been linked with the severe disease of COVID-19, in previous studies [25,26]. Low SpO2
exacerbates pneumonic injury and the resultant hypoxemia is associated with poor clinical
prognosis [27]. An immune response to COVID-19 increases the CRP, PCT, and SF, among
other indicators, especially in critically ill individuals [25]. Elevated fibrinogen indicates the
risk of systemic hypercoagulability and thrombotic microangiopathy in COVID-19 patients,
which is inseparable from the thromboinflammation or immunothrombosis caused by
COVID-19-related inflammation [28]. Blood urea levels reflect the renal function, and
underlying systemic vascular and inflammatory complications. As such, it is a biomarker
for inflammation-related complications [29]. Established studies also suggest that titers for
NAb against SARS-CoV-2 are linked with CRP, implying that high levels of NAb can be
associated with a strong inflammatory response [30,31]. In contrast, there are no significant
differences in the levels of serum cytokines and chemokines between healthy individuals
and asymptomatic patients. This can be because the low inflammatory responses in these
individuals are insufficient to induce persistent immune responses, capable of maintaining
prolonged high titers of NAb [32].
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Currently, the SARS-CoV-2 is wreaking havoc across the world. However, the constant
mutation of the virus strains and the rapid decay of antibodies after recovery, expose
COVID-19 survivors to a plight of reinfection. An early estimate of a patient’s long-term
antibody levels, based on indicators at admission, can help clinicians to promptly adjust
strategies during treatment and after discharge, maximizing the maintenance of high
levels of long-term protective antibodies and reducing the risk of reinfection. Applying this
predictive model at an early assessment, provides a clinical reference for treatment decisions,
inpatient care, and individualized programs for COVID-19 patients, effectively enabling
target measures to enhance post-discharge antiviral resistance and immune protection.

Regarding the limitations, firstly, we were not able to monitor and compare ongoing
changes in antibody levels in convalescents over multiple periods. Secondly, given the
retrospective nature of the research, the test results of clinical indicators for some patients
were incomplete when information was extracted. Lastly, the established prediction model
requires further validation in a subsequently larger clinical population.

5. Conclusions

In conclusion, several factors at admission can contribute to a high level of NAbs in
patients, six months after discharge. We found that diabetes comorbidity and corticos-
teroids therapy, as well as the SpO2, CRP, PCT, and fibrinogen levels, affect the prolonged
production of NAbs against SARS-CoV-2 in individuals who recover from COVID-19. In
addition, we constructed a predictive model for sustained NAb levels in convalescents. The
findings of this study can provide some valuable guidance for the treatment and monitoring
of patients in clinical recovery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v14010080/s1, Table S1: comparison of demographic and clinical indicators of admission
between the NAbhigh and NAblow groups; Table S2: comparison of demographic and clinical in-
dicators of admission between the NAbhigher and NAblower groups; Table S3: cut-off values for
the dichotomous categories in the ROC analysis of the continuous variables before GMM model;
Figure S1: distribution of disease severity in diabetic and non-diabetic patients among 306 patients
recovered from COVID-19; and Figure S2: NAb levels in patients with different disease severity.
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