Design, synthesis and characterization of HIV-1 CA-targeting small molecules: conformational constraint of PF74

Rajkumar Lalji Sahani ${ }^{1}$, Raquel Diana-Rivero ${ }^{1}$, Sanjeev Kumar V. Vernekar ${ }^{1}$, Lei Wang ${ }^{1}$, Haijuan Du ${ }^{2,3}$, Huanchun Zhang ${ }^{2,3}$, Andres Emanuelli Castaner ${ }^{2,3}$, Mary C. Casey ${ }^{4}$, Karen A. Kirby ${ }^{2,3}$, Philip R. Tedbury ${ }^{2,3}$, Jiashu Xie ${ }^{1}$, Stefan G. Sarafianos ${ }^{2,3}$, and Zhengqiang Wang ${ }^{\text {1,* }}$
${ }^{1}$ Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
${ }^{2}$ Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
${ }^{3}$ Children's Healthcare of Atlanta, Atlanta, GA 300322, USA.
${ }^{4}$ Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life
Sciences Center, Columbia, MO 65211, USA
* Correspondence: wangx472@umn.edu; Tel: +1-612-626-7025

Table of Contents

1. Scheme S1: Synthesis of intermediates 27-28
2. Synthesis of compounds 1-3 and spectral data
3. Scheme S2. Synthesis of intermediates 29-37 and spectral data S5
4. Synthesis of compounds 4-8 and spectral data S10
5. Synthesis of compounds $\mathbf{9 - 1 9}$ and spectral data S14
6. Scheme S3. Synthesis of intermediates 39-41 and spectral data S20
7. Synthesis of compounds 20-25 and spectral data S22
8. NMR spectra of compounds $\mathbf{1 - 2 5}$ S25

Scheme S1. Synthesis of intermediates 27-28 and compounds 1-3.

Reagents and conditions: a) L-Phenylalanine methyl ester hydrochloride, HATU, DIPEA, DMF, rt, 12 h; b) LiOH, THF, rt, 12 h; c) amine, PyOAP, DIPEA, DMF, rt, 12 h.

Synthesis of intermediate 27: To a solution of acid 26 ($1.0 \mathrm{gm}, 1$ equiv.) in DMF (10 mL), HATU (1.2 equiv.) and DIPEA (2.0 equiv.) were added and the mixture was stirred at room temperature for 20 min . Followed by addition of desired L-Phenylalanine methyl ester hydrochloride (1.1 equiv.) and the mixture was further stirred at room overnight for 12 hours. Upon completion, $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$ was added and the reaction mixture was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by Combi-flash on silica gel using $50-100 \%$ EtOAc/hexane.

Synthesis of intermediate 28: To a solution of the ester products 27, obtained in the previous step, in methanol (10 mL) was added LiOH (3.0 equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the mixture was stirred at room temperature for 12 hours. Upon completion, ethanol was evaporated and acidified
to $\mathrm{pH}=3$ using 1 NHCl . Filtration of the crude product, washing, and drying gave the respective acids 28.

Synthesis of compounds 1-3: To a solution of acid 28 ($0.1 \mathrm{gm}, 1$ equiv.) in DMF (1 mL) PyOAP (1.2 equiv.) and DIPEA (2.0 equiv.) were added and the mixture was stirred at room temperature for 20 min . Followed by addition of desired indoline or tetrahydroquinoline (1.1 equiv.) and the mixture was further stirred at room overnight for 12 hours. Upon completion, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the reaction mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by Combi-flash on silica gel using 0-50\% EtOAc/hexane.

White solid, (S)-N-(1-(indolin-1-yl)-1-oxo-3-phenylpropan-2-yl)-2-(2-methyl-1H-indol-3yl)acetamide (1) Yield 81%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 10.71(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ (ddd, $J=17.1,14.0,7.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\operatorname{td}, J=$ $7.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{q}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{td}, J=9.9,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{dd}, J=15.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=15.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=13.8,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{ddd}, J=13.5,8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO) $\delta 170.75,169.81,142.57,137.44,134.95,132.92,131.94,129.27,128.38$, $128.09,126.90,126.40,124.77,123.61,119.85,118.01,117.91,116.31,110.10,104.73,53.16$,
47.29, 36.92, 30.93, 27.36, 11.31. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 436.2031$, found 436.2034.

