
viruses

Review

From Player to Pawn: Viral Avirulence Factors Involved in
Plant Immunity

Changjun Huang

����������
�������

Citation: Huang, C. From Player to

Pawn: Viral Avirulence Factors

Involved in Plant Immunity. Viruses

2021, 13, 688. https://doi.org/

10.3390/v13040688

Academic Editor: Feng Qu

Received: 18 March 2021

Accepted: 14 April 2021

Published: 16 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center,
Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China; cjhuang@zju.edu.cn;
Tel.: +86-877-2075024

Abstract: In the plant immune system, according to the ‘gene-for-gene’ model, a resistance (R) gene
product in the plant specifically surveils a corresponding effector protein functioning as an avirulence
(Avr) gene product. This system differs from other plant–pathogen interaction systems, in which
plant R genes recognize a single type of gene or gene family because almost all virus genes with
distinct structures and functions can also interact with R genes as Avr determinants. Thus, research
conducted on viral Avr-R systems can provide a novel understanding of Avr and R gene product
interactions and identify mechanisms that enable rapid co-evolution of plants and phytopathogens.
In this review, we intend to provide a brief overview of virus-encoded proteins and their roles in
triggering plant resistance, and we also summarize current progress in understanding plant resistance
against virus Avr genes. Moreover, we present applications of Avr gene-mediated phenotyping in R
gene identification and screening of segregating populations during breeding processes.

Keywords: plant viruses; plant immunity; NB-LRR; avirulence gene; effector-triggered immunity
(ETI); viral effectors

1. Introduction

Plant viruses contain single-stranded or double-stranded RNA or DNA genomes and
vary substantially in their genome structure and organization. Moreover, limited viral
genome sizes and coding capacities have resulted in evolution of multifunctional proteins
that are involved in different steps in the virus life cycle, including replication, movement,
encapsidation and transmission. On the other hand, as obligate intracellular parasites,
plant viruses absolutely depend on the host cell machinery to multiply, move throughout
the plant and spread to susceptible hosts. During infection, viruses consume a substantial
amount of host resources; subsequently, disease symptoms develop as a consequence of
disruptions of the cellular machinery required for plant physiology and natural growth, and
these disruptions eventually result in developmental abnormalities and other phenotypic
manifestations. Viruses can be critical players in pathogenesis through direct or indirect
interactions. However, in some plant species or varieties, virus-encoded proteins can
sometimes act as determinants in plant defense responses and as host-controlled pawns to
elicit extreme resistance (ER).

According to the zigzag model of plant–pathogen interactions, the plant innate im-
mune system is broadly divided into two different layers: pathogen-associated molecular
pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) [1]. PTI is
activated by specific recognition between PAMPs, such as bacterial flagellin and fungal
chitin, and the corresponding membrane-anchored pattern recognition receptors (PRRs) of
plants, which serve as the first layer of defense against invading pathogens. Plant viruses
were historically viewed as non-PAMP coding pathogens and plant antiviral immunity
was previously excluded from classical PTI models. However, recent evidence shows that
PTI also operates against viruses in plants: For example, novel paradigms in antiviral
immunity include (I) identification of dsRNAs and viral nucleic acids as PAMPs [2,3]; (II)
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plant virus effects on cell wall remodeling that imply that virus infections can modulate
damage-associated molecular patterns (DAMPs) pathways with molecular mechanisms
similar to PTI [4–7]; (III) several PRRs, e.g., NIK1, BAK1, BIR1, BKK1 (BAK1-Like 1) and
Serk1 that have been shown to have roles during antiviral PTI [8–12]; and (IV) virus en-
coded proteins that interact with host factors involved in PTI pathways and interfere with
PTI-mediated signaling to activate effector-triggered susceptibility (ETS) [13–18].

On the other hand, to counteract ETS, plants have evolved intracellular resistance (R)
proteins that directly or indirectly recognize pathogen effectors or Avr factors to activate
ETI and trigger the second layer of defense. ETI is often manifested as a hypersensitive re-
sponse (HR), characterized by rapid cell death, production of reactive oxygen species (ROS)
and salicylic acid (SA) induction and expression of defense-related genes [19–21]. Since the
first viral Avr factor and antiviral R genes were identified in 1984 [22] and 1994 [23], increas-
ingly diverse Avr factors and R proteins have been characterized in different virus–plant
combinations. Most R proteins contain a nucleotide binding and leucine-rich repeat do-
main (NB-LRR) with an N terminal coiled coil domain (CC) or Toll/interleukin-1 receptors
(TIR) domains. Increasing evidence also substantiates the notion that plants deploy typical
ETI-based innate immune systems to control virus infections. The aim of this review is to
summarize numerous advances about viral Avr factors and their roles in plant immunity.

