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Abstract: The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor)
superfamily protein is a group of molecules that share limited sequence homology but conserved
three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity,
cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly
characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR
proteins and viral pathogens, the results of which have provided new insight into viral entry and
virus–host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of
the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well
characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection,
with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family
proteins and associated virus–host interaction and viral pathogenesis.
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1. Introduction: Biosynthesis, Structure, and Functions

The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor)
superfamily proteins were initially identified as T cell antigens in activated murine T lymphocytes by
alloantisera staining [1,2]. The first molecular cloning of Ly6 cDNA was carried out in 1986, revealing
a group of genes in the Ly6 gene in murine chromosomes 15 [3]. Since then, multiple genes in the
Ly6 family have been isolated, including murine LY6A [4], LY6C [4], LY6E [5], LY6I [6], among others
(Table 1). Human orthologs were isolated shortly after and most of these genes were mapped to human
chromosome 8 [7] (Table 1). To date, Ly6/uPAR genes have been discovered in insects [8], fish [9],
amphibians [10], reptiles [11], birds [12], and mammals [13] (Table 1). The general knowledge of the
Ly6/uPAR family, including their genomic organization, tissue distribution, and evolution, has been
elegantly reviewed elsewhere (refer to [7,14–16]).
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Table 1. Features of major Ly6/uPAR proteins.

Protein Full Name Virus Interaction
Tissue or

Cell
Expression

Species
(Chromosome #)

Types of
Protein Other Alias

LY6A Ly6 complex,
locus A

↑Mouse adenovirus
type 1 (MAV-1);
↑ Adeno-associated

virus (AAV)
serotype 9 (AAV-9)

Hematopoietic
stem cells, B
cell, T cell,

DCs

Mouse (15) GPI-anchored

TAP; Sca-1;
Ly-6A.2;
Ly-6A/E;
Ly-6E.1

LY6B Ly6 complex
locus B Unknown

Neutrophils,
inflammatory
monocytes,
and some
activated

macrophages

Mouse (15) GPI-anchored 7/4; GM-2.2

LY6C1 Ly6 complex
locus C1 Unknown

Inflammatory
monocytes,

some
NK cells, and
plasmacytoid

dendritic
cells

Mouse (15) GPI-anchored LY6C

LY6C2 Ly6 complex
locus C2 Unknown

Leukemia
cells and on
macrophages
infiltrating

rejected
allografts

Mouse (15) GPI-anchored

LY6D Ly6 complex
locus D ↑ HIV-1 [17]

B cells,
immature

thymocytes,
and

plasmacytoid
dendritic

cells

Human (8)
Mouse (15) GPI-anchored Thb; Ly61

LY6E Ly6 complex
locus E

↑ Flavivirus: YFV,
ZIKV, DENV, WNV
↑ Retrovirus: HIV
or ↓ Rhabdo virus:

VSV
↑ Orthomyxovirus:

IAV

Most
intrathymic
precursor
cells of the
lymphoid

lineage

Human (8)
Mouse (15)

Birds
GPI-anchored RIG-E; Sca-2;

TSA-1

LY6F Ly6 complex
locus F Unknown Nonlymphoid

tissues Mouse (15) GPI-anchored

LY6G Ly6 complex
locus G Unknown Mature

granulocytes Mouse (15) GPI-anchored Gr-1

LY6H Ly6 complex
locus H Unknown Brain Human (8)

Mouse (15) GPI-anchored NMLY6

LY6I Ly6 complex
locus I Unknown

Spleen,
thymus,

kidney, and
lung; bone

marrow cells,
monocytes,

macrophages,
granulocytes,
and myeloid
precursors

Mouse (15) GPI-anchored Ly6M

LY6K Ly6 complex
locus K Unknown Testis and

keratinocytes
Human (8)
Mouse (15) GPI-anchored
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Table 1. Cont.