White solid, (S)-2-(1H-indol-3-yl)-N-(1-(indolin-1-yl)-1-oxo-3-phenylpropan-2-yl)acetamide (2) Yield 72\%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{dt}, J=18.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{td}, J$ $=10.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{td}, J=10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=13.5,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99(\mathrm{dp}, J=13.8,8.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=13.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 170.63,142.56,137.43,136.01,131.95,129.27,128.11,127.15,126.90,126.43,124.78,123.70$, 123.62, 120.83, 118.70, 118.18, 116.32, 111.16, 108.65, 53.13, 47.31, 37.00, 32.12, 27.36. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 422.1874$, found 422.1873 .

White solid, (S)-N-(1-(3,4-dihydroquinolin-1(2H)-yl)-1-oxo-3-phenylpropan-2-yl)-2-(1H-indol-3yl)acetamide (3) Yield 65%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 8 \mathrm{H}), 7.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H})$, $5.42(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$
$(\mathrm{s}, 1 \mathrm{H}), 1.71(\mathrm{q}, J=9.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dt}, J=13.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 172.88,171.62,137.84,136.74,136.24,128.63,128.01,127.06,126.40,125.96,124.50,123.57$, $121.19,118.62,118.04,110.92,107.83,51.72,42.74,38.45,32.35,25.61,23.36$ (three carbons are merging). HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 436.2031$, found 436.2037.

Scheme S2. Synthesis of intermediates 30-37 and compounds 4-19.

Reagents and conditions: d) $(\mathrm{COCl})_{2}$, cat. DMF, $\mathrm{DCM}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 2 \mathrm{~h}$, then $\mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h}$; e) DIBAL-H, THF, $\left.-78^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathrm{f}\right)(R)-(+)$-2-Methyl-2-propanesulfinamide, $\left.\mathrm{CuSO}_{4}, \mathrm{DCM}, \mathrm{rt}, 3 \mathrm{~h} ; \mathrm{g}\right)$ Benzylmagnesium chloride, $\mathrm{DCM},-78{ }^{\circ} \mathrm{C}-\mathrm{rt}, 5 \mathrm{~h}$; h) boronic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DME, MW, $120^{\circ} \mathrm{C}, 45 \mathrm{~min}$. ; i) 4N HCl/dioxane, $\mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}$; j) acid, HATU or T3P, DIPEA, DMF, $\mathrm{rt}, 12 \mathrm{~h}$.

Synthesis of intermediate 30:

Reagents and conditions: d) $(\mathrm{COCl})_{2}$, cat. DMF, $\mathrm{DCM}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 2 \mathrm{~h}$, then $\mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h}$; e) DIBAL-H, THF, $-78^{\circ} \mathrm{C}, 3 \mathrm{~h}$

Synthesis of intermediate 29': To a solution of acid 29 (2.0 gm , 1 equiv.) in DCM (50 mL), oxalyl chloride (1.2 equiv.) and catalytic amount of DMF were slowly added at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 2 hours. Upon completion, indicated by TLC, the reaction mixture was evaporated to dryness, $\mathrm{MeOH}(20 \mathrm{~mL})$ was added, and the reaction was stirred at room temperature for another 2 hours. Upon completion, the reaction mixture was evaporated to dryness, sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by Combi-flash on silica gel using 5$10 \% \mathrm{EtOAc} /$ hexane to get the desired ester $\mathbf{2 9}^{\prime}$ as yellow oil.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{ddt}, J=4.6,3.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{ddt}, J=6.9,3.1,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{dtd}, J=8.0,3.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$.