2. Coat Proteins (CP)

The CP, also known as the capsid protein, encapsidates and protects viral genomes
from damage. Early expressed CPs function in disassembly of parental virions and have
roles in assembly of progeny virions during the final infection steps. However, more
and more evidence has shown that CPs of all plant viruses are multifunctional and have
various roles during different replication stages, ranging from early to late events in the
infection cycle. The diversity of these functions in different viral systems includes virus
transmission by specific vectors, translation of viral RNA, regulation of intercellular and
systemic movement of the virus, suppression of both post transcription gene silencing
(PTGS) and transcription gene silencing (TGS), as well as determination of symptomatology
and pathogenesis [24,25]. Owing to their obvious importance, CPs were the first example
of pathogen-derived transgene resistance in plants [26]. In fact, CP encoded transgenic
resistance provides an excellent solution to the global viral problems and provides an
important venue for both basic and applied disease resistance breeding research and crop
production [27].

Compared to CP-mediated genetic resistance engineered within the last 30 plus years,
CP-induced natural resistance has evolved over millions of years. The role of CPs in the
activation of R gene-mediated host defenses has been extensively characterized. The CPs
of Tobacco mosaic virus (TMV), Tomato mosaic virus (ToMV), Tobacco mild green mosaic virus
(TMGMV), Bell pepper mottle virus (BPeMV), Paprika mild mottle virus (PaMMV), Obuda
pepper virus (ObPV), Pepper mild mottle virus (PMMoV), Potato virus X (PVX) and Mungbean
yellow mosaic virus (MYMV) each serve as Avr factors that elicit resistance controlled by
cognate dominant R genes (Table 1).

TMV CP was identified as an Avr responsible for eliciting host ER responses during
interactions with the Nicotiana sylvestris N′ gene. Two groups independently found this
property by analyzing a series of recombinant viruses between resistance-inducing (RI) and
resistance-breaking (RB) strains [28–30]. Subsequently systematic studies of CP amino acid
substitutions have demonstrated that N′-mediated recognition requires maintenance of the
CP three-dimensional structure, either directly, or through specific structural motifs [31,32].
The N′ gene and its orthologues were recently cloned from N. sylvestris and other TMV
resistant Nicotiana species and shown to encode CC-NB-LRR type proteins [33,34]. Inter-
estingly, a more recent study of phylogeny of the CP of tombusviruses indicated that CP
representatives of the family could be divided into four clades. All tested CP members in
two separate clades triggered an HR in Nicotiana section Alatae species [35]. Moreover, a
previous study had shown that several members of Nicotiana section Alatae carry functional
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N′ orthologues [34] and implied that N′ and N′ orthologues might have been inherited
from a common ancestor followed by evolution to confer tobamovirus and tombusvirus re-
sistance to Nicotiana genus species. In pepper, a broadening spectrum of resistance to seven
known pepper-infecting species of tobamoviruses (TMV, ToMV, TMGMV, BPeMV, PaMMV,
ObPV and PMMoV) is conferred by the corresponding localization (L) alleles [36]. L gene
alleles also encode CC-NB-LRR type resistance proteins with the ability to elicit resistance
responses to different tobamoviral CP Avr effectors [37,38]. Since both N′ and its Nicotiana
orthologues and the L alleles from pepper mediate resistance against tobamoviruses by
recognizing the CP [33,34], it seems that these genes have evolved from a common Solanum
ancestor. However, a resistance gene evolution assay indicates that the L gene from pepper
is not an N′ orthologue, suggesting that tobamovirus resistances in pepper and Nicotiana
originated independently [34]. Several R genes within the same locus recognize different
CP proteins from overlapping virus species indicating that the conserved R proteins are
able to recognize similar structures but with an adapted spectrum. These results also
support the idea that interactions between L genes or N′ orthologues and tobamovirus
CPs serve as good systems for study the mechanisms and evolution of virus perception
by plants.

Table 1. Plant virus avirulence (Avr) factor and cognate NB-LRR resistance genes.

Avr Gene Virus Species R Gene (Type) Host Plant Reference

Coat Protein (CP)

CP Potato virus X (PVX) Rx1 (CC-NBS-LRR) Solanum tuberosum [39,40]
CP PVX Rx2 (CC-NBS-LRR) S. tuberosum [41]
CP PVX Nx (locus) S. tuberosum [42]
CP Tobacco mosaic virus (TMV) N′ (CC-NBS-LRR) Nicotiana sylvestris [29,30,33]

CP

TMV, Tomato mosaic virus
(ToMV), Tobacco mild green mosaic
virus (TMGMV), Bell pepper
mottle virus (BPeMV), Paprika
mild mottle virus (PaMMV),
Obuda pepper virus (ObPV),
Pepper mild mottle virus
(PMMoV), Mungbean yellow
mosaic virus (MYMV)

L1-4 (CC-NBS-LRR) Capsicum annuum [36]

