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Abstract: Porcine epidemic diarrhea virus (PEDV) causes continuous, significant damage to the swine
industry worldwide. By RT-PCR-based methods, this study demonstrated the ongoing presence of
PEDV in pigs of all ages in Korea at the average detection rate of 9.92%. By the application of Bayesian
phylogenetic analysis, it was found that the nucleocapsid (N) gene of PEDV could evolve at similar rates
to the spike (S) gene at the order of 10−4 substitutions/site/year. Based on branching patterns of PEDV
strains, three main N gene-base genogroups (N1, N2, and N3) and two sub-genogroups (N3a, N3b) were
proposed in this study. By analyzing the antigenic index, possible antigenic differences also emerged
in both the spike and nucleocapsid proteins between the three genogroups. The antigenic indexes of
genogroup N3 strains were significantly lower compared with those of genogroups N1 and N2 strains in
the B-cell epitope of the nucleocapsid protein. Similarly, significantly lower antigenic indexes in some
parts of the B-cell epitope sequences of the spike protein (COE, S1D, and 2C10) were also identified.
PEDV mutants derived from genetic mutations of the S and N genes may cause severe damage to swine
farms by evading established host immunities.
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1. Introduction

Porcine epidemic diarrhea virus (PEDV) is an enveloped, single-stranded RNA virus belonging to
the family Coronaviridae, subfamily Coronavirinae, genus Alphacoronavirus, and subgenus Pedacovirus.
PEDV is one of the major pathogens causing acute enteritis disease, which is characterized by vomiting
and watery diarrhea and commonly leads to high rates of mortality and morbidity in suckling
piglets [1]. The disease was first reported in the UK in 1971, and the prototype virus—designated
as PEDV CV777—was subsequently identified in Belgium [2]. Since the 1980s, PEDV has been
widespread throughout Asia, where it has been regarded as an endemic disease for many years [3,4].
In the late 2010s, new and highly pathogenic strains were reported in China. These new strains were
pathologically more critical than the classic strains, resulting in morbidities of 80–100% and mortality
rates of 50–100% in infected suckling piglets [5]. In May 2013, these new highly pathogenic strains
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moved from China to the USA and rapidly spread across the country, massively impacting the swine
industry; they affected more than 4000 farms, accounting for the death of more than 7 million piglets
within the year [6,7]. Subsequently, these strains have become pandemic [8].

PEDV has an approximately 28 kb long genome and consists of seven open reading frames (ORF),
encoding non-structural or structural proteins [9]. ORF1ab and ORF3 genes encode non-structural
proteins. ORF1a codes for the large polyprotein PP1a, while ORF1b is always expressed with PP1a as
the fusion protein PP1a/b through ribosomal frameshifting. PP1a and PP1a/b are further processed
into 16 non-structural proteins (nsp1 to nsp16). ORF3 codes an accessory protein that is likely to be an
additional non-structural protein [10]. The envelope (E), membrane (M), spike (S), and nucleocapsid
(N) genes encode four major structural proteins [11]. The N protein, which is the most abundant protein
in the virus particle, provides the structural basis for the helical nucleocapsid surrounding the virus
genome [12,13]. The M and E proteins form a viral envelope by assembly. The M protein is the most
abundant component, and the E protein is less abundant in the viral envelope. [14]. The S protein is
very exposed and forms large petal-shaped spikes on the surface of the virus [15].