Synthesis of intermediate 30: To a solution of ester 29' (1.0 gm, 1 equiv.) in dry THF (10 mL), DIBAL-H (1.5 equiv.) was added at $-78^{\circ} \mathrm{C}$ over 40 minute and the mixture was maintained at the same temperature for 2.5 hours. Upon completion, indicated by TLC, $\mathrm{MeOH}(10 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added and the reaction mixture was extracted with EtOAc (3x50
$\mathrm{mL})$. The combined organic phases were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by Combi-flash on silica gel using 2$20 \% \mathrm{EtOAc} /$ hexane to get the desired aldehyde $\mathbf{3 0}$ as white solid.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.25(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dt}, J=$ $8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (ddd, $J=8.2,4.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of intermediate 31: To a solution of aldehyde 30 ($1.0 \mathrm{gm}, 1$ equiv.) in DCM (20 mL), (R)-(+)-2-Methyl-2-propanesulfinamide (1.1 equiv.) and anhydrous CuSO_{4} (2.0 equiv.) were added and the mixture was stirred at room temperature for 3 hours. Upon completion, indicated by TLC, the reaction mixture was filtered through short celite bed and evaporated to dryness. The crude product was purified by Combi-flash on silica gel using 15-30\% EtOAc/hexane to get the desired sulfinimine $\mathbf{3 1}$ as white solid.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.03(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=4.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dt}, J$ $=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of intermediate 32 and 33: To a solution of sulfinimine 31 (1.0 gm, 1 equiv.) in dry DCM (20 mL), benzylmagnesium chloride (1.4 M in THF, 1.2 equiv.) was added at $-78{ }^{\circ} \mathrm{C}$ over 20 minute and the mixture was maintained at the same temperature for 2.5 hours. Another portion of
benzylmagnesium bromide (1.4 M in THF, O .2 equiv.) was added at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was warmed to room temperature for an hour. Upon completion, indicated by TLC, saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added and the reaction mixture was extracted with EtOAc (3x50 $\mathrm{mL})$. The combined organic phases were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by Combi-flash on silica gel using 20$22 \% \mathrm{EtOAc} /$ hexane to get the desired intermediate 33 as brown solid and $30-50 \% \mathrm{EtOAc} / \mathrm{hexane}$ to get the desired intermediate $\mathbf{3 2}$ as brown oil.

32, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.61(\mathrm{dd}, J=4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47-6.32(\mathrm{~m}, 6 \mathrm{H}), 4.93(\mathrm{td}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=$ $13.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 158.91,147.96,140.69,138.04$, $129.47,127.98,126.25,124.35,119.36,60.80,55.40,42.00,22.23$.

33, ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 8.59(\mathrm{dd}, J=4.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.01(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{td}, J=8.2,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.27(\mathrm{dd}, J=13.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=13.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz ,

DMSO) $\delta 158.28,147.95,140.43,137.62,129.45,128.02,126.23,124.15,120.46,58.82,55.60$, 41.49, 22.28.

Synthesis of intermediate 34: To a solution of intermediate 32 ($0.2 \mathrm{gm}, 1$ equiv.) in DME (7 mL) in a microwave vial, corresponding boronic acid (1.05 equiv.), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ in 3 mL water (10.0 equiv.), and Pd catalyst were added and the mixture was irradiated in microwave at $120^{\circ} \mathrm{C}$ for 45 mins. Upon completion, indicated by TLC, the reaction mixture was filtered through short celite bed, diluted with water and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by Combi-flash on silica gel using 80-95\% EtOAc/hexane to get the desired Suzuki coupling intermediate $\mathbf{3 4}$ as colorless oil.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{dt}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{ddt}, J=$ $9.4,7.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dq}, J=$ $10.8,5.7,4.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.58(\mathrm{dt}, J=7.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 1 \mathrm{H})$, $2.81(\mathrm{dd}, J=13.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=13.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 9 \mathrm{H})$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74-8.70(\mathrm{~m}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ $(\mathrm{dt}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{dt}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H})$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{dd}, J=4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{dd}, J$ $=7.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{td}, J=9.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{qd}, J=12.9,7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.20$ (s, 9H).