CP MYMV CYR1 (CC-NBS-LRR) Vigna mungo [43]
CP Cucumber mosaic virus (CMV) RCY1 (CC-NB-LRR) Arabidopsis thaliana [44,45]
P38 Turnip crinkle virus (TCV) HRT (CC-NB-LRR) A. thaliana [46,47]

Replication-Related Protein

Rep/C1 Tomato yellow leaf curl virus
(TYLCV) Ty2 (CC-NB-LRR) S. habrochaites [48]

p50 TMV N (TIR- NB-LRR) N. glutinosa [23,49]

RNA-dependent RNA
polymerase (NIb)

Pepper mottle virus (PepMoV),
Pepper severe mosaic virus
(PepSMV), and Potato virus Y
(PVY)

Pvr4 (CC-NBS-LRR) C. annuum [50,51]

2a
CMV RT4-4 (TIR-NB-LRR) Phaseolus vulgaris [52]
CMV Unknown Vigna unguiculata [53,54]

Helicase (CI) Turnip mosaic virus (TuMV) TurB01 (locus)
TurB05 (locus) Brassica napus [55,56]
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Table 1. Cont.

Avr Gene Virus Species R Gene (Type) Host Plant Reference

Movement Protein (MP)

NSm

Tomato spotted wilt virus (TSWV),
Tomato chlorotic spot virus (TCSV),
Groundnut ringspot virus (GRSV),
Chrysanthemum stem necrosis
virus (CSNV) and Impatiens
necrotic spot virus (INSV)

Sw-5b
(SD-CC-NB-LRR) S. peruvianum [57–60]

NSm TSWV RTSW (locus) N. alata [61]

30-KDa MP TMV, ToMV Tm-2 and Tm-2(2)

(CC-NB-LRR)
S.peruvianum [62]

TGB1 Barley stripe mosaic virus (BSMV) Bsr1 (CC-NB-LRR) Brachypodium distachyon [63]
BV1 Bean dwarf mosaic virus (BDMV) PvVTT1 (TIR-NB-LRR) P. vulgaris [64–66]
P1 Cauliflower mosaic virus (CaMV) CAR1 (locus) A.thaliana [67]
25-KDa MP PVX Nb (locus) S. tuberosum [68]

RNA Silencing Suppressor (RSS)

NSs TSWV Tsw (CC-NBS-LRR) C. annuum [50,69]

P0

Cucurbit aphid-borne yellows virus
(CABYV), Turnip yellows virus
(TuYV) and Potato leafroll virus
(PLRV)

RPO1(locus) N. glutinosa [70]

P0 Cotton leafroll dwarf virus
(CLRDV) Cbd (locus) Gossypium hirsutum [71]

Other Proteins

P6 CaMV Unknown Datura stramonium and
N. edwardsonii [22,72]

P3 + HC-Pro Soybean mosaic virus (SMV) Rsv1 (CC-NBS-LRR) Glycine max [73]

P3 TuMV TurB03 (locus)
TurB04 (locus) B. napus [67,74,75]

NIaPro or CP? PVY
Potato Virus A (PVA) Rysto (TIR-NB-LRR) S. stoloniferum [76–78]

Another representative study involves PVX CP-elicited ER mediated by the Rx1 gene,
which encodes a class of CC-NB-LRR R proteins in potato [39]. Under virus-free conditions,
intramolecular interactions between the CC domain and NB or LRR domains retain Rx1 in
an auto-inhibited (off) state [79,80]. Upon PVX infection, Rx1 protein recognizes the PVX CP
by leucine-rich repeat domain interactions that result in disruption of Rx1 intramolecular
host interactions. However, PVX CP-induced ER by Rx1 does not involve natural cell death
at the inoculation site, but instead suppresses virus replication per se, even in protoplast
infections. In contrast, RX1 does trigger an HR upon overexpression of the Avr PVX
CP or under high PVX concentrations [40]. An additional study has demonstrated that
nuclear-cytosolic shuttling of CP-activated Rx1 mediated by Ran GTPase-activating protein
2 (RanGAP2) is required for PVX defenses [81]. However, recent studies have shown that
nuclear or cytosol restricted Rx1 variants cannot trigger ER or suppress the spread of virus
infections, but can still induce an HR. Furthermore, perturbation of the nucleocytoplasmic
distribution of Rx1 leads to translational arrest of PVX CP transcripts and compromises
extreme resistance against PVX [82]. Thus, many mysteries still need to be addressed, e.g.,
how to explain the mutual regulation of the PVX CP and NLR activation and whether other
important host factors are involved in ER and HR induction. Notably, another ER gene
locus in potato, Nx, also confers resistance to the PVX CP. However, ER by the Rx1 gene is
induced via interactions with PVX CP conserved amino acids (aa) 121–127, whereas the Nx
gene confers resistance to PVX through the recognition of PVX CP aa 62–78 [39,42,83].
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In the Arabidopsis thaliana ecotype Di-17, Turnip crinkle virus (TCV) CP P38 functions
as the Avr resistance determinant for the HRT CC-NB-LRR R protein [46,84]. By use of
natural mutant isolates and interaction region screening, the TCV P38 N terminus has
been shown to be involved in eliciting resistance responses [84,85]. Moreover, the TCV
P38 N terminal nuclear localization domain is important for elicitation of host resistance
responses and could be a key trigger for HRT-dependent resistance to TCV [86]. In another
A. thaliana ecotype C24, RCY1, which encodes a CC-NB-LRR class R protein, was isolated
and identified as the first R gene conferring resistance to Cucumber mosaic virus (CMV) [44].
The CMV genes involved in the RCY1 Avr resistance response also mapped to the CP [45].
Interestingly, both the RCY1 and HRT R genes belong to HRT/RPP8 gene family, and the
RCY1 locus in ecotype C24 were was found to be allelic to HRT in Dijon-17. These func-
tionally divergence genes therefore seem to have evolved via recombination of ancestral
genes [87]. More intriguingly, the CMV and TCV CPs, which lack sequence similarity,
recognize the allelic RCY1 and HRT genes [45,84]. Therefore, several possibilities have been
presented; one possibility is that RCY1 and HRT are elicited by completely different ligands.
Another possibility is that the single CPs of CMV and TCV, or their possible complexes
with other host components (e.g., guardee or decoy factor) may have highly similar CP
protein folding domains [44].