Among these structural proteins, the S protein plays important roles in virus infection and the
induction of neutralizing antibodies [16] and shows substantial genetic diversity [11]. As a result of
these features, genetic analyses based on the S gene have been commonly used to investigate PEDV
evolution [7,8,17]. The PEDV has diverged into several subgroups based on the genetic diversification
of the S gene. So far, two genotypes (G1 and G2) have been identified by S gene phylogenetic analysis.
Each genogroup can be further divided into two subtypes, G1a/b and G2a/b, respectively [18,19].
Recently, a third subtype (G2c) was identified within the G2 genogroup [8]. The N protein is involved
in several biological and immunological activities of the virus, including viral nucleolar localization,
host cycle ER stress, S-phase prolongation, the inhibition of interferon-β production [20–22], and the
induction of abundant antibodies [12,13]. Despite the significant features of the N protein, there has
been less investigation on the N protein compared to the S protein. In order to better understand the
evolutionary aspects of PEDV, this study applied multiple bioinformatic tools to investigate the genetic
diversity of PEDV.

2. Materials and Methods

2.1. Sample Collection, PEDV Detection by PCR, and Complete Sequencing

Six hundred and seventy-two fecal samples were collected from 83 farms in 2017, and 235 fecal
samples were collected from 33 farms in 2018. Rectal swabs were randomly collected from pigs
of all stages (suckling, weaned, growing, finishing, gilt, sow) in swine farms dispersed throughout
9 provinces of South Korea. RNA extraction from the samples was performed using an RNA/DNA
extraction kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions, and the
extracted RNA samples were stored at −70 ◦C. The RNA was converted into cDNA with a commercial
kit (RNA to cDNA EcoDry Premix, Clontech, Otsu, Japan), following the manufacturer’s protocol.
PEDV in the collected fecal samples was detected by PEDV-PCR [4]. Commercial PCR kits (Median
diagnostics, Chuncheon-si„ Korea) were used to detect Porcine reproductive and respiratory syndrome
virus (cat. NS-PRR-11), Porcine parvovirus (cat. NS-ABO-11), and Japanese encephalitis virus (cat.
NS-ABO-12). The other three enteric pathogens were detected by specific primers and PCR conditions
reported previously, such as Porcine deltacoronavirus [23], Transmissible gastroenteritis virus, and
Porcine group A rotavirus [24].

Full-length genome sequencing was conducted with 26 overlapping primer pairs using positive
samples from swine farms that were severely damaged by porcine epidemic diarrhea [25], and 7 strains
(Y178, S6, S10, S12, S14, S97 and S100) were fully sequenced. Information relating to the 7 strains is
provided in Table 1. The full-length genome sequences of the 7 strains were registered in GenBank
(accession numbers MH891584–MH891590).
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Table 1. Information of PEDV positive samples in this study.

Sample
Number

Sample Collection * Farm Information Other Pathogens ***
(TGEV, RotaV, PDCoV,

PRRSV, PPV, JEV)
GenBank

Stage Collected
Date Province Farm Name No. of Sows Vaccinated **

Y178 Suckling 21-Feb-2017 Gyeongnam HA 1500 PRRSV (MLV), PPV
(VLP) Negative MH891588

S6 Suckling 09-Jan-2018 Chungnam DB 200 PRRSV (MLV), PPV
(VLP) Negative MH891589

S10 Suckling 06-Feb-2018 Gyeonggido WD 200
PPV (VLP), PRRSV

(MLV), PEDV
(killed)

Negative MH891590

S12 Suckling 06-Feb-2018 Gyeonggido WT 200
PPV (VLP), PRRSV

(MLV), PEDV
(killed)

Negative MH891584

S14 Suckling 07-Feb-2018 Gyeonggido SW 400 PPV (VLP), PRRSV
(MLV), JEV (MLV) Negative MH891585

S97 Suckling 17-Apr-2018 Gyeonggido NG 400
PPV (VLP), PRRSV

(MLV), PEDV
(Killed)

Negative MH891586

S100 Suckling 19-Apr-2018 Gyeonggido YG 700
PPV (VLP), PRRSV
(MLV), JEV (MLV),

PEDV (Killed)
Negative MH891587

* Suckling piglets in the investigated farms suffered from severe watery diarrhea and high mortality. ** MLV:
modified live vaccine, VLP: virus-like particle. *** TGEV (Transmissible gastroenteritis virus), RotaV (Rotavirus group A),
PDCoV (Porcine deltacoronavirus), PEDV (Porcine epidemic diarrhea virus), PRRSV (Porcine reproductive and respiratory
syndrome virus), PPV (Porcine parvovirus), JEV (Japanese encephalitis virus).