Protein Full Name Virus Interaction
Tissue or

Cell
Expression

Species
(Chromosome #)

Types of
Protein Other Alias

LYPD2
Ly6/Plaur

domain-containing
2

Unknown
Esophagus,
skin, and
stomach

Human (8)
Mouse (15) GPI-anchored VLL; Lypdc2

SLURP1

Secreted
Ly6/Plaur

domain-containing
1

Unknown Restricted in
esophagus

Human (8)
Mouse (15) Secreted ARS

LYNX1 Ly6/neurotoxin Unknown Unknown Human (8) Secreted SLURP2

GML
GPI-anchored
molecule-like

protein
↑ HIV Adrenal

gland
Human (8)
Mouse (15) GPI-anchored HemT-3,

LY6DL

PSCA Prostate Sca ↑ YFV Prostate Human (8)
Mouse (15) GPI-anchored

GP1HBP1
GPI-anchored
HDL-binding

protein 1
Unknown Heart, lung,

liver
Human (8)
Mouse (15) GPI-anchored

uPAR

Urokinase
plasminogen

activator
surface
receptor

↑ HIV-1

Monocytes,
dendritic

cells,
activated T

and NK cells,
endothelial

cells,
keratinocytes,

and
fibroblasts

Human (19)
Mouse (7)

Others
GPI-anchored CD87,

PLAUR

CD59 CD59
molecule

↑ HIV-1
↑ HCV

↑ Cytomegalovirus
↑ infectious

bronchitis virus
(IBV)

Ubiquitously
expressed;

high in
erythrocyte

Human (11)
Mouse (2)

Birds
Amphibians
Bony fishes

GPI-anchored
16.3A5, 1F5,

EJ16,
MAC-IP

Modification from reference [7,14–16]. ↑ and ↓ denote up- and down-regulation of viral infection, respectively.

There are more than 30 genes that have been classified into the LY6/uPAR superfamily [7].
The proteins encoded by the LY6/uPAR genes share at least one conserved functional motif, known
as the LY6/uPAR (LU) domain (Figure 1a,b). The LU domain adopts a “three-fingered” folding
topology characterized by 4–5 consensus disulfide bonds and an invariant carboxyl-terminal
(C-terminal) asparagine. Interestingly, the length as well as the amino acid sequences aligned
at the fingertips are divergent, which renders the three-finger structure flexible for a broad range of
intermolecular interactions [7]. In addition to the LU domain, Ly6/uPAR family proteins also harbor a
conserved “LXCXXC” motif at the amino-terminus (N-terminus) and a “CCXXXXCN” motif at the
carboxyl-terminus (C-terminus) [7] (Figure 1). The “LXCXXC” motif is thought to be the binding site
for transition metal ions [18] while the function of the “CCXXXXCN” motif is less well defined.

Similar to many membrane-associated proteins, the LY6/uPAR family proteins are initially
synthesized in the form of a precursor, which contains an N-terminal signal peptide (SP), an LU
domain(s), and a C-terminal glycosylphosphatidylinositol (GPI) moiety anchor in most cases (Figure 1).
The N-terminal SP is rapidly removed by peptidase in the endoplasmic reticulum (ER) upon
translocation, while the C-terminus GPI is appended via transamidase in the ER through the conserved
asparagine of the nascent protein [19]. The glycolipid GPI-anchoring requires a specific signal,
which can either be a consensus motif and/or the length of amino acids following an asparagine
residue [20,21]. Because the GPI moiety-carrying hydrophobic modification has a high affinity to
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lipid rafts, GPI-anchored proteins are often associated with lipid raft-enriched microdomains in the
membrane [20]. Notably, certain LY6/uPAR proteins, such as SLURP1 (secreted Ly-6/uPAR-related
protein 1) [22] and SLURP2 (secreted Ly-6/uPAR-related protein 2) [23], do not have a GPI anchor
because of the lack of a GPI addition motif, and as a result, these proteins are secreted following the
canonical protein secretion pathway. Noticeably, some LY6/uPAR-family proteins can form dimers or
multimers via covalent or non-covalent binding [24–26], which collectively execute biological functions.
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Figure 1. Sequence alignment and domain structures of LY6/uPAR family proteins. (a) Sequence
alignment of major LY6/uPAR-family protein members. The shaded light blue box shows the signal
peptide predicted by online software SignalP-5.0 (http://www.cbs.dtu.dk/services/SignalP/); shaded
light green box shows the LU domain; and shaded light red indicates pro-peptides (GPI anchors),
which are removed in mature peptides. Yellow color highlights eight conserved cysteine residues,
while the cyan color shows the asparagine residue that can be glycosylated and linked to a GPI anchor.
Red squares show two conserved motifs: the amino terminal “L/VXCXXC” and the carboxyl terminal
“CCXXXCN”. (b) Domain structure of LY6E. Human LY6E was homology-modeled based on the
submitted structure of SLURP-2 (PDB ID: 2MUO). Four disulfide bonds are shown in yellow while the
GPI anchor is shown in black.