3. Replication-Related Proteins

Replication of viruses in cells by use of their genetic information to commandeer
host cell components and machinery is a major feature that distinguishes viruses from
other pathogens. Plant DNA viruses, such as geminivirus, replicate by association with
cellular DNA-dependent DNA polymerases in infected cell nuclei and formed minichro-
mosomes [88]. In contrast, RNA replication results in rearrangements of intracellular
membranes and frequently induces the formation of vesicles that contain RNA-dependent
RNA polymerases and genomic RNA [89]. To replicate their genomes, viruses usurp host
factors that interact with viral gene products via protein–protein or protein–nucleic acid
interactions. One of the best studies using a yeast in vivo replication system has identified
more than 250 host factors that interact with viral replicase, replication proteins, or the
viral RNA to affect replication and recombination of TBSV [90]. In addition, large sets of
data have demonstrated that both DNA and RNA virus replication-related proteins can
elicit R gene-driven effector triggered immunity (ETI) causing HR (Table 1).

Ty-2 is a major source of dominant resistance against Tomato yellow leaf curl virus
(TYLCV) that has been widely employed in tomato breeding programs that have released
numerous commercial cultivars. Recently, Ty-2 was cloned and shown to encode a CC-
NB-LRR protein [48]. Using agroinfiltration to transiently co-express Ty-2 along with the
Rep/C1 and C4 genes of the RI and RB TYLCV strains, respectively, in N. benthamiana, only
the RI TYLCV strain Rep/C1 protein consistently elicited a HR when co-expressed with the
Ty-2 protein. This result clearly indicates that the Rep/C1 protein is the Avr determinant
triggering the Ty-2 based (strain-specific) resistance response [48].

As the first and one of the best studied plant virus resistance genes, the N gene was
cloned almost twenty years ago and shown to be a member of the TIR-NBS-LRR class of
plant disease resistance genes [23]. Subsequent efforts focused on identification of the viral
Avr factor for the N gene. Beachy’s group initially reported a role for the 126/183-kDa
replicase, but not the CP or MP, in induction of HR in tobacco containing the N gene [91],
Later, they showed that the 126-kDa protein sequence containing the methyltransferase and
helicase-like domains, but not the 183-kDa readthrough protein containing the polymerase
domain, is the Avr factor that triggers N-mediated defense responses [92]. Ultimately,
Barbara Baker’s team demonstrated that expression of the 50-kDa TMV helicase fragment
(p50) of the 126-kDa replicase protein is sufficient to elicit N-mediated ER [49]. They also
showed that HR induction depends on features of the p50 protein that are independent of
its ATPase/helicase activity. Similar HR characteristics induced by avirulent replicases that
are not dependent on the enzymatic activity of the protein also have been observed in the
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2a polymerase of CMV in cowpea plants [53]. The amino acid mutants that alter the highly
conserved polymerase Gly-Asp-Asp (GDD) motif abolish replicase activity; however, these
mutants do not affect HR induction in cowpea plants.