2.2. Genetic Analysis of Recombination

For the genetic analyses, 72 other previously registered complete genome sequences were retrieved
from GenBank, and the sequences originated from Asia (China, Korea, Japan), America (USA),
and Europe (Germany, Belgium) from 1978 to 2018. RDP v4.51 program [26] with 5 default algorithms
(RDP, GENECONV, MaxChi, SiScan, and Bootscan) was applied to identify recombinants in the
alignment of the S and N genes. The general options were “sequences are linear”, “highest acceptable
p-value = 0.05”, and “Bonferroni correction” = true. Upon detection, new recombination-free alignments
were created by the option of “save alignment with recombinant regions removed”. Four datasets with
identical number of sequences (n = 79, seven obtained in this study) were generated for subsequent
analyses: complete S gene (D1), S gene without recombinant regions (D2), complete N gene (D3), and N
gene without recombinant regions (D4).

2.3. Bayesian Phylogenetic Analysis

BEAST package v2.6.1 [27], which is available at the CIPRES Science Gateway [28], was used
to infer the phylogenetic relationships between sequences and co-estimate the substitution rates
from the above-mentioned D1–D4 datasets. The genetic classification of PEDV based on the S gene
followed previous publication [8]. For the model of nucleotide substitution, bModelTest tool [29]
implemented in BEAST 2 was selected, which helps infer the most appropriate substitution model.
For the molecular clock model, four models were specified: strict clock, uncorrelated lognormal and
exponential relaxed-clock [30], and random local clock [31]. For tree prior, three coalescent models
implemented in BEAST 2 were tested, including coalescent constant population, coalescent exponential
population, and coalescent Bayesian skyline plot [32]. Each analysis was run for 100 million chains,
sampling every 10,000 generations. The output log files were analyzed in Tracer v1.7.1 [33] to assess the
convergence (effective sample size > 100). Path sampling analyses [34] were also performed to select the
best fitting molecular clock and tree prior models for each dataset. For that analysis, the number of path
steps was 100, and the length of each chain was one million iterations. The nucleotide substitution rates
and phylogenetic tree of each D1–D4 dataset were inferred from the data best-fit combining models
(supplementary material Tables S1 and S2). The phylogenic trees were summarized with TreeAnnotator
v2.6.1 to produce the maximum clade credibility tree, which was displayed using FigTree v1.4.3.
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2.4. p-Distance Analysis

Pairwise genetic distances (p-distances) within each dataset were calculated using MEGA V. 7
software [35]. The option for gaps/missing data treatment was specified as “partial deletion”. The obtained
results were displayed in a frequency distribution histogram of p-distance. Basically, a lower genetic
relationship between two sequences indicated a higher p-distance, and well-bounded areas with peaks in
the histogram indicated the presence of different genetic clusters [36].

2.5. Inferring Ancestral Amino Acid Changes

The Baseml program implemented in package PAML 4.9j [37] was used to reconstruct amino acid
changes on the evolutionary path of PEDV based on the N gene. The input tree topology for that
analysis was the maximum clade credibility tree inferred by BEAST 2 under the data best-fit combining
models. Nonsynonymous substitutions that occurred on the given branches of a phylogeny were
annotated by the treesub program [38].

2.6. Amino Acids and Antigenic Index Analysis of N Gene

Amino acid sequences deduced from nucleotide sequences of the N gene were aligned and
comparatively analyzed to investigate the nonsynonymous changes according to genetically distinct
clusters. Subsequently, antigenic index analysis of the complete amino acid sequences of the N gene
was performed to evaluate the possible antigenic variation of N proteins. The antigenic index of each
amino acid was calculated by the Jameson–Wolf method [39], and the calculated indexes of each strain
were compared.

