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Abstract: Multiple sclerosis (MS) is an immune inflammatory disease, where the underlying etiological
cause remains elusive. Multiple triggering factors have been suggested, including environmental,
genetic and gender components. However, underlying infectious triggers to the disease are also
suspected. There is an increasing abundance of evidence supporting a viral etiology to MS, including
the efficacy of interferon therapy and over-detection of viral antibodies and nucleic acids when
compared with healthy patients. Several viruses have been proposed as potential triggering
agents, including Epstein–Barr virus, human herpesvirus 6, varicella–zoster virus, cytomegalovirus,
John Cunningham virus and human endogenous retroviruses. These viruses are all near ubiquitous
and have a high prevalence in adult populations (or in the case of the retroviruses are actually part of
the genome). They can establish lifelong infections with periods of reactivation, which may be linked
to the relapsing nature of MS. In this review, the evidence for a role for viral infection in MS will be
discussed with an emphasis on immune system activation related to MS disease pathogenesis.
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1. Introduction

Multiple sclerosis (MS) is a severely debilitating progressive inflammatory disease of the central
nervous system (CNS) [1]. The basic pathology is thought to be auto-immune mediated damage to
the myelin sheaths of the central nerves [2]. This is supported by the finding of plaques, areas of
the damage, particularly within the white matter around the lateral ventricles of the brain and optic
nerves [3,4]. Demyelination of the white mater in MS is routinely demonstrated by conventional MRI
techniques [5]; however, lesions in the grey matter are also demonstrated [6]. It appears that the degree
of cortical demyelization reflects the clinical progression of MS with demyelination of the grey matter
associated with the progressive form of the disease along with neuronal loss, while myelin destruction
is detected in relapsing–remitting MS [7,8]. Cortical lesions can also be detected at the early stages and
they correlate with the disease severity [9].

The clinical course of the disease varies greatly from relapsing to remitting, where patients have
periods of remission, to progressive forms. There are four clinical forms of MS: primary progressive
MS (PPMS), secondary progressive MS (SPMS), relapsing–remitting MS (RRMS) and progressive
relapsing (PRMS), all of which are characterized by periods of active disease with evidence of new
pathology interspersed with inactive periods [10] (Figure 1). RRMS is the most common form of the
disease, which is characterized by worsening of clinical symptoms followed by periods of partial or
complete recovery [11]. RRMS often transitions into a secondary progressive course with worsening
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and steady progression of symptoms [12], which is referred to as SPMS. A small group of patients will
develop PPMS with steady progression of neurological symptoms without periods of remission [13–15].
PRMS is somewhat similar to PPMS, but these patients have periods of recovery characterized by
concomitant progression of MS symptoms [15]. The remitting phase of the disease, where the periods
of remission are followed by worsening of symptoms, closely resembles the progression of some viral
infections, herpes viruses in particular. Although, permanent tissue destruction and loss of function
is not common for reactivation of most of the herpesviruses, neurological complications have been
shown in some chronic herpesvirus infections [16].
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Myelin is the multilamellar sheath formed around the neurons and axons by neuroglial cells 
[17]. Myelin formation is a complex process requiring expression of several myelin-specific proteins: 
myelin basic protein (MBP), myelin-associated glycoprotein and proteolipid protein [18]. 
Additionally, several minor glycoproteins are present in the myelin sheath, including myelin 
oligodendrocyte glycoprotein (MOG) (Figure 2). MOG is expressed on the surface of the myelin, 
covering the neurons and axons [19]. While the function of MOG remains largely unknown, it is 
believed that this protein serves as an adhesion molecule or cellular receptor.  

 
Figure 2. Myelin-associated glycoprotein (MOG) expression on the surface of the myelin, covering 
the axon. The myelin sheets are held together with Myelin basic protein (MBP), while MOG is located 
on the surface and exposed to the autoreactive leukocytes. 