http://www.cbs.dtu.dk/services/SignalP/
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The function of Ly6/uPAR has been historically linked to immunoregulation, including T
lymphocyte development [27], differentiation [28], activation [29], proliferation [30], and migration [16],
most of which were studied in mice. Interestingly, clinical investigations of Ly6/uPAR in humans,
however, have revealed some distinct pathological functions. For example, increased LY6E expression
is associated with solid tumorigenesis, angiogenesis [31], systemic lupus erythematosus [32], and other
abnormalities [33,34]. In contrast, regulation of Ly6/uPAR proteins by virus infection, and vice versa, is
not well understood, and there is an emerging interest in understanding how these families of proteins
influence the process of viral infection.

2. Regulation of Ly6/uPAR Expression by Cytokines and Viral Infections

Expression of many Ly6/uPAR-family proteins is induced by immune-regulated cytokines,
including those triggered by viral infections (Table 2). For example, murine LY6A, LY6C, and LY6E are
up-regulated in T lymphocytes by recombinant human interferon (IFN) α, β, and γ [35–37]. LY6C is
enhanced by cytokines interleukin 27 (IL-27) and augmented by T-cell receptor (TCR) stimulation [38].
Human LY6E is characterized as a typical IFN-inducible protein or defined as an IFN-stimulated
gene (ISG) [39–41]. In monocytes and monocyte-derived THP-1 cell line, LY6E is up-regulated by
treatment of cells with 100 U/mL IFNα as early as 6 h [42,43]. Interestingly, another LY6 family
member, SLURP-2 is enhanced by IL-22 treatment, and this effect can be completely abolished by
IFN-γ treatment [44]. The inducibility of LY6 family proteins by IFN is believed to be related to the
IFN sensitive cis-acting elements within their promoter regions; however, a mechanistic study has
found that the IFNγ-activating site (GAS), instead of canonical IFNα-stimulated response element
(ISRE) in the LY6 gene promoter region, is responsible for induction by IFN [45].

Given that the LY6/uPAR-family proteins can be induced by type I IFN and cellular inflammation
systems, it is not surprising that viral infection, which itself triggers the type I IFN production and
inflammatory response, can induce or activate the LY6/uPAR gene expression. Indeed, LY6E has been
widely associated with inflammation-related abnormalities, including systemic lupus erythematosus
(SLE) [32,46], solid cancer [47,48], and viral infections [49,50].

In this review, we focus on two members of the Ly/uPAR-family proteins, uPAR and CD59, in the
context of their effects on viral infection. In an accompanying review of this special issue, the role of
LY6E in virus-host interaction, particular viral entry, is discussed [51].

Table 2. Regulation of Ly6/uPAR expression by cytokines and viral infections 1.