2.7. Antigenic Index Analysis of B-Cell Epitopes in Korean PEDV Strains

Antigenic index analyses were performed to evaluate the antigenic variation of S proteins within
the Korean PEDV strains. The antigenic index of each amino acid was calculated by the Jameson–Wolf
method for 3 previously identified S protein-neutralizing epitopes, COE (within the S1 B region) [40],
S1D [41], and 2C10 [42]. Subsequently, the calculated indexes of the Korean strains were compared.

3. Results

3.1. The Detection of PEDV in Korea from 2017 to 2018

The detection rate of PEDV from 2017 to 2018 was 9.92% (90/907). Specifically, the positive rates
in 2017 and 2018 were 8.63% (58/672) and 13.62% (32/235), respectively. The positive rate in 2018
had somewhat increased compared with that in 2017. From the detection rates of each growth stage,
the highest rate was seen in the suckling stage (Table 2). Geographically, the province with a higher
concentration of swine farms showed higher positive samples of PEDV (Figure 1).

Table 2. Detection results of PEDV according to each stage from 2017 to 2018.

2017 Year/Stage * Suckling Weaned Growing Finishing Gilt Sow Total

Number of samples 325 162 42 37 43 63 672
Positive samples 33 15 2 3 2 3 58

% 10.15 9.26 4.76 8.11 4.65 4.76 8.63
2018 year/stage * Suckling Weaned Grower Finisher Gilt Sow Total

Number of samples 76 58 34 20 18 29 235
Positive samples 16 8 2 2 2 2 32

% 21.05 13.79 5.88 10.00 11.11 6.90 13.62
Total/stage * Suckling Weaned Grower Finisher Gilt Sow Total

Number of samples 401 220 76 57 61 92 907
Positive samples 49 23 4 5 4 5 90

% 12.22 10.45 5.26 8.77 6.56 5.43 9.92

* Samples were sorted into 6 stages: female (gilt and sow), suckling (<21 d), weaned (21–60 d), growing (60–90 d);
and finishing (≥90 d).
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(G1a, G1b) and (G2c, (G2a, G2b)). The D2 dataset contains the S gene without recombinant regions 
supported for the different clusters of (G1b, G2c) and (G2b, G2a). In both datasets, histograms of 
pairwise p-distances exhibited a discrete distribution betwen sub-genogroups. That was in 
agreement with the tree topologies and posterior support values at the nodes to each sub-genogroup 
(Figure 2). In both the D1 and D2 datasets, the seven Korean strains identified in this study (S6, S10, 
S12, S14, S97, S100, and Y178) were clustered within sub-genogroup G2a. 

Figure 1. Distribution of total PEDV-positive swine farms in nine provinces of South Korea from 2017
to 2018. Marks (square, triangle, and star) indicated the locations of the swine farms. If the swine farms
were located in the adjacent spot, the number of these swine farms was indicated in parentheses below
the marks. The sample numbers (positive samples/total samples) and detection rate of each province
are indicated by black arrows. The purple circles indicate the PEDV-positive farms where seven Korean
PEDV strains sequenced in this study originated.

