

Supplementary Information

Targeting human parainfluenza virus type-1 haemagglutinin-neuraminidase with mechanism-based inhibitors

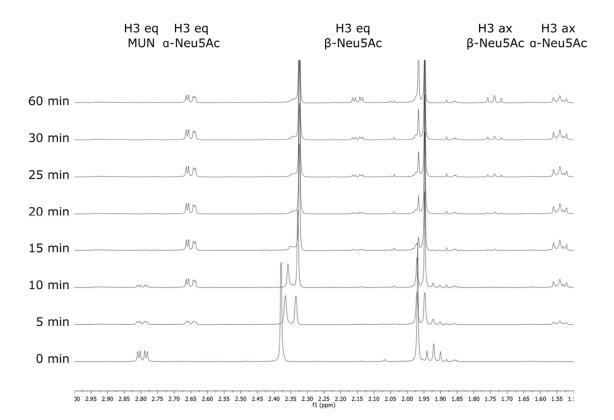
Tanguy Eveno¹, Larissa Dirr¹, Ibrahim M. El-Deeb¹⁺, Patrice Guillon¹⁺ and Mark von Itzstein¹⁺⁺

Supplementary figure legends

Supplementary Figure S1. Time course study of the hydrolysis of MUN by hPIV-1 HN.

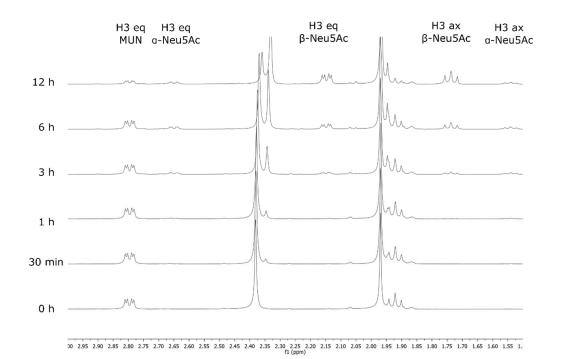
The hydrolysis of MUN and the mutarotation of the released α -Neu5Ac into β -Neu5Ac were monitored by 1H NMR spectroscopy. The reaction contained 5 μg of HN, 5 mM of MUN in a final volume of 200 μL of 50 mM NaOAc, 5 mM CaCl₂, pD 5 and was incubated at 25 °C for 1 hour. eq: equatorial, ax: axial. The other signals at ~2.35 and 1.95 ppm are associated with the CH₃ group of MUN and the acetamido moiety of α , β -Neu5Ac, respectively.

Supplementary Figure S2. Acidic hydrolysis of MUN over 12 hours. The acidic hydrolysis of MUN in the reaction buffer (50 mM NaOAc, 5 mM CaCl₂, pD 5) was monitored by 1 H NMR spectroscopy. The reaction contained 5 mM of MUN in 200 μ L of reaction buffer. eq: equatorial, ax: axial. The other signals at ~2.35 and 1.95 ppm are associated with the CH₃ group of MUN and the acetamido moiety of α , β -Neu5Ac, respectively.


¹ Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.

^{*} Correspondence and requests for materials should be addressed to m.vonitzstein@griffith.edu.au

[†] Ibrahim M. El-Deeb, Patrice Guillon and Mark von Itzstein jointly supervised this work.


Viruses 2019, 11, 417 2 of 3

Supplementary Figure S1

Viruses 2019, 11, 417 3 of 3

Supplementary Figure S2