Protein Name Viral Infection Cytokine

LY6A ↑ JEV, WNV, and Reovirus [52] ↑ Recombinant human IFN α, β,
and γ [35–37]

LY6C WNV infection associated with
lower LY6C expression [53]

↑ Recombinant human IFN α, β,
and γ [35–37] IL-27 [38]

LY6E
↑ HIV-1infection [54];

↑ SIV [55]
↑ JEV, WNV, and Reovirus [52]

↑ Recombinant human IFN α, β,
and γ [35–37,42,43];
↑ Retinoic acid [41]

LYNX1 Unknown ↑ IL-22 [44]

uPAR ↑ HIV-1gp120 in B cells [56] ↑TNF-α [57]; ↑ IL-1β [58]; ↑ Nerve
growth factor [59]

CD59 ↓ EBV [60]
↓ HBV [61] Unknown

1
↑ and ↓ denote up- and down-regulation of Ly6/uPAR proteins by virus infection or cytokines, respectively. JEV:

Japanese encephalitis virus; WNV: West Nile virus; HIV-1: human immunodeficiency virus type 1; SIV: Simian
immunodeficiency virus; EBV: Epstein-Barr virus; HBV: hepatitis B virus.

3. uPAR and Viral Infection

uPAR, also known as CD87, is a heavily glycosylated, GPI-anchored cell-surface receptor [62,63].
It is predominantly expressed in immune cells, including neutrophils, monocytes/macrophages, and
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activated T cells [64]. uPAR harbors three consecutive LU repeats, namely D1, D2, and D3, respectively.
The N-terminal D1 is responsible for the binding to urokinase-type plasminogen activator (uPA), the
ligand of uPAR [65], and the linker peptides connect different repeats and contribute to chemotaxis [66].

Apart from the full length, several other forms of uPAR have been identified in conditioned
medium from various cell lines [67], as well as in body fluids of cancer patients [68,69]. First, the intact
uPAR (D1D2D3) is tethered to the cell surface by a GPI anchor attached to D3. Second, proteolytic
cleavage in the linker region between D1 and D2 results in the release of the D1 fragment, leaving
behind the D2D3 fragment on the cell surface. Third, soluble forms, which lack the GPI anchor
but harbor either soluble uPAR (suPAR) or D2D3, can be generated by phospholipase C cleavage
of the GPI anchor. In physiological settings, uPAR functions mainly through binding to its cognate
ligand Urokinase-type plasminogen activator (uPA). uPA is a specific protease, which converts the
plasminogen into its active form, plasmin—a broad-spectrum serine protease involved in the digestion
of basement membranes and various protein substrates in the extracellular matrix [70,71]. The binding
of uPA, which can be endogenously produced or released from surrounding cells, to uPAR concentrates
the plasmin proteolytic activity on the relevant cell surface [72]. Therefore, the uPA/uPAR system plays
a crucial role in cell migration and extravasation. Additionally, uPAR has been widely associated with
vascular homeostasis, inflammation, tissue repair, cell adhesion and migration, signal transduction,
tumorigenesis and metastasis, the scope of which has been elegantly reviewed elsewhere [73].

Investigation into the interplay between uPAR and viral infection can be traced back to the
early 1990s, with a strong bias toward HIV studies (Table 3). It was reported that HIV-1 infection
led to an enhanced cell surface expression of uPAR in monocytes and T lymphocytes in vitro and
in vivo [74,75]. HIV-1 infection in tonsil histocultures significantly increased the suPAR expression
in the culture medium [76]. Subsequent studies showed that uPAR mRNA was transcriptionally
elevated in the context of HIV-1 infection [75]. However, how HIV-1 modulates the uPAR mRNA has
remained unclear. One possibility is that HIV-1 infection may indirectly enhance uPAR expression
through immune activation. It has been reported that uPAR expression is intimately regulated
by some inflammation-inducing ligands, such as microbial components [77,78], mitogens [74], and
pro-inflammatory cytokines [79,80], and that HIV-1 infection is associated with sustained chronic
immune activation and inflammation [81,82]. Interestingly, increased uPAR has also been observed
in pathological conditions, such as diabetes [83], cardiovascular disorders [84], cancers [85], and live
diseases [86]. However, decreased uPAR expression has also been reported in granulocytes of HIV
infected patients [87], suggesting that HIV-1 infection may modulate the immune system in a cell
type-specific manner.