The Pvr4 gene encodes a broad-spectrum CC-NBS-LRR type resistance protein known
to elicit resistance against multiple potyviruses, including Pepper mottle virus (PepMoV),
Pepper severe mosaic virus (PepSMV) and Potato virus Y (PVY) in Capsicum annuum [50]. Kim
et al. used agrobacterium transient expression of potyvirus coding regions and showed
that the PepMoV, PepSMV and PVY RdRp NIbs proteins serve as Avr factors that elicit
Pvr4 resistance in pepper plants [51]. The cylindrical inclusion (CI) protein of the potyvirus
contains RNA helicase activities and are essential for genomic RNA replication. In the
brassica–TuMV interaction system, the TuMV CI protein has been identified as the viral
Avr determinant for two resistance genes, TuRB01 and TuRB05, in the AA subgenome of
Brassica napus [55,56].

4. Movement Proteins (MP)

Virus cell-to-cell and long distance movement throughout the plant from initial infec-
tion sites are controlled by specific viral MPs. Generally, plant virus movement is divided
into three steps: (I) intracellular movement in which virus is trafficked along different
organelles within a single cell from the sites of replication to the plasmodesmata [93]; (II)
intercellular movement involving transport of virus through plasmodesmata (PD) cell-
wall structures serving as cytoplasmic connections between plant cells [94]; (III) systemic
movement throughout the plant when viruses transit through the vascular system to distal
leaves, roots and occasionally to reproductive organs [95,96]. Although different MPs have
been shown to use various pathways and mechanisms for virus transport, numerous host
factors and viral proteins may be required for each movement step.

Several examples have shown that viral MPs can elicit an HR response via interactions
with R gene products. One of the best-characterized systems is the interaction between
the Tomato spotted wilt virus (TSWV) NSm movement protein with the tomato Sw-5b and
tobacco RTSW resistance gene proteins. Sw-5b belongs to the CC-NB-LRR type immune
receptors and contains an extended N-terminal Solanaceae domain (SD) [57,58]. This R
protein confers broad-spectrum resistance to various American-type orthotospoviruses
but not to the Euro-Asian-type orthotospoviruses [57,97,98]. Two groups independently
demonstrated at almost same time that Sw-5b resistance is triggered by the NSm cell-
to-cell movement protein [59,60]. Subsequent work by Tao’s group showed that a 21-aa
peptide region positioned at aa 115–135 in TSWV NSm (NSm21), which is highly conserved
among the American-type orthotospoviruses, but not the Euro-Asian-types, is sufficient
to trigger Sw-5b-mediated HR [97,99]. In addition, the group also found that Sw-5b NLR
adopts a two-step recognition mechanism to enhance NSm perception. In addition to
direct interactions between the LRR domain and NSm or NSm21, the SD domain functions
as an extra sensor to detect low levels of NSm or NSm21 and enhance resistance of Sw-
5b [100,101]. RTSW, another R locus from wild tobacco N. alata that confers ER to TSWV,
has been introgressed into cultivated tobacco. By using two different transient expression
systems, we showed that the NSm protein of TSWV acts as an Avr determinant of RTSW-
based resistance [61]. Moreover, both our results and those of Tao’s group showed that
intercellular trafficking of NSm can be uncoupled from its HR function in the induction
of RTSW and Sw-5b resistance [61,102]. More importantly, our evidence indicates that
although RTSW and Sw-5b behave as single dominant genes that confer ER by interacting
with the same NSm protein encoded by the same virus, they recognize different elicitor
domains (EADs) [61]. The same pattern also has been shown to confer resistance to ToMV
in tomato harboring the Tm-2 and Tm-2(2) genes. The 30-KDa MP of ToMV elicits both
Tm-2 and Tm-2(2) resistance, but has different interacting domains [62] because the EADs
map to the MP N- and C-termini, respectively [103].

The model grass Brachypodium distachyon Bd3-1 inbred line harbors a resistance gene
designated Bsr1 that interacts with the Barley stripe mosaic virus (BSMV) ND18 triple gene
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block 1 (TGB1) movement protein to elicit ER during infection. Lee et al. have shown that
two amino acids within the protein are required to elicit resistance, and that the BSMV
Norwich strain has a two amino acid changes in TGB1 that abrogates necrosis to enable
systemic infections [63]. In potatoes, the 25-kDa MP of PVX elicits Nb-Mediated ER, and
that an isoleucine residue at position 6 of the MP protein is required for activation of
the Nb response [68]. More intriguingly, recent evidence has revealed that the PVX MP
functions as a silencing suppressor by directly targeting AGO1 degradation through the
proteasome pathway [104]. Therefore, more systematic studies need to be conducted on
this multifunctional protein to clarify the roles of important sites or domains in nucleotide
binding, RNA helicase activity, plasmodesmatal gating, suppressor activity, etc.