Synthesis of intermediate 35: To a solution of intermediate 34 (0.2 gm , 1 equiv.) in MeOH (10 mL), $4 \mathrm{~N} \mathrm{HCl} /$ dioxane (36.0 equiv.) was added and the mixture was stirred at room temperature for an hour. Upon completion, indicated by TLC, the reaction mixture evaporated to dryness and used in for next step without further purification.

Synthesis of compounds 4-8: To a solution of amine hydrochloride 35 (0.1 gm , 1 equiv.) in DMF (1 mL) HATU (1.2 equiv.), DIPEA (2.0 equiv.) and desired acids (1.1 equiv.) were added and the mixture was stirred at room temperature for 12 hours. Upon completion, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the reaction mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by Combi-flash on silica gel using 0-50\% EtOAc/hexane.

White solid, $\quad(R)-2-(2-m e t h y l-1 H-i n d o l-3-y l)-N-(2-p h e n y l-1-(3-p h e n y l p y r i d i n-2-$ yl)ethyl)acetamide (4) Yield 74\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-$ $8.03(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{q}, J=7.9,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{dd}, J$ $=7.5,5.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.49$ $(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=12.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=13.2$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.64,157.05,147.96,138.28,137.74$, $137.18,136.84,135.51,133.30,129.37,129.23,128.6,128.5128 .05,127.75,126.20,122.04$, $121.49,119.75,118.17,110.43,105.11,51.66,42.08,32.53,11.74$. HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{+} 446.2227$, found 446.2227.

White solid, (R)-2-(1H-indazol-1-yl)-N-(2-phenyl-1-(3-phenylpyridin-2-yl)ethyl)acetamide (5) Yield $32 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{dd}, \mathrm{J}=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.87(\mathrm{~m}, 5 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.52(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{dd}, \mathrm{J}=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, \mathrm{J}$ $=13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.54,156.25,148.04,140.33,138.06$,
$137.89,136.84,136.82,135.05,129.33,129.14,128.59,128.08,127.83,127.16,126.30,124.43$, 122.23, 121.37, 109.22, 52.44, 51.79, 42.20. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$ 431.1877, found 431.1881.

White solid, (R)-N-(2-phenyl-1-(3-phenylpyridin-2-yl)ethyl)-2-(1H-pyrazol-1-yl)acetamide (6) Yield 25%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-$ $7.24(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{q}, J=5.9,4.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.06(\mathrm{dd}, J=7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.82(\mathrm{~m}, 4 \mathrm{H})$, $6.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-$ $2.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.28,156.10,147.95,140.94,138.01,136.81$, 132.17, 132.07, 130.92, 129.31, 129.03, 128.47, 128.08, 127.73, 126.31, 122.31, 106.65, 55.10, 51.88, 42.20. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$381.1721, found 381.1726.

White solid, $\quad(R)-N-(1-(3-(1 H-i n d a z o l-7-y l) p y r i d i n-2-y l)-2-p h e n y l e t h y l)-2-(1 H-i n d a z o l-1-~$ yl)acetamide (7) Yield 40%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.57(\mathrm{bs}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=8.1,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.16-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.94-4.87(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J$
$=17.0,8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.85,157.23,148.84,140.42,139.68$, $137.76,135.80,135.28,135.08,133.56,128.84,128.20,127.99,127.37,126.73,124.34,123.57$, $122.92,121.56,121.34,121.20,120.95,120.70,109.36,54.81,52.06,41.71$. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$471.1939, found 471.1942.

White solid, (R)-N-(1-(3-(1H-indazol-7-yl)pyridin-2-yl)-2-phenylethyl)-2-(1H-pyrazol-1$y l)$ acetamide (8)• Yield 31%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.48(\mathrm{bs}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-$ $7.35(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.83(\mathrm{~m}, 3 \mathrm{H}), 2.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.72,156.88,147.80,141.24,140.96,137.52,135.59,135.10,134.32,131.52,128.99$, $128.59,128.07,126.95,123.62,123.34,121.27,120.01,106.78,54.83,41.63,29.83$. HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$421.1782, found 421.1786.