Elevated expression of uPAR has long been associated with HIV-1 disease progression and
AIDS-related deaths [88], with suPAR level in serum of untreated HIV-1 patients being significantly
higher than those of healthy cohorts [88]. In addition, the suPAR level in cerebrospinal fluid
(CSF) is positively correlated with the progression of HIV-1 induced central nervous system (CNS)
complications [89,90]. HIV-1 positive individuals also have enhanced cell-associated uPAR in lymphoid
organs, particularly in follicular dendritic cells, macrophages, and endothelial cells [76]. Higher levels
of suPAR, and to a lesser extent uPA in the cerebrospinal fluid (CSF) of HIV-positive patients, were
also observed compared with HIV-negative controls [90,91]. These correlative studies collectively
suggest a functional interplay between HIV-1 infection and the uPA/uPAR system, strongly implicating
a positive role of uPAR in HIV-1 infection.

Some in vitro and ex vivo studies have provided mechanistic insights into how uPAR might
enhance HIV infection. First, uPAR synergistically functions with uPA to promote HIV infection. As
a serine protease, uPA specifically cleaves peptides that harbor the consensus cleavage motif, i.e.,
CPGRV, which is present and conserved in the HIV envelope protein (Env) gp120 variable loop 3
region (V3) [92]. Consequently, incorporation of uPA into HIV-1 virion can lead to aberrant enzymatic
processing of Env. Somewhat surprisingly, however, this cleavage facilitates CCR5-tropic HIV-1
infection of human macrophages, probably by increasing viral fusion [92]. Clinical studies revealed
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that HIV-1 pathogenesis is associated with uPAR but not uPA expression [88,89], which argues against
a direct role of uPA in HIV-1 infection. One possible explanation is that the plasma membrane-residing
uPAR, which helps concentrate uPA on the cell surface [93], might render greater spatial proximity of
the latter to the viral budding sites and thus increases the efficiency of uPA incorporation into virions
and subsequent cleavage.

Second, uPAR can facilitate HIV-1 cell-to-cell spreading. It has been reported that uPA/uPAR
interaction triggers signaling cascades in macrophages [93], leading to RhoA and PKCξ-dependent
actin rearrangement [94] and subsequent intracellular enrichment of HIV-1 in a specialized structure
called virus-containing compartments (VCCs) [94,95]. VCCs are regarded as invagination of the
macrophage plasma membrane, which is usually connected to the extracellular space via tubular
channels, and serve as the primary assembly and budding sites of HIV in macrophages [96,97]. Recently,
VCC was shown to be an immune-privileged site for anti-HIV therapy [98] and antibody neutralization
treatments [99]. Therefore, VCCs induced by uPA/uPAR may function as an immune privileged niche
that protects HIV from a hostile environment both within and outside of the cells [97]. Additionally,
VCCs can serve as HIV-1 reservoirs in macrophages and contribute to HIV-1 cell-to-cell transmission
by translocating the inside virion cargoes into T cells through the virological synapse, a transient
intercellular adhesive structure formed between infected and uninfected HIV target cells [100,101].
Given that the HIV cell-to-cell transmission is much more efficient than the cell-free infection [102], it
is conceivable that uPA/uPAR signaling likely leverages the route of HIV to cell-to-cell transmission;
however, details of this process warrant further investigation.

Third, uPA/uPAR can promote HIV transmission by enhancing macrophage adhesion [103,104],
chemotaxis [66,73], and motility [105]. It is well-known that HIV spread, in particular in vivo
transmission, involves the physiological contact of macrophages with other cell types; therefore,
increased adhesion and migration would allow more efficient cell–cell contact formation therefore
benefit virus spread. In this sense, a friendly microenvironment, such as that created by uPA/UPAR for
HIV-1 in vivo transmission, would exacerbate HIV pathogenesis.