3.2. Phylogenetic Analysis of Global PEDV Strains

In the phylogenetic trees inferred from the D1–D2 datasets of the S gene (Figure 2, Supplementary
Figures S1 and S2), the PEDV strains were classified into five sub-genogroups (G1a, G1b, G2a, G2b,
and G2c), which were previously designated [8]. However, the relationships between sub-genogroups
differed. The D1 dataset contains the complete S gene supported for the clusters of (G1a, G1b) and (G2c,
(G2a, G2b)). The D2 dataset contains the S gene without recombinant regions supported for the different
clusters of (G1b, G2c) and (G2b, G2a). In both datasets, histograms of pairwise p-distances exhibited
a discrete distribution betwen sub-genogroups. That was in agreement with the tree topologies and
posterior support values at the nodes to each sub-genogroup (Figure 2). In both the D1 and D2 datasets,
the seven Korean strains identified in this study (S6, S10, S12, S14, S97, S100, and Y178) were clustered
within sub-genogroup G2a.Viruses 2020, 12, x FOR PEER REVIEW 6 of 13 
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regions (D1) and with the recombinant regions removed (D2). The sub-genogroups were designated
as G1a, G1b, G2a, G2b, and G2c. Each sub-genogroup was colored consistently between the D1
and D2 datasets. The inserted histograms of pairwise p-distances were between sub-genogroups
G1a–G1b, G1a–G2a, G1a–G2b, and G1a–G2c. The p-distance is calculated by dividing the number
of nucleotide differences by the total number of nucleotides compared. After removing recombinant
regions, some sequences might contain large deletions. In other words, the total number of nucleotides
became smaller. Thus, the p-distance on the right panel was larger than that on the left panel. The Korean
strains identified in this study are marked by arrows.

Supported by high posterior probability values (0.90–1), the phylogenetic trees inferred from
the D3–D4 datasets of the N gene (Figure 3, Supplementary Figures S3 and S4) suggested that the
classification of PEDV strains into four S gene-based sub-genogroups G1a, G1b, G2b, G2a/G2c was more
reliable. In both datasets, it was observed that the S gene-based G2a and G2c were not monophyletic
(pink branches). Differing from the S gene-based phylogenies (Figure 2), the Ngene-based trees with
or without the elimination of recombinant regions had identical topologies of (G1a, (G1b, (G2b,
G2a/G2c))). As the result, this study proposed an N-based genotyping of PEDV as N1, N2, N3b and
N3a, which were equivalent to the S-based genotyping of G1a, G1b, G2b, and G2a/G2c, respectively.
That classification was also supported by a clear bimodal distribution of genetic distance between the
proposed genogroups N1–N2 and N1–N3a/N3b (inserted histograms, Figure 3). According to that
scheme, the seven Korean strains identified in this study (S6, S10, S12, S14, S97, S100, and Y178) were
within sub-genogroup N3a.Viruses 2020, 12, x FOR PEER REVIEW 7 of 13 
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Figure 3. The time-scale maximum clade credibility phylogeny of global PEDV strains based on the
nucleocapsid (N) gene. The phylogenetic trees were constructed based on the N gene without removing
the recombinant regions (D3) and with the recombinant regions removed (D4). The spike (S) gene-based
sub-genogroups were designated as G1a, G1b, G2a, G2b, and G2c. Each sub-genogroup was colored
consistently with the D1–D4 datasets. The inserted panels are histograms of pairwise p-distances
between geno-, sub-genogroups N1–N2 and N1–N3a/N3b. The Korean strains identified in this study
are marked by arrows.

3.3. Evolutionary Rates of PEDV Genes

The estimated mean nucleotide substitutions of the S and N genes were at the order of 10−4

nucleotide substitutions/site/year (Table 3). The substitution rates of the complete S and N genes were not
significantly different, as the 95% highest posterior density (HPD) overlapped (Table 3). Inferring from
two datasets where the recombinant regions were removed, the S gene showed substantially higher
substitution rates than the N gene because of non-overlapping 95% HPD (6.18 × 10−4–10.02 × 10−4

versus 2.12 × 10−4–4.52 × 10−4, respectively).
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Table 3. Estimated nucleotide substitution rates for the S and N genes.