5. RNA Silencing Suppressors (RSS)

RNA silencing (also known as RNA interference, RNAi) functions in endogenous
gene regulatory and exogenous antiviral mechanisms in plants [105]. As a counterdefense,
viruses have evolved RSS proteins that function to inhibit RNA silencing through diverse
mechanisms [106,107]. The first mode of RSSs action is binding of long dsRNA or siRNA
duplexes that arise during viral infections to inhibit siRNA biogenesis or RISC forma-
tion [108]. A second mode of action is binding to important components in the silencing
pathway [109,110]. Recently, RNA silencing has been regarded as pattern-triggered immu-
nity (PTI) against viruses and dsRNAs during the replication of RNA and DNA viruses and
has been categorized as a pathogen-associated molecular patterns (PAMP) defense [111].
Consequently, by analogy of these steps in virus-host interactions with the steps outlined
in the standard zigzag model, RSSs has been defined as a class of ETS that circumvents host
RNA silencing and counters against the first layer of plant antiviral defenses [3,112,113].
Given the importance of suppressing RNA silencing for virus survival, it is not unexpected
that direct and indirect interactions would occur between RSSs and R genes to elicit ETI,
which acts as a second plant defense layer [107].

The orthotospoviral NSs silencing suppressor protein is a well characterized RSS
that conducts local and systemic silencing suppression functions by binding small and
long dsRNAs [114,115]. Recently, NSs has been identified as the Avr determinant for Tsw-
based resistance in pepper [69]. Considering the role of NSs to counter defenses against
RNA silencing, further dissections were tested by screening a large set of mutants for lost
RI activity or silencing suppression. This result supports the idea that the NSs protein
has evolved to fine tune and uncoupled Avr and RSS functions [116]. Recent studies
tracing HR induction lineages and silencing suppression associated with the CPs of the
Tombusviridae also support the conclusion that SSR and HR elicitation involve independent
motifs. Among the four clades in the phylogenetic tree of 54 CPs tombusvirids, two
separate CP clades triggered an HR in Nicotiana species of section Alatae but did not have
silencing suppressor activity, whereas in one clade the CP functioned as an SSR, but lost
the capacity to trigger HR in Nicotiana species [35].

The Polerovirus P0 protein is another well-known SSR that can mediate degradation
of ARGONAUTE1 (AGO1), one of the most important components in RNA silencing
and antiviral responses [117]. The N. glutinosa RPO1 gene elicits ER against poleroviruses
Turnip yellows virus (TuYV) and Potato leafroll virus (PLRV), and is inherited as a single,
dominant resistance allele. The P0 proteins from TuYV, PLRV and Cucurbit aphid-borne
yellows virus (CABYV) were found to elicit an HR in N. glutinosa accessions containing the
RPO1 locus. To dissect important roles of the P0 F-box motif in autophagic degradation of
AGO1 proteins, motif mutants were constructed to test requirements for elicitation of RPO1-
mediated HR. The results showed that P0 mutants with substitutions in the F-box motif
that abolished SSR activity were unable to elicit HR, suggesting that HR induction requires
a functional P0 protein [70]. In cotton (Gossypium hirsutum), Cbd is a single dominant
gene conferring ER to the polerovirus, cotton leafroll dwarf virus (CLDV). Agrofoglio and
coworkers characterized the SSR activity of the P0 proteins encoded by wildtype (WT)
CLRDV and a RB CLRDV isolate and evaluated the roles of these proteins in breaking
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Cbd-resistance in cotton plants. They found that WT and RB CLRDV P0s behave similarly
during RNA silencing interference; however, RB CLRDV P0 enabled WT CLRDV and a
chimeric infectious clone to systemically infect Cbd-resistant cotton varieties. Therefore, the
CLRDV P0 protein is also an Avr determinant that functions in Cbd-based resistance [71].

6. Other Proteins

In contrast to a simple classification in which ER caused by viral elicitors falls into
the four categories above, research within the past few years shows that ER determinants
are largely spread throughout the viral genome [118,119]. Additional elicitors of viral
proteins, with the exception of those discussed in the previous sections, have been shown
to contribute to viral ETI resistance. For example, the first plant virus avr gene, P6 of
CaMV was identified through its capacity to elicit an HR in Datura stramonium and N.
edwardsonii, by dissecting a series of gene swaps between infectious clones of different
strains of CaMV [22,72]. Subsequent discreet studies further showed that P6 elicits a
non-necrotic resistance response in N. glutinosa, but segregated independently from the
cell death responses of N. edwardsonii or N. clevelandii [120,121], although specific R genes
affecting these processes have not been isolated. P6 has also been recognized as a versatile
viral protein that has key roles in several steps of virus infections [122]. For example, P6 is
a transactivator of translation, a central component of amorphous inclusion bodies, an RSS
and a main determinant of host range and pathogenicity [72,122–124]. P6 has also been
associated with virus movement, modulates host defenses including both PTI and ETI,
and suppresses SA-dependent autophagy [15,16,125–128]. Although the overall distinction
between Avr triggering and other biology functions of P6 remain obscure, subtle assays
have showed that the role of P6 in ER elicitation can be uncoupled from its roles as a
translational transactivator [129,130].