In addition to HIV-1, increased plasma levels of uPA and uPAR have also been associated
with acute and chronic hepatitis B virus infections [106]. Interestingly, in vivo studies conducted in
mice showed a minor role of uPA/uPAR in limiting the virus replication and in orchestrating the
innate immune response to infection by the human respiratory syncytial virus (HRSV) and influenza
virus [107]. While more investigations are needed to elucidate the role of uPA and uPAR in viral
infection and pathogenesis, it is possible that the effect of uPA/uPAR in the context of viral infection is
virus-specific and cell type-dependent.

Table 3. Effects of LY6E and uPAR on viral infection.

Protein
Name Virus Name Family of Virus Effect on

Infection
Mechanism of

Action
Experimental

System Reference

uPAR

HIV-1 Lentivirus Enhanced

1. Facilitate
HIV-1 enzymatic

processing of
Env;

2. Promote
HIV-1 cell-to-cell

transmission;
3. Enhance

macrophage
adhesion.

Macrophages [92,94,95,103,
104]

Human
respiratory
syncytial

virus

Orthopneumovirus Resistant Unknown C57BL/6
mice [107]

Influenza A
virus (IAV) Orthomyxovirus Resistant Unknown C57BL/6

mice [107]
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Table 3. Cont.

Protein
Name Virus Name Family of Virus Effect on

Infection
Mechanism of

Action
Experimental

System Reference

CD59

HBV Hepadnavirus Enhanced

1.Promotes CDC
to cause

persistent liver
inflammation;

2. Prevents CDC
in hepatoma and
hepatic cells that
express HBV-X

protein.

HBV BALB/c
mice,

BEL7402,
HL7702,

HepG2 cells

[61,108,109]

Human
cytomegalovirus

(HCMV)
Herpesvirus Enhanced

Incorporated
into viral

particles and
confers CDC

resistance.

Human
Foreskin

Fibroblasts
(HFF)

[110]

Varicella-zoster
Virus (VZV) Herpesvirus Enhanced

Upregulated
upon VZV
infection to

protect against
CDC.

Human
T-cells,

xenograft
SCID-hu

mice,
satellite glial

cells,

[111]

EBV Herpesvirus Resistant

Decreased CD59
expression to

allow for
CD8+T-cell lysis
via complement.

Primary
T-lymphocytes

from acute
infectious

mononucleosis

[60]

Herpesvirus
saimiri
(HVS)

Herpesvirus Enhanced

HVS encodes
CD59 mimic

protein to evade
CDC.

BALB/3T3 [112,113]

Kaposi’s
sarcoma

associated
herpesvirus

(KSHV)

Herpesvirus Enhanced

Downregulation
by KSHV to
confer CDC
resistance.

Human
umbilical

vein
endothelial

cells,
microvascular
endothelial

cells

[114]

Human
Herpesvirus-7

(HHV-7)
Herpesvirus Enhanced

HHV-7 infection
upregulates

CD59 to confer
partial CDC
resistance.

SupT1,
PBMC [115]

Human
T-cell

lymphotropic
Virus Type 1

(HTLV-1)

Retrovirus Enhanced

Incorporated
into viral

particles and
confers CDC

resistance.

MT-2 cells, [110]

Porcine
endogenous

retrovirus
(PERV)

Retrovirus -

Incorporated
into viral

particles but is
not sufficient for
CDC resistance.

ST-IOWA
porcine cells [116]
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Table 3. Cont.

Protein
Name Virus Name Family of Virus Effect on

Infection
Mechanism of

Action
Experimental

System Reference

HIV-1 Lentivirus Enhanced

1. Incorporated
into viral

particle upon
the budding;

2. Incorporation
confers ADCML

and CDC
resistance;

3. Decreased
CD59 expression

upon HIV-1
infection in

CD4+ alveolar
macrophages;
4. Co-localizes

with gp120/gp41
within lipid

rafts.

CEM, H9, U937,
CHO, Jurkat,

alveolar
macrophages

[117–123]

Hepatitis C
Virus (HCV) Flavivirus Enhanced

Selective
incorporation

into viral
particles and

confers ADCML
resistance.