A number of risk factors, including ethnicity (particularly the HLA loci), gender (it is more 
common in women), latitude (and therefore sunlight and vitamin D levels) and viral infections have 
been identified as risk factors of MS [2]. A variety of immune modulatory treatments are used, with 

Figure 1. Clinical presentation of multiple sclerosis (MS). Relapsing–remitting MS (RRMS)—has
worsening of clinical symptoms followed by periods of recovery; primary progressive MS (PPMS)—has
steady progression of clinical symptoms; secondary progressive MS (SPMS)—initial relapsing–remitting
course followed by steady progression of symptoms; and progressive relapsing MS (PRMS)—steady
progression of clinical symptoms with occasional relapses.

Myelin is the multilamellar sheath formed around the neurons and axons by neuroglial cells [17].
Myelin formation is a complex process requiring expression of several myelin-specific proteins: myelin
basic protein (MBP), myelin-associated glycoprotein and proteolipid protein [18]. Additionally, several
minor glycoproteins are present in the myelin sheath, including myelin oligodendrocyte glycoprotein
(MOG) (Figure 2). MOG is expressed on the surface of the myelin, covering the neurons and axons [19].
While the function of MOG remains largely unknown, it is believed that this protein serves as an
adhesion molecule or cellular receptor.

Viruses 2020, 12, x FOR PEER REVIEW 2 of 17 

 

pathology interspersed with inactive periods [10] (Figure 1). RRMS is the most common form of the 
disease, which is characterized by worsening of clinical symptoms followed by periods of partial or 
complete recovery [11]. RRMS often transitions into a secondary progressive course with worsening 
and steady progression of symptoms [12], which is referred to as SPMS. A small group of patients 
will develop PPMS with steady progression of neurological symptoms without periods of remission 
[13–15]. PRMS is somewhat similar to PPMS, but these patients have periods of recovery 
characterized by concomitant progression of MS symptoms [15]. The remitting phase of the disease, 
where the periods of remission are followed by worsening of symptoms, closely resembles the 
progression of some viral infections, herpes viruses in particular. Although, permanent tissue 
destruction and loss of function is not common for reactivation of most of the herpesviruses, 
neurological complications have been shown in some chronic herpesvirus infections [16].  

 
Figure 1. Clinical presentation of multiple sclerosis (MS). Relapsing–remitting MS (RRMS)—has 
worsening of clinical symptoms followed by periods of recovery; primary progressive MS (PPMS)—
has steady progression of clinical symptoms; secondary progressive MS (SPMS)—initial relapsing–
remitting course followed by steady progression of symptoms; and progressive relapsing MS 
(PRMS)—steady progression of clinical symptoms with occasional relapses. 

Myelin is the multilamellar sheath formed around the neurons and axons by neuroglial cells 
[17]. Myelin formation is a complex process requiring expression of several myelin-specific proteins: 
myelin basic protein (MBP), myelin-associated glycoprotein and proteolipid protein [18]. 
Additionally, several minor glycoproteins are present in the myelin sheath, including myelin 
oligodendrocyte glycoprotein (MOG) (Figure 2). MOG is expressed on the surface of the myelin, 
covering the neurons and axons [19]. While the function of MOG remains largely unknown, it is 
believed that this protein serves as an adhesion molecule or cellular receptor.  

 
Figure 2. Myelin-associated glycoprotein (MOG) expression on the surface of the myelin, covering 
the axon. The myelin sheets are held together with Myelin basic protein (MBP), while MOG is located 
on the surface and exposed to the autoreactive leukocytes. 

A number of risk factors, including ethnicity (particularly the HLA loci), gender (it is more 
common in women), latitude (and therefore sunlight and vitamin D levels) and viral infections have 
been identified as risk factors of MS [2]. A variety of immune modulatory treatments are used, with 

Figure 2. Myelin-associated glycoprotein (MOG) expression on the surface of the myelin, covering the
axon. The myelin sheets are held together with Myelin basic protein (MBP), while MOG is located on
the surface and exposed to the autoreactive leukocytes.

A number of risk factors, including ethnicity (particularly the HLA loci), gender (it is more
common in women), latitude (and therefore sunlight and vitamin D levels) and viral infections have
been identified as risk factors of MS [2]. A variety of immune modulatory treatments are used,
with none fully able to halt or reverse disease progression. Nevertheless, the effectiveness of interferon
beta (IFNβ) treatment of MS suggests that antiviral immunity plays a role in the etiology of MS, as this
cytokine has a potent anti-viral activity [20]. A role in MS pathogenesis has been suggested for many



Viruses 2020, 12, 643 3 of 17

viruses, including Epstein–Barr virus (EBV), human herpesvirus 6 (HHV-6), varicella–zoster virus
(VZV), cytomegalovirus (CMV), John Cunningham virus (JCV) and human endogenous retroviruses
(HERVs) [21–25].