Synthesis of intermediate 36: Intermediate $\mathbf{3 6}$ was synthesized from intermediate $\mathbf{3 3}$ as per the synthetic protocol described for the synthesis of intermediate 34 .

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{dd}, J=4.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddt}, J=12.1,6.9,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=8.7,7.0,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H})$, $7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 2 \mathrm{H}), 4.80-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.13$ ($\mathrm{s}, 9 \mathrm{H}$).

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.14$ $-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 9 \mathrm{H})$.

Synthesis of intermediate 37: Intermediate $\mathbf{3 7}$ was synthesized from intermediate $\mathbf{3 6}$ as per the synthetic protocol described for the synthesis of intermediate 35 .

Synthesis of compounds 9-19: Compounds $\mathbf{9 - 1 9}$ were synthesized by HATU or $\mathrm{T}_{3} \mathrm{P}$ coupling of desired acids and intermediate $\mathbf{3 7}$ following a process described for the synthesis of compounds $\mathbf{4}$ 8. $\mathrm{T}_{3} \mathrm{P}$ was used in place of HATU for the synthesis of compound 15.

White solid, (S)-2-(2-methyl-1H-indol-3-yl)-N-(2-phenyl-1-(3-phenylpyridin-2-yl)ethyl)acetamide (9). Yield 62\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.38-$
$7.25(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 H), 6.81(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.78-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.75,156.99,147.83$, 138.18, 137.90, 137.12, 136.91, 135.52, 133.36, 129.34, 129.21, 128.6, 128.5 128.07, 127.78, $126.22,122.10,121.43,119.69,118.11,110.47,104.97,51.70,42.05,32.52,11.70$. HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-} 444.2081$, found 444.2083.

White solid, (S)-2-(1H-indazol-1-yl)-N-(2-phenyl-1-(3-phenylpyridin-2-yl)ethyl)acetamide (10). Yield 50%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47-7.14(\mathrm{~m}, 8 \mathrm{H}), 7.10-6.89(\mathrm{~m}, 6 \mathrm{H}), 6.48(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.67,156.12$, $147.77,140.33,138.25,137.86,136.94,136.72,135.06,129.29,129.11,128.63,128.12,128.0$, 127.9, 127.18, 126.36, 124.40, 122.38, 121.38, 109.20, 52.37, 51.83, 42.08. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$431.1877, found 431.1878.

White solid, (S)-N-(2-phenyl-1-(3-phenylpyridin-2-yl)ethyl)-2-(1H-pyrazol-1-yl)acetamide (11). Yield 58%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{dd}, \mathrm{J}=4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52$

- $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, \mathrm{J}=13.2,6.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{p}, \mathrm{J}=3.6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.87(\mathrm{~m}, 5 \mathrm{H}), 6.56-6.49(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ $(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.23,156.22,148.14,141.02,137.86,136.91,132.23,130.92,129.39,129.09,128.65,128.51$, 128.11, 127.75, 126.33, 122.26, 106.73, 55.23, 51.88, 42.34. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-}$381.1721, found 381.1725.

White solid, (S)-N-(1-(3-(3-cyanophenyl)pyridin-2-yl)-2-phenylethyl)-2-(2-methyl-1H-indol-3yl)acetamide (12). Yield $44 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{dd}, J=4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (s, 1H), $7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=30.9,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ $(\mathrm{dt}, J=17.8,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.02(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{q}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 171.22,156.77,136.47,135.51,133.76,133.42,132.68,131.50,129.30,129.14,128.53$, $128.48,126.90,122.75,121.57,119.82,118.45,118.08,112.78,110.51,104.94,52.08,42.36$, 32.53, 11.94. HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{+} 471.2179$, found 471.2180.

White solid, (S)-N-(1-(3-(4-chlorophenyl)pyridin-2-yl)-2-phenylethyl)-2-(1H-indol-3yl)acetamide (13). Yield 88%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48-8.40(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=$ $16.3,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{dt}, J=10.1,3.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.95$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54-6.47(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, $2 \mathrm{H}), 2.89-2.81(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.05,156.81,147.26,138.90,136.68$, $136.58,135.97,134.23,130.61,129.32,128.72,128.28,127.29,126.50,123.88,122.59,122.37$, $119.83,118.96,111.39,109.04,51.86,42.16,33.67$ (one carbon merging). HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{-} 464.1535$, found 464.1535 .