Huh7.5.1 cells [124,125]

Dengue
Virus

(DENV)

Flavivirus
Restricted

Decreases MAC
assembly to

reduce tissue
damage in

Dengue Fever
(DF)

PBMC [126,127]

Enhanced

Monocytes are
more susceptible

to DENV
infection.

Respiratory
Syncytial

Virus (RSV)
Orthopneumovirus -

Incorporated
into virus
filaments.

HepG2 cells [128]

Influenza A
virus (IAV) Orthomyxovirus Enhanced

Increases lung
inflammation

and neutrophil
and CD4+T-cell

infiltration.

CD59a KO mice, [129]

Infectious
Bronchitis

Virus (IBV)
Coronavirus Enhanced

Associated with
virions and

downregulated
upon infection

to facilitate
particle release
and resist CDC.

H1299, Vero,
DF1 cells [130]

Echovirus Picronavirus Enhanced
Facilitates

infection but not
virus binding.

Rhabdomyosarcoma
cells [131]

Vaccinia
Virus (VV) Poxvirus Enhanced

Incorporated
into viral

particle to evade
CDC.

RK13, CV-1,
HeLa Aortic rat
endothelial cells

[132,133]
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Table 3. Cont.

Protein
Name Virus Name Family of Virus Effect on

Infection
Mechanism of

Action
Experimental

System Reference

Parainfluenza
Virus 5
(PIV5)

Paramyxovirus Enhanced

TGF-b treatment
increases CD59
expression in
PIV5 progeny

virions
conferring CDC

resistance.

CV-1,
MDBK, Vero,
A549, HeLa

cell Lines

[134]

“Enhanced” denotes viral infection being increased by CD59 or uPAR; “Resistant” denotes viral infection
being decreased by CD59 or uPAR. “-” denotes no or minimal effects of CD59 or uPAR on viral infections.
CDC—complement dependent cytolysis; ADCML—antibody dependent complement-mediated lysis.

4. CD59 and Viral Infection

CD59 (or protectin) is a non-interferon inducible protein initially identified as an inhibitor of
complement-mediated lysis [135–137]. Preliminary sequence alignment showed limited homology
with other Ly6 members; however, subsequent structural studies using PI-PLC cleavage indicated a cell
surface linkage via GPI-anchor, as well as a distant evolutionary relationship with other members of the
Ly6 family [135]. The most widely understood function of CD59 is its involvement in the disruption of
the membrane attack complex (MAC) during complement-mediated lysis [138]. Specifically, CD59 acts
in the final stages of MAC assembly by inhibiting C9 input to EC5b-8 and subsequently incorporating
itself into the complex [138,139], presumably because of its similar binding pocket to the C8α-chain [140].
Further, this disruption is specific to complement as CD59 is not seen to disrupt perforin-mediated
lysis [141]. Clinically, deficiency of CD59 is responsible for the development of paroxysmal nocturnal
hemoglobinuria (PNH), as noted by increased susceptibility of erythrocytes to complement-mediated
lysis [142,143]. Interestingly, cells from patients with PNH can re-acquire resistance to hemolysis when
incubated with CD59 [144,145]. The involvement of CD59 in complement lysis and subsequently its
dysregulation in PNH has been extensively characterized and reviewed by [146].

CD59 is expressed on a wide variety of cell types [147], and in accordance, has numerous
non-complement-dependent roles. CD59 is accumulated in tumor cells [148], and there has been
directly targeted and down-modulated by using monoclonal antibodies (mAbs), shRNA and other
small molecules for therapeutics [149,150]. CD59 is also implicated in T-cell signaling [149,151] and
regulates cell growth and apoptosis. For example, CD59 can coordinately interact with CD2 during
T-cell activation and adhesion [152,153]. In CD3+ Jurkat cells, activation of ZAP-70 and p65lck results
in activation of the T-cell receptor and downstream signaling to produce interleukin 2 (IL-2) [154]. This
interaction is mediated via a mobile Lck fraction [155] and an adaptor protein linker for activation of
T-cells (LAT) that is recruited to lipid rafts [147,151–157], which is the characteristic localization region
for members of Ly6/uPAR proteins.