The association between viral infection and MS is complex. Although belonging to different
families, these viruses have in common an ability to manipulate host gene expression, potentially
leading to immune dysregulation, myelin destruction and inflammation. These are all viruses with
either a DNA phase or DNA viruses, which can cross the blood brain barrier (BBB) and can all establish
lifelong chronic infection [26]. In this review, the role of several viruses in MS pathogenesis will
be discussed.

2. Herpesviruses

There is an established epidemiological link between herpesvirus infection status and the risk of
MS. Herpesviruses have a near ubiquitous prevalence in adult populations and are usually contracted
in early childhood with little overt disease [27]. There are several herpes virus types known to be human
pathogens: alpha, beta and gamma [28]. Members of each group, namely, alpha (varicella–zoster virus,
VZV), beta (cytomegalovirus (CMV) and human herpesvirus 6 (HHV-6)) and gamma (Epstein–Barr
virus EBV), are all suspected of having a potential role in MS. Herpesviruses can establish two
replication cycles: latency and reactivation. Herpesviruses have multiple targets, including neuronal
(alpha-herpesviruses), non-neuronal (beta and gamma herpesviruses), macrophages and B cells [29,30].
Herpesviruses targeting neurons directly or indirectly can contribute to tissue damage detected in MS.

Herpes viruses share many features in their structure, including the capsid and tegument proteins
as well as the envelope (Figure 3). Typically, a virus genome is covered by the nucleocapsid [31],
which is surrounded by the tegument protein [32,33]. The envelope containing glycoprotein spikes
wraps the virus outside [34]. The envelope of glycoproteins binds to the cell receptors and assist with
penetration of the target cell [35]. Virus DNA replication, transcription and encapsidation take place in
the nucleus of infected cells [36,37]. In immunocompetent hosts, infection is usually asymptomatic,
followed by lifelong latency and reactivation [35,38]. Viruses can reactivate, resulting in the initiation
of a replication cycle and cytopathic effect in the infected cell [39].
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2.1. Alphaherpesviruses (VZV, HSV-1 and 2)

VZV reactivation is a recognized complication of the immunosuppressive therapies used in
MS treatment, in particular Fingolomid (a sphingosine-1-phosphate receptor modulator that acts by
sequestering lymphocytes in lymph nodes) [40]. A history of VZV and an increased antibody response
to it is more common in MS patients than the general population [40,41]. VZV is also frequently
detected during the active disease phases of MS [42]. It is not clear, however, whether this detection
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has any connection to a role in pathogenesis in MS or is an incidental escape of VZV from immune
control due to MS treatment or disease [43].

Similarly, for HSV-1 and 2, viral encephalitis as a complication of the various immunosuppressive
drugs used in MS therapy is seen [44–46], and there has been some suggestion of increased antibody
prevalence of HSV-1 and 2 in MS patients (though potentially only in some cohorts of patients [47,48]),
and this is not repeatable across different cohorts of patients [49]. HSV-1 in rats and mice can induce
demyelinating encephalitis but it is not clear that this cross-species transmission event pathology is
relevant in humans [50,51].

2.2. Beta-Herpesviruses (CMV)

The association of CMV and MS pathogenesis remains inconclusive. In two studies, higher loads of
CMV DNA were demonstrated in an Iranian cohort of MS patients when compared to the controls [52,53].
Corroborating these data were findings that opportunistic reactivation of CMV infection can also
occur in MS patients with this reactivation potentially exacerbating existing MS [54,55]. In contrast,
multiple other studies have demonstrated a negative correlation between CMV seropositivity and an
MS diagnosis [24,56–60]. A large meta-analysis including 1341 MS and 2042 controls, however, failed
to conclusively define the relationship between CMV infection and the disease [61]. These differences
may potentially be explained by an effect similar to that described for Epstein–Barr virus, whereby
the small number of people who have never been infected with CMV have a decreased risk of MS in
contrast with reactivation of latent CMV in the active disease phase of MS, potentially exacerbating
existing damage.