Dataset Data Best Fit
Molecular Clock *

Data Best Fit
Tree Prior

Geometric Mean
Rate (×10−4) **

95% HPD Interval
(×10−4) ***

D1: Complete S gene RLC Constant 5.23 3.81–6.53
D2: S gene without recombinant regions RLC Exponential 7.98 6.18–10.02

D3: Complete N gene RLC Constant 6.58 4.34–9.03
D4: N gene without recombinant regions RLC BSP 3.24 2.12–4.52

* Random local clock model (RLC). ** The geometric mean nucleotide substitution rate (substitutions/site/year)
was inferred from the data that best fit the molecular clock and coalescent tree prior of constant population size,
exponential population size, and Bayesian skyline plot (BSP). *** Highest posterior density (HPD).

3.4. Amino Acids and Antigenic Index Analysis of N Gene Sequences

Several consistent changes allowed the differentiation of the genogroups and sub-genogroups
based on the N gene (Figure 4, Supplementary Figure S5). The complete list of nonsynonymous
changes was given in the Supplementary Figure S5. Genogroup N1 differed from genogroups N2 and
N3 by 7 nonsynonymous substitutions (A84G, K205N, M216V, P381L, Q395L, N398H, and V408A).
Unique changes leading to branches (N2, (N3a, N3b)) were A142T, H242L, Q397L, and E400D. Genogroup
N2 was further characterized by two nonsynonymous substitutions (A145T, K380I). Finally, the main
branch leading to sub-genogroup N3a displayed five changes (K123N, M216V, R241K, K252R, and N255S).
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In the antigenic index analysis of N gene sequences, significant reductions were found in amino
acid positions 122–126 according to the genogroups (Figure 5). Genogroup N3 exhibited lower antigenic
indexes, below 0.5 (the cut-off value), compared with genogroups N1 and N2. These amino acid
sequences were located in a B-cell epitope sequence of the N protein, which is one of the PEDV-specific
epitopes (amino acids 18–133 and 252–262) previously identified [43].
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Figure 5. Antigenic index analysis of N gene sequences in PEDV strains. Genogroup N3 exhibited lower
antigenic indexes, below 0.5 (cut-off value), compared with genogroups N1 and N2. This region is in a
B-cell epitope sequence of the N protein, which is one of the PEDV-specific epitopes (amino acids 18–133
and 252–262).

3.5. Antigenic Index Analysis of S Protein B-Cell Epitopes in Korean PEDV Strains

When analyzing the Korean PEDV strains—newly identified in this study—based on the three
major B-cell epitope sequences of the S protein (COE, S1D, and 2C10), the six strains exhibited
significantly lower antigenic indexes in some parts of the B-cell epitope sequences (Figure 6). The strains
S6, S10, S12, and S100 exhibited lower antigenic indexes, below the cut-off value of 0.5, in amino acid
positions 623–627 of the COE region, which contained the nonsynonymous change K623N. The S97
strain exhibited lower antigenic indexes, below the cut-off value of 0.5, in amino acid positions 634–638
in the COE region, and the nonsynonymous change E635V was observed in this region. The Y178 strain
also showed antigenic indexes below 0.5 at amino acids 764–771 of the S1D region, which contained
the nonsynonymous change S768F. It is likely that each of the mentioned nonsynonymous changes
affected the antigenic indexes of the adjacent regions.
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S12, and S100 exhibited lower antigenic indexes, below the cut-off value of 0.5, at amino acids 623–627
of the COE region. Strain S97 exhibited reduced antigenic indexes, below 0.5, at amino acids 634–638 of
the COE region. Strain Y178 exhibited reduced antigenic indexes, below 0.5, at amino acids 764–771 in
the S1D region.