Rysto resistance, which confers ER against PVY and related viruses from the wild
relative S. stoloniferum, has been widely employed in potato breeding programs as an
importance resistance trait. Recently, the Rysto gene was cloned and found to encode a
TIR-NB-LRR protein [76]. Nevertheless, the Avr determinant for Rysto was determined
more than twenty years ago, when Mestre et al. demonstrated that the NIa proteinase
(NIaPro) from PVY is an elicitor of Rysto-mediated resistance [77]. In this case, transient
expression of PVY NIaPro by agro-infiltration elicited a HR in Rysto resistant but not in
rysto susceptible potato [77]. In a subsequent study, protease activity of NIaPro was shown
to be required but not sufficient for elicitation of Rysto-mediated potyviral resistance [78].
However, conflicting results appeared after the Rysto gene was isolated because similar
transient expression strategies with different viral proteins from PVY and Potato virus A
(PVA) indicated that Rysto recognizes the CP but not other proteins as Avr factors in Rysto
transgenic N. tabacum plants [76]. Therefore, it remains to be determined whether the HR
phenotype is elicited by transient expression of different viral proteins (NIaPro and CP) or
results from different interactions in the two experimental hosts (potato and tobacco).

In soybean plants (Glycine max), the Rsv1 gene confers resistance to the N strain of
soybean mosaic virus (SMV), one of the most devastating potyviruses that causes huge
economic losses in soybean production worldwide. Through construction of a series
of chimeras and site-directed mutants, Eggenberger and colleagues mapped SMV P3
and helper-component proteinase (HC-Pro) components involved in elicitation of Rsv1-
mediated ER. Since P3 and HC-Pro are cistrons within a read-through protein, it seems
that HC-Pro and P3 are recognized by Rsv1-mediated defense responses as a precursor
polyprotein [73]. More recent research revealed that the complexity of the Rsv1 locus
may be a reason why the recognition sites are distributed throughout the HC-Pro and P3
cistrons. Multiple distinct resistance genes, likely belonging to the NB-LRR class, have
been discovered within the Rsv1 locus [131]. In addition, the P3 protein alone was found
to be an Avr determinant for two dominant resistance genes, TuRB03 and TuRB04, in the
brassica-TuMV interaction system [56,74].
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7. Application of Viral Avr Factors in Resistance Studies
7.1. Agrobacterium Co-Infiltration Transient Expression as a Tool for Isolation and Identification of
Disease Resistance Genes

In early studies, viral Avr factor identification was conducted via several approaches
including gene swaps between resistance and susceptible virus strains or mutants, and
ectopic expression of Avr candidate genes within a virus vector. Subsequently, agroin-
filtration has been shown to be a more convenient and powerful tool for screening of
viral proteins capable of triggering HR in R-containing plant hosts. According to the
‘gene-for-gene’ theory, one R gene product in the plant specifically perceives a matching
effector protein, and a definitive Avr gene also can be inversely employed to screen for
corresponding R genes. Several successful case studies have demonstrated the utility and
operability of this approach [41,132]. In contrast to Avr factor screening, in which single
Avr candidate genes are agroinfiltrated into resistance host plants, R gene screening is
conducted by mixing agrobacterium strains carrying the candidate R gene and the Avr
genes, and the mixtures are co-infiltrated into susceptible host plants such as N. benthamiana.
Compared to the several months required for transgenic assays or gene knockout assays,
agrobacterium co-infiltration transient expression systems just require two or three days.
Previous experiments have confirmed that Rx2 (AC15 clone) and RP28 genes can be easily
and quickly isolated from a 200 Rx homologue library from potato and a 99 candidate
R gene library from pepper by using Agrobacterium coinfiltration approaches [41,132].
Therefore, the Agrobacterium approach is a handy tool that is less time consuming and
labor intensive than the more traditional methods. The Agrobacterium system could also
provide a convenient method to identify disease resistance genes because R genes encod-
ing NB-LRR type receptors are frequently members of large gene families, organized in
complex clusters of paralogous genes in the plant genome. Of course, several additional
candidate R homologues still may need to be cloned and identified even if located within a
very narrow chromosome fine mapping region.

7.2. Avr Gene-Based Diagnostic Approaches for Allele Identification and Phenotyping

Identification of new candidates for virus resistance is a prerequisite for effective
utilization of diverse germplasm in breeding programs. Multiple alleles arising by rapid
evolution through tandem and segmental gene duplications, recombination, unequal
crossing-over or point mutations are common within R gene families. The high sequence
similarity of encoding and flanking regions of R gene alleles by marker assisted genotyping
are huge challenges. However, coevolution and diversified selection of R genes and the
pathogen’s Avr effectors often result in multiple recognition regions between a single R
gene with each allele and corresponding species or strain-specific Avrs. Several examples
of allelic series of virus R genes are known in plants; for example the L1, L2, L3, and L4

alleles confer broad spectrum of resistance to different tobamoviruses by recognizing their
CP elicitors [36]. Therefore, HR phenotyping by using specific recognition between R and
Avr proteins represents an alternative approach to screen different alleles from germplasm
variants. In this regard, Avr gene-based phenotyping has been established and applied to
rice blast disease resistance identification in the field by using different Avr factors [133].