Evidence from the two murine models of MS is also conflicting with Pirko et al., showing a
protective effect of the murine version of CMV (MCMV) infection in Theiler’s murine encephalitis
virus (TMEV) model MS [62]. Whereas, Vanheusden et al. demonstrated expansion of CD4+CD28null

T cells in MCMV infection in mice with these cells associated with aggravation of the inflammation,
demyelination and worsening symptoms of experimental autoimmune encephalomyletis (EAE),
a mouse model of MS induced by the injection of myelin antigens with adjuvant EAE [63]. These authors
identified circulating CD4+CD28null T cells as the leading pathogenic lymphocytes in mice, as their
counts correlated with demyelination and disease severity. These T cells lack the CD28 co-stimulation
factor necessary for activation of T cells and are typically expanded in chronic inflammation [64].
The EAE model in mice is not, however, a perfect mirror of MS disease in humans. Although a strong
correlation between CD4+CD28null T lymphocytes and EAE progression has been demonstrated in
mice, these cells were expanded only in a small group of MS patients and demonstrated limited
autoreactivity [65]. Alternative work in the non-human primate model (the marmoset) with a closer
pathology to the human disease has also highlighted that the T-cell driven responses in the murine
models may not be as important in primates and humans [22].

2.3. Beta-Herpesviruses (HHV-6)

There are a number of studies linking HHV-6 with MS pathogenesis [66]. Strong evidence of
the role of HHV-6 in MS pathogenesis includes an increased prevalence of viral DNA and proteins
within MS plaques and CSF as compared to healthy patients indicating HHV-6 neurotropism [67,68].
Expression of viral RNA and proteins in periventricular lesions, which are commonly found in MS,
also supports the involvement of HHV-6 in MS pathogenesis [69,70]. These findings have been
countered by other studies failing to report HHV-6 detection in MS [71]. However, a recent systematic
review and meta-analysis supports an association between HHV-6 antibody and DNA positivity and
MS [72]. There is also some suggestion of HHV-6 proteins having cross reactivity with myelin basic
protein, an essential component of the myelin sheath, which could contribute to CD8+ T cell-mediated
oligodendrocyte death [71].
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2.4. Gamma Herpesviruses (EBV)

The gamma-herpesvirus (EBV) association with MS is complex. It appears that an EBV seronegative
status correlates with a decreased risk of MS [73]. Accordingly, patients with infectious mononucleosis
(IM) have an increased risk of MS as compared to those who are seropositive but with no history of
IM [74]. Whether the presence of EBV DNA is more likely in MS than “healthy” patients is more
controversial and remains unproven [74–76]. Virus detection in the periphery may also not correlate
with its presence in the CNS [75]. Therefore, some authors hypothesize that EBV invasion of the CNS
before adaptive immune responses have developed is a crucial factor in MS pathogenesis [77]. Multiple
mechanisms of EBV MS pathogenesis are currently proposed, including cross reactivity between the
virus and myelin epitopes [78], auto-immune responses against alpha-β-crystallin (a stress protein
expressed in lymphoid cells and oligodendrocytes) [79], antibody-dependent cell-mediated cytotoxicity
and complement-dependent cytotoxicity [80]. Despite its well-established role as one of the triggers of
the disease, shedding or detection of EBV in either the blood or CNS does not appear to be related to
relapses or progression of MS [81,82].

Intriguingly, there is also an increasing body of evidence pointing at the role of Epstein–Barr
Nuclear antigen 2 (EBNA2) in the pathogenesis of MS. EBNA2 can upregulate host gene expression and
recruit transcription activation factors [83–86]. Interestingly EBNA2 binding in the host cells occurs
within the known genetic loci associated with MS susceptibility [87]. In this respect, two binding sites
appear to be most interesting: recombination signal binding protein for immunoglobulin kappa J
region (RBPJ) and the vitamin D receptor (VDR). It has been shown that EBNA2 can convert resting B
cells into immortal cells by engaging the transcription factor RBPJ [88]. These immortal B cells could
maintain pathogenic autoreactive leukocytes in MS circulatory and brain tissue. The EBNA2 overlap
with VDR [87] is also of importance as vitamin D deficiency as a predisposing factor in MS is well
established [89]. Many of the same sites are also implicated in systemic lupus erythematosus (SLE),
another disease with strong epidemiological links to EBV infection [87,90]. These associations are
particularly marked in B cells and it would seem that there is a competitive interaction for transcription
binding sites between EBNA2, promoting B cell proliferation and Vitamin D, which down regulates B
cell function.