There is a growing body of literature showing the involvement of CD59 in viral infection and
pathogenesis. CD59 has been shown to interact with numerous viruses, either directly or indirectly,
through complement-dependent and independent mechanisms. Generally, these interactions can be
classified into three categories: (1) Incorporation of CD59 into viral envelopes to evade complement
virolysis; (2) modulation of CD59 on the cell surface to escape immune sensing; and (3) expression of
virus-encoded CD59-mimic proteins.

By far the most characterized virus-CD59 interactions are with HIV-1/2 and related SIVs. Several
reports have shown a decreased surface expression of CD59 on peripheral blood T-lymphocytes [122],
erythrocytes [158], neuronal and astroglial cells [159] in HIV-1 patients. In the latter study, cells treated
with recombinant gp41 showed a decreased CD59 level. While no direct evidence for increased
complement-mediated damage was observed, the likely outcome of this down-modulation of CD59 is
increased complement-mediated lysis. Indeed, when these cells were treated with phorbol dibutyrate
(PdBu; an activator of protein kinase C-PKC), CD59 levels were decreased following treatment with
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recombinant gp41, suggesting a PKC-dependent signaling role. Similar results have been observed
when pro-inflammatory cytokines (IL-1β, IFN-γ) and LPS are used in neuronal cell lines. Interestingly,
subsequent experiments to identify complement activation in H9 cells by HIV-1 and HIV-2 isolates found
no difference in CD59 levels [160]. However, when HIV particles were analyzed using virus capture
assay, complement-inhibiting protein decay-accelerating factor (DAF) was found to be incorporated
into viral particles, with CD59 also incorporated but to a lesser extent, which would lead to protection
from complement-mediated lysis [118,120]. Similar complement-controlling proteins are seen in
SIV particles, which likely helps infected cells escape from complement-mediated killing [119]. The
incorporation of complement control proteins in HIV particles is not restricted to CD59, as both DAF
(also known as CD55) and CD45 are incorporated into viral particles [121]. It should be noted that
although early reports suggested that HIV-1 is insensitive to complement lysis, whether or not the
incorporation of CD59 and other complement controlling proteins are sufficient to allow for this escape
remains to be determined.

Incorporation of cellular proteins into virions and subsequent immune evasion has been
reported for numerous host proteins. For example, CD59 is incorporated into viral particles of
vaccinia virus [132], human T-cell leukemia/lymphoma virus (HTLV-1), human cytomegalovirus
(HCMV) [110,161], infectious bronchitis virus (IBV) [130], hepatitis C virus [124], Newcastle disease
virus [162], as well as parainfluenza virus 5 [134] among others (Table 3). In IBV-infected cells, the cell
surface level of CD59 is down-regulated because of incorporation into viral particles. IBV production
from CD59 knock-down cells was significantly reduced; along the same lines, when the GPI-anchor
of CD59 is cleaved by using PI-PLC, the titer of IBV was also significantly reduced [130]. HCV
particles purified from cell culture showed CD59 incorporation in the viral membranes [124], which
is co-localized with HCV proteins during the assembly process [125]. Similar GPI-dependence has
been observed in production of HIV-1 particles, where GPI-anchor deficiency rendered viruses more
susceptible to complement-mediated lysis [117].

Intriguingly, herpesvirus saimiri (HVS) encodes a gene ORF15 with 64% nucleotide homology to
CD59 [112]. Structural characterization showed that the HVS CD59 protein shares the single N-linked
glycosylation with human CD59 and the highly conserved cysteine residues [41]. The N-linked
glycosylation site is predicted to be responsible for the cross-species specific complement-resistance
activity [113]. For example, human CD59 and saimiri CD59 are not cross-protective against rat
complement, and HVS CD59 provides no protection against human or rat serum. This is likely
attributed to the differentially located glycosylation site