For fine mapping and cloning of virus resistance genes, a precise disease resistance test
is a prime requirement for resistance identification in segregation populations, e.g., F2, BC,
RIL or NIL populations. Traditional virus disease resistance tests performed in mapping
or breeding programs involves virus infectious clones, insect vectors, or sap mediated
virus inoculations. However, the obvious shortcomings of these methods, including low
accuracy, complicated operations, time consuming experiments, and labor intensive trials
has limited their wide application. However, our experience has indicated that Avr gene-
based diagnostic approaches can provide rapid disease resistance tests that overcome
limitations of virus sap inoculations and greatly improve the efficiency and accuracy of test
plant inoculations [61].
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8. Conclusions and Perspectives

Over the past three decades, our knowledge about plant virus resistance genes and
corresponding Avr factors has advanced dramatically. Compared to other pathogens (i.e.,
bacterial, fungal and oomycetes), viral Avr gene identification is relatively easy due to small
virus genome sizes and limited numbers of gene products. Most virus Avr genes have been
matched with an R-gene type NB-LRR receptor (Table 1). However, Avr genes that elicit
activity of some mapped or cloned antiviral R genes have not yet been identified. These
include the I gene in Phaseolus vulgaris that confers resistance to multiple potyviruses [134],
Y-1 in S. tuberosum resistance to PVY [135], Pv1 and Pv2 in Cucumis melo resistance to
Papaya ringspot virus [136], Ctv resistance in Poncirus trifoliate to Citrus tristeza virus [137]
and BcTuR03 resistance in B. campestris to TuMV [138]. Thus, further studies need to be
conducted to identify Avr factors and their roles in eliciting resistance and functions in
virus multiplication.

Previous studies with virus Avr-R interactions have provided new insights and paved
the way to plant innate immunity studies of other pathogens. Among these are investi-
gations of direct interactions between NSm (or NSm21) and Sw-5b that revealed a novel
two-step recognition mechanism involving the SD and LRR domains of Sw-5b [97,100],
indirect interactions between the N gene and TMV p50 mediated by an intermediate pro-
tein NRIP1 [139] and recognition of the TMV MP by Tm-2(2) involving an intermediate
NbMIP1 [140,141]. These results indicate that associations between NLRs and their corre-
sponding effectors may not be sufficient to directly activate R protein defense responses,
but may require additional molecular partners. In contrast to the well characterizations
of TSWV Nsm/Sw-5b, TMV p50/N, PVX CP/Rx1, ToMV MP/Tm-2(2), other Avr and R
proteins interactions were limitedly characterized experimentally. Thus, a major challenge
for the future is to identify the precise interaction mechanisms between viral Avr factors
and their matching NB-LRR type receptors, as it is possible such multi host interactions
are common. The resolution of such mechanisms may require more powerful technolog-
ical tools to detect and analyze subtle signaling complexes. Nevertheless, several novel
experimental approaches, including TurboID-based proximity labeling, high throughput
omics analyses, protein–protein interaction networks and machine learning technologies
have recently demonstrated their potential for comprehensive understanding of complex
biological process such as Avr/R protein signaling cascades [142,143].

Notably, recent cryo-EM structural and functional analyses of CC-NB-LRR (ZAR1)
and TIR-NB-LRR (ROQ1 and RPP1) proteins have shed new light on resistosome signaling
mechanisms and provide an excellent template for other CC- and TIR-NB-LRR protein func-
tional cascades [144–147]. It would be interesting to discover whether other CC-NB-LRR
proteins self-associate and oligomerize into larger structures to form membrane pores since
previous results have revealed distinct subcellular localization of R proteins. For instance,
nucleocytoplasmic shuttling requirements of the PVX CP activated Rx1[81], Tm-2(2) func-
tions on the plasma membrane [140] and Sw-5b exhibits nucleocytoplasmic localization
patterns in the absence of virus infections or NSm induction [139,148]. It also would be
worthwhile to determine whether other TIR-NB-LRR proteins form tetrameric assemblies
that act as holoenzymes to mediate NAD+ hydrolysis that can trigger plant immunity
responses. Future steps will require advances in structural studies, understanding patterns
and mechanisms of R protein recognition and activation of viral Avr factors. Addressing
such fundamental mechanisms will clarify major gaps in our understanding of plant virus
defense networks.
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