Further, more complicated evidence for a direct role of EBV in MS pathology is provided by
the marmoset model of MS, which closely mimics the human immune response to EBV [91]. In this
model, the role of Callitrichine herpesvirus 3 (CalHV3) in the pathogenesis of MS-like disease was
explained by direct infection of B cells [92]. Therefore, it appears that the therapeutic efficacy of the
marmoset treatment with anti CD20 monoclonal antibodies (anti B cell antibodies) was associated with
the depletion of CalHV3-infected B cells [93]. An important aspect of this is the antigen presenting
capacity for CalHV3-infected B cells is affected, resulting in the presentation of citrullinated epitopes
of MOG, which is resistant to degradation [22]. It was suggested that these epitopes can stimulate
autoreactive cytotoxic T cells, which can escape thymic deletion.

The evidence for EBV involvement in MS pathogenesis has been compelling enough for at least
one trial of EBV-specific autologous T cell therapy with in-vitro expanded T cells stimulated to target
EBV nuclear antigen 1 (EBNA1), latent membrane proteins 1 and 2A (LMP1, LMP2A) and reinfused in
the donor patient. Seven of the 10 patients treated showed clinical and neurological improvement,
though it is important to note that this was primarily a safety trial with no control arm [94].

3. Non-Herpes Viruses Associated with MS

3.1. JCV

JCV (human polyomavirus 2 or John Cunningham virus) is another near ubiquitous DNA viral
infection acquired in childhood [95]. JCV is a non-enveloped double-stranded DNA virus that
associates with cellular histones to form minichromosomes in infected cells [96,97] (Figure 4). It is
believed that JCV infection occurs during childhood and remains dormant in the stage of latency in
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most individuals [98]. This explains the fact that up to 90% of adults are seropositive for the virus,
with about 20% shedding it in their urine [99,100]. JCV infection does not cause overt disease in
individuals with functional immune systems [101]. However, in immunocompromised individuals,
the virus can trigger progressive multifocal encephalopathy (PML), characterized by lytic JCV infection
of oligodendrocytes and astrocytes in the CNS [102]. It appears that the virus has to undergo several
mutations to enable it to cross the BBB and replicate in the CNS [103,104].
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Although JCV targets oligodendrocytes and demyelinization, it is not thought to have any role in
triggering MS pathogenesis. An increased risk of development of PML in MS patients treated with
natalizumab (a monoclonal antibody targeting alpha integrin and therefore inhibiting all white blood
cell migration) is a known risk factor of this treatment regime [105]. Currently, the use of this drug is
therefore limited to only highly active RRMS and patients with tolerance to first-line treatments such
as IFN β [106]. Why this syndrome should be prevalent with natalizumab and not with other MS
treatments is not clear; however, it is thought to be related to the induction of increased B cell numbers
alongside reduced immune surveillance of the CNS [107]. Withdrawal of treatment can exacerbate
the condition as the influx of suddenly reconstituted immune cells can worsen the inflammation
caused by JCV, which is often fatal [108]. Hence, despite its effectiveness in RRMS, a risk assessment
and monitoring of patients based on JCV seropositivity and antibody titer is necessary in treatment
decisions with this drug in MS [23].