White solid, (S)-N-(1-(3-(4-chlorophenyl)pyridin-2-yl)-2-phenylethyl)-2-(5-methoxy-1H-indol-3yl)acetamide (14). Yield 83\%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}$, $1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dt}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H})$, $7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dq}, J=8.7,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.42,156.54,154.33,136.29,134.60$, $131.59,130.60,129.19,128.83,128.35,127.67,126.63,124.82,123.05,112.85,112.18,108.64$, $100.39,55.94,51.90,41.89,33.70$ (four carbons are too short to pick between $147-134 \mathrm{ppm}$). HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{-} 494.1641$, found 494.1640.

White solid, (S)-N-(1-(3-(4-chlorophenyl)pyridin-2-yl)-2-phenylethyl)-2-(5-hydroxy-1H-indol-3yl)acetamide (15). Yield 70\%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}$, $1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=16.3,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=17.4,9.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J$ $=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.81,156.58,150.47,147.10,139.28,136.84$, $136.51,135.79,134.21,131.50,130.60,129.29,128.68,128.32,128.02,126.53,124.83,122.84$, $112.59,112.11,108.01,103.43,52.08,41.90,33.57$. HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{-} 480.1484$, found 480.1486 .

White solid, (S)-N-(1-(3-(4-chlorophenyl)pyridin-2-yl)-2-phenylethyl)-2-(1-ethyl-1H-indol-3yl)acetamide (16). Yield 79\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32$ (dd, $J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 $(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.02(\mathrm{~m}, 6 \mathrm{H}), 6.92(\mathrm{dddd}, J=8.0,5.4,2.8$, $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.44-6.37(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{td}, J=8.1$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{dd}, J=7.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.01,156.88,147.39,138.68,136.80,136.51$,
136.27, 136.08, 134.15, 130.61, 129.33, 128.70, 128.22, 127.93, 126.58, 126.43, 122.47, 121.84, 119.33, 119.21, 109.47, 107.72, 51.78, 42.15, 41.01, 33.62, 15.60. HRMS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{-}$492.1848, found 492.1843.

White solid, (S)-N-(1-(3-(4-chlorophenyl)pyridin-2-yl)-2-phenylethyl)-2-(1-ethyl-5-methoxy-1H-indol-3-yl)acetamide (17). Yield 68\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45$ (dd, $J=4.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 6 \mathrm{H}), 6.87$ (dd, $J=5.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.49(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{td}, J=8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.19,156.86,154.12,136.71,134.20,131.58,130.62,129.28,128.71,128.23$, $128.18,127.13,126.45,122.54,112.10,110.33,107.15,100.64,55.96,51.86,42.11,41.18,33.67$, 15.65 (four carbons are too short to pick between $148-135 \mathrm{ppm}$). HRMS (ESI) m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{-}$522.1954, found 522.1954.

White solid, (S)-N-(1-(3-(4-bromophenyl)pyridin-2-yl)-2-phenylethyl)-2-(5-methoxy-1H-indol-3yl)acetamide (18). Yield 40%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{dd}, J=5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ $(\mathrm{s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 1 \mathrm{H})$,
$6.98-6.77(\mathrm{~m}, 7 \mathrm{H}), 6.50(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}$, 2H), $2.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.32,156.65,154.40,137.28$, $136.41,134.53,131.57,130.63,129.64,129.24,128.82,128.34,128.04,127.71,126.61,124.72$, $122.92,112.96,112.16,108.84,100.42,55.94,51.90,41.95,33.72$ (one carbon merging).