4. Discussion

First of all, this study reflected the ongoing circulation of PEDV in Korea at about 10% (Table 1)
and its wide distribution (Figure 1). At the same time, obtaining genomic sequences of PEDV from
field samples provided good opportunity for studying the genetic evolution of the virus. As a result,
this study applied multiple bioinformatics tools to investigate the genetic diversity of PEDV. Based on
phylogenetic analysis of the complete S gene or S gene excluding recombinant regions, global PEDV
strains (Figure 2) can be classified into two genogroups, and each genogroup may be further subdivided
into two (G1a and G1b) and three (G2a, G2b, and G2c) sub-genogroups. This result was consistent
with that of Guo et al. [8]. Additionally, Guo et al. reported that all these different subgroups existed in
Korea, with the most prevalent subgroup being G2a, when they analyzed the Korean PEDV strains
identified prior to 2016. Similar to the previous data, all the Korean field strains identified from 2017 to
2018 in this study were included in subgroup G2a, indicating that the most prevalent Korean subgroup
has not changed since 2016.

Genogroups G1 and G2 are known to have different S protein neutralization activities [16].
However, differences within the genogroups have not been investigated. The six Korean strains
(S6, S10, S12, S97, S100, and Y178) had significantly reduced antigenic indexes compared with other
Korean strains in some parts of the COE [40] and S1D [41], which encode the B-cell epitopes of the S
protein. These antigenic index reductions may induce somewhat different S protein antigenicities, even
within the same genogroup. In fact, strains S10, S12, S97, and S100 originated from swine farms that
had suckling piglet mortalities of almost 100%. These swine farms had been regularly using killed
vaccines containing the new genogroup (G2) PEDV strain but were seriously damaged by porcine
epidemic diarrhea.

In the literature, the N gene had been used to infer the phylogenetic relationships of PEDV
strains [44,45]. It was noteworthy that the N gene showed a similar evolutionary rate to the S gene in this
study. This high evolutionary rate implies that the N gene, as well as the S gene, is likely to have high
genetic diversity; accordingly, several sub-genogroups could have diverged. Comparing to the S-based
phylogenetic topology, the classical strains (G1 strains) presented the same topology in the N-based
and S-based analysis. However, there were some differences in the classification of subgroups on the
new genotype strains (G2 strains). The N3 genogroup consisting of the G2 strains was divided into
only 2 subgroups (N3a and N3b) not following the S-based subgroups (G2a, G2b and G2c). Specifically,
the N3b strains were consistent with the G2b strains, but the G2a and G2c strains were grouped into
the same subgroup, N3a, in the N-based topology. This classification of the three genogroups (N1,
N2, and N3) was also supported by the consistent variation in the antigenic indexes depending on the
genogroups. The number of antigenic indexes of the N3 strains significantly decreased compared to
those of the N1 and N2 strains within amino acids 122–126, which code for the B-cell epitope of the N
protein [43].

The PEDV N protein has an important immunological aspect. Abundant antibodies against the
N protein are induced at the early stages of PEDV infection [12,13]. Furthermore, the N protein is
considered to play an important role in inducing cell-mediated immunity [13]. As a result of these
features, the N protein is commonly used as a target for diagnosis and vaccine development [10,46].
As mentioned above, several geno- and sub-genogroups based on the N gene were identified in this
study. This genetic diversity may change their antigenicities according to their geno- or sub-genogroup
(Figure 5). In the immunological diagnosis of PEDV, commercial PEDV ELISA kits have been showing
poor performance, and the results of neutralizing assays using cell culture sometimes mismatch with



Viruses 2020, 12, 790 10 of 12

those of the ELISA assays. In fact, Chang et al. recently reported that the antibodies induced by the G2b
PEDV strain poorly reacted with a commercial N-based ELISA kit that showed a sensitivity of 37% [47],
which may be the result of antigenicity differences between the genogroups. However, further study is
required to validate this hypothesis. Indeed, if there are antigenic differences between the genogroups,
a combination of N proteins derived from both genogroups would be required for the accurate
immunological diagnosis of PEDV.

5. Conclusions

Overall, this study revealed that PEDV displayed genetic diversity in both the S and N genes, which
resulted in the divergence into different sub-genogroups and altered antigenic indexes. Such PEDV
mutants derived from genetic mutations of the S and N genes may cause severe damage to swine
farms because of their ability to evade the unprepared host immune systems.
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