3.2. HERVs

HERVs are replication defective retroviral proviruses integrated into the human genome and
comprising up to 8% of it [109]. Over the millennia, HERV proviral sequences have been integrated
into the human genome regulatory machinery by functioning as promoters, repressors, poly(A) signals,
enhancers and alternative splicing sites for many non-viral genes [110,111]. Along with the beneficial
effects, inappropriate expression of HERVs has been shown to cause inflammation, aberrant immune
reaction and dysregulated gene expression [112–114]. HERVs can be grouped into three main classes:
Class I Gammaretrovirus- and Epsilonretrovirus-like HERVs; Class II Betaretrovirus-like HERVs;
and Class III Spuma-like HERV-L [115]. Expression of Gammaretrovirus HERV family members,
HERVs-H and W has been shown to be associated with an MS diagnosis [116,117]. Although not
capable of completing a full replication cycle, transcription and translation of individual HERV
proteins, particularly the HERV-W Env protein syncytin in the human placenta, does occur and has
been demonstrated in the CNS in MS cases and in some healthy individuals [118–120]. There are
substantial variations in the proportion of MS patients that test positive for HERV-W viral RNA in the
serum, which can vary between 50 and 100% in the viral load detected [121–123], with our systemic
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meta-analysis confirming the association between MS and HERV-W expression [21]. The wide variation
in HERV detection is potentially explained by population differences in HERV expression as well as
the differing detection methods used in each study. It appears that the detection of HERV-W products
in the blood of MS patients is associated with a poor prognosis and could serve as a predictive marker
for conversion of optic neuritis into MS [124,125]. HERV load also correlates positively with Expanded
Disability Status Scale (EDSS) and Multiple Sclerosis Severity Score (MSSS) ratings [126]. The higher
HERV-W expression in female as compared to male patients corresponds to the gender differences
within MS [125]. Further evidence of HERV association with MS pathogenesis is provided by the
detection of HERV-W particles in CSF, changing with the disease progression: increasing in relapse and
decreasing during remission [127]. HERV antigens can be immunogenic and higher antibody reactivity
against HERV-W and HERV-H Env epitopes was demonstrated in MS patients during relapse [128].
These data suggest that HERV antigens could trigger auto-immune responses, leading to systemic
activation of T cell-mediated neuropathology and brain tissue damage, as shown in a SCID mouse
model [129].

There is an increasing body of data demonstrating that HERV-W protein expression leads to
immune activation and inflammation. HERV-W proteins display cross reactivity with MOG and have
been demonstrated to bind with the HLA DR2 locus implicated in genetic susceptibility to MS [130–134].
HERV-W env proteins bind to CD14 and TLR4, triggering the pro-inflammatory cytokines IL-1β, IL-6,
or TNF-α [135–137]. The HERV-W Env-derived protein syncytin is expressed, specifically in monocytes,
T and B lymphocytes and NK cells, displaying an activated phenotype with expression, increasing
when these cells were stimulated with LPS. In addition, binding of syncytin activated monocytes
and increased the proportion of the type of non-classical monocyte (CD14lowCD16+) associated with
MS [138]. Both HERV-W and HERV-H are overexpressed in these non-classical monocytes in MS
patients [139,140]. Intriguingly the use of HERV-driven enhancers (the LTR regions in HERVs can turn
on nearby genes) is increased in T cells from MS patients, specifically activating the immune genes
CCL20 and IL1R2 [141]. While there is argument over whether peripheral immune responses in PBMC
can induce CNS disease, it is also clear that a leaky blood brain barrier in MS can allow the migration
of blood borne monocytes to the CNS, triggering inflammation and myelin damage [142].

HERV-W or syncytin (there is some argument over whether HERV-W env proteins can be reliably
distinguished from each other [143]) have also been shown to inhibit oligodendrocyte precursor cell
formation and remyelination, an effect that can be blocked by the anti-HERV monoclonal antibody
GNbAC1 [144]. This antibody, despite a disappointing lack of effect on clinical disease scores in
treatment trials with patients, did more promisingly demonstrate a reduction in new lesions as
measured by MRI in treated patients compared with the placebo [145]. Recent work has in addition
demonstrated that HERV-W is present in microglia (brain resident myeloid cells) associated with axons
in MS patients and that expression of HERV-W in myeloid cells induces a degenerative phenotype,
resulting in damage to the myelinated axons [146].