White solid, (S)-N-(1-(3-(4-bromophenyl)pyridin-2-yl)-2-phenylethyl)-2-(1-ethyl-1H-indol-3yl)acetamide (19). Yield 35%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{dd}, J=23.0,8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.13,156.85,136.71,136.28,134.29,130.63,129.82,129.33,129.18,128.75,128.50$, $128.27,127.94,127.17,126.65,126.49,122.62,121.83,119.34,119.23,109.48,107.69,51.80$, 42.09, 41.03, 33.62, 15.61.

Scheme S3. Synthesis of intermediates 39-41 and compounds 20-25.

Reagents and conditions: k) glyoxal, $\mathrm{NH}_{3}(\mathrm{~g}), \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}-\mathrm{rt}, 4$ days; 1) boronic acid, $\mathrm{Cu}(\mathrm{OAc})_{2}$, DIPEA, DCM, $4 \AA$ MS, rt, 4 days; m) TFA, DCM, rt, $12 \mathrm{~h} ; \mathrm{n}$) acid, HATU, DIPEA, DMF, rt

Synthesis of intermediate 39: To a solution of N-Boc- L-phenylalaninal 38 ($1.0 \mathrm{gm}, 1$ equiv.) in $\mathrm{MeOH}(10 \mathrm{~mL})$ in a microwave vial, glyoxal (1.0 equiv.) was added and the mixture was bubbled with ammonia gas at $-50^{\circ} \mathrm{C}$ for an hour. One the reaction turned turbid, the reaction mixture was warmed to room temperature slowly and stirred for 4 days. Upon completion, indicated by TLC, gas build-up was slowly removed by needle piercing. The reaction mixture was evaporated to dryness, diluted with water and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by Combi-flash on silica gel using 60-100\% EtOAc/hexane to get the desired cyclized intermediate 39 as white solid. Precaution needed to be taken during column as the product in UV-inactive.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.70(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{qd}, J=7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.25(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.34,148.60,137.38,129.37,128.67,128.63,126.84,80.27,50.60,39.98,28.44$.

Synthesis of intermediate 40: To a solution of cyclized intermediate 39 ($0.1 \mathrm{gm}, 1$ equiv.) in dry DCM (10 mL), corresponding boronic acid (2.0 equiv.), $\mathrm{Cu}(\mathrm{OAc})_{2}$ (1.0 equiv.), DIPEA (3.0 equiv.) and $4 \AA$ MS (0.1 gm) were added and the mixture was stirred at room temperature under atmospheric oxygen for 4 days. Upon completion, indicated by TLC, the reaction mixture was filtered through short celite bed and evaporated to dryness. The crude product was purified by

Combi-flash on silica gel using 40-50\% EtOAc/hexane to get the desired intermediate $\mathbf{4 0}$ as white solid.

Synthesis of intermediate 41: To a solution of intermediate 40 ($0.1 \mathrm{gm}, 1$ equiv.) in DCM (10 mL), trifluoroacetic acid (10.0 equiv.) was added and the mixture was stirred at room temperature for 12 hours. Upon completion, indicated by TLC, the reaction mixture evaporated to dryness and used in for next step without further purification.

Synthesis of compounds 20-25: To a solution of amine trifluoroacetic acid salt 41 ($0.1 \mathrm{gm}, 1$ equiv.) in DMF (1 mL) HATU (1.2 equiv.), DIPEA (2.0 equiv.) and desired acids (1.1 equiv.) were added and the mixture was stirred at room temperature for 12 hours. Upon completion, $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ was added and the reaction mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by Combi-flash on silica gel using 80-100\% EtOAc/hexane.

White solid, (S)-2-(2-methyl-1H-indol-3-yl)-N-(2-phenyl-1-(1-phenyl-1H-imidazol-2yl)ethyl)acetamide (20). Yield 43\%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75$ ($\mathrm{s}, 1 \mathrm{H}$), $7.40(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{tt}, \mathrm{J}=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}=8.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ $-6.99(\mathrm{~m}, 8 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.71-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{td}, \mathrm{J}=9.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}$, $2 \mathrm{H}), 3.04(\mathrm{dd}, \mathrm{J}=12.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, \mathrm{J}=12.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.24,147.79,136.43,136.19,135.58,133.58,129.5,129.4,129.0,128.9,128.5$,
$128.4,126.75,126.19,121.45,121.00,119.70,117.93,110.60,104.52,47.25,41.94,32.36,11.79$. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 435.2179$, found 435.2182.

White solid, (S)-N-(1-(1-(4-cyanophenyl)-1H-imidazol-2-yl)-2-phenylethyl)-2-(2-methyl-1H-indol-3-yl)acetamide (21). Yield 51\%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.01(\mathrm{~m}, 6 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{ddd}, \mathrm{J}=9.7,8.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}$ $=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.35, 147.77, $140.18,136.37,135.57,133.6,133.5,133.30,129.26,128.5,128.4,128.36,126.93,121.67$, $120.25,119.88,117.9,117.8,112.51,110.68,104.31,47.50,42.23,32.32,11.80$. HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 460.2132$, found 460.2133.

Brown solid, (S)-N-(1-(1-(4-(1H-tetrazol-5-yl)phenyl)-1H-imidazol-2-yl)-2-phenylethyl)-2-(2-methyl-1H-indol-3-yl)acetamide (22). Yield 65\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.94$ (dd, $J=8.6$, $3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-6.84(\mathrm{~m}, 11 \mathrm{H}), 6.81-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.92-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD) $\delta 173.64,148.35,138.34,136.94,136.44,134.09,129.61,129.05$,
$128.99,128.38,127.52,127.43126 .26,122.25,121.05,119.22,117.81,110.80,104.02,48.47$, 40.86, 31.71, 10.81. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 503.2302$, found 503.2298 .

Brown solid, (S)-N-(1-(1-(4-chlorophenyl)-1H-imidazol-2-yl)-2-phenylethyl)-2-(5-methoxy-1H-indol-3-yl)acetamide (23). Yield 46\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.47$ - 7.39 (m, $1 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ $(\mathrm{dt}, J=8.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.68(\mathrm{~m}, 3 \mathrm{H}), 6.70-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{ddd}, J=10.4,8.2,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{ddd}, J=13.5,10.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (ddd, $J=12.8,5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.80, 154.37, 148.30, 136.01, 135.47, $134.08,131.69,129.68,129.29,128.64,127.66,127.56,127.02,125.35,124.93,120.99,112.77$, $112.30,108.18,100.41,56.05,47.53,41.65,33.49$. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O}_{2}[\mathrm{M}$ $+\mathrm{H}]^{-}$483.1593, found 483.1598 .

Brown solid, (S)-N-(1-(1-(4-bromophenyl)-1H-imidazol-2-yl)-2-phenylethyl)-2-(5-methoxy-1H-indol-3-yl)acetamide (24). Yield $42 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.25(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.04$ $(\mathrm{m}, 3 \mathrm{H}), 6.83(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 1 \mathrm{H})$,
$3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=13.1$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.04,154.37,149.03,134.95,133.16,132.49$, $131.53,129.18,129.11,127.79,127.63,127.59,125.53,125.28,121.53,119.60,112.60,112.22$, 108.14, 100.68, 56.24, 47.89, 40.50, 33.38. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BrN}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{-}$ 527.1088, found 527.1092.

Brown solid, (S)-N-(1-(1-(4-iodophenyl)-1H-imidazol-2-yl)-2-phenylethyl)-2-(5-methoxy-1H-indol-3-yl)acetamide (25). Yield 52\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 3 \mathrm{H})$, $6.83(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 5.17(\mathrm{ddd}, J=11.0,8.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{t}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.09-2.94(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.33,154.38,148.55,138.90$, $135.53,134.34,131.60,129.24,128.84,127.82,127.73,127.28,125.17,122.71,121.12,112.72$, $112.25,108.24,100.54,95.91,56.14,47.66,41.12,33.45$. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{IN}_{4} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{-}$575.0949, found 575.0945.

NMR Spectra of compounds 1-25.

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60		40	30	20	
										f1 (ppm)	90	80	70	60	50	40	30	20	10

S47
Ш.

	1		1		1														
30	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