An interesting cooperation between EBV and HERVs has also been demonstrated in MS patients.
Irizar et al. have shown that EBV reactivates in B cells of female RRMS patients during relapse [147].
It appears that EBV-encoded glycoprotein 350 expression stimulates the expression of the syncytin-1,
HERV-W coded protein in B cells as well as in astrocytes and monocytes [147]. We have also shown
a similar effect with EBV infection of B cells triggering increased expression of HERV-W RNA and
protein [148]. This effect is also seen in young adults with infectious mononucleosis (EBV induced
disease) [149]. It could be suggested that EBV infection or reactivation could serve as a trigger for
HERV reactivation, which when acting as antigens could induce an auto-immune response targeting
neural tissue.

A similar effect has been recently reported with HHV-6 infection of PBMC and astroglioblastoma
cell lines where viral infection or activation of its receptor CD46 triggers HERV-W expression and
TLR4 activation [150]. Similarly HSV-1 infection in neuroepithelioma cell lines with HSV-1 also
activated HERV-W transcription and protein expression in neuronal and brain endothelial cells in
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culture [151,152], the activation potentially mediated by HSV-1 intermediate early protein (IE1) binding
to the HERV-W LTR [153]. Interestingly there is also work showing that the addition of both herpes
viral and HERV-H antigens to PBMC triggered enhanced cellular immune responses [154].

4. Antiviral Effects of MS Treatment

The treatments available for MS are all variants of immunomodulatory therapies, most of
which produce their primary effect via induction of lymphopaenia or a shift to a more TH2-driven
phenotype [155]. Many of them are also used in cancer therapy and common side effects include an
increased incidence of opportunistic infections or reactivation of latent infections. Interestingly, the first
drug successfully used in MS is IFNβ, which is also one of the principal antiviral cytokines produced
by virus-infected fibroblasts [156]. It may seem a counterintuitive use of an antiviral cytokine to treat
an inflammatory disorder but the feedback loops induced by IFNβ inhibit many T cell functions [155].

The more recent MS treatments include humanized monoclonal antibodies against lymphocyte
surface antigens [157]. These include natalizumab that targets VLA4 (very late antigen 4), which
is expressed on various leukocytes [158,159]. This is thought to inhibit the interaction between
VLA-4 and vascular cell adhesion molecule-1 (VCAM-1), which facilitates leukocyte migration across
the BBB [160–162]. However, the success of natalizumab as an MS therapy has been hindered
by PML developing in some patients [108,163]. Another humanized antibody MS therapeutic is
alemtuzumab, which targets CD52 expressing lymphocytes, monocytes and dendritic cells [164].
It appears that the mechanism of alemtuzumab action is associated with depletion of circulating
T and B lymphocytes via antibody-dependent and complement-dependent cytolysis [164,165].
Post alemtuzumab hyper-rebounding of the B cell population can, however, result in a variety
of other autoimmune diseases, a common side effect of this treatment [166]. The most recently
introduced drug of this class, ocrelizumab, and its predecessor rituximab, targets the B cell surface
protein CD20, resulting in selective depletion of this lymphocyte population [167]. In the context of this
review, all of these therapies, which have been quite successful in MS therapy, target the immune cells
in which EBV or HERV expression has been demonstrated, and part of the effect of these monoclonal
antibody therapies may be in reducing the EBV and HERV-W autoreactive cells and antigen load.

5. Conclusions

There is increasingly solid evidence for a pathogenic role in the triggering of MS auto-immune
responses by a failure to control chronic viral infections. Evidence for the herpesviruses EBV and
CMV points towards patients who have never been infected with these viruses having a decreased
risk of disease, whereas virus activation and the immune responses associated with them are linked
to MS pathology. Similarly, EBV infection appears to trigger expression of the HERVs that have
been associated with MS pathogenesis, and for both the HERVs and herpesviruses significant cross
reactivity between the viral protein epitopes, MOG (myelin oligodendrocyte protein) and myelin
basic proteins, which are major targets in MS autoimmunity, are evident. Directly opposing effects
of vitamin D (protective) and EBV EBNA2 (associated with disease) at a molecular level are also
apparent. Significantly, a number of the most commonly used and effective MS treatments also
directly induce antiviral responses or remove the cells that these herpesviruses (and subsequently
retroviruses) replicate and are expressed in adding further evidence to a role for these viral infections
in MS pathogenesis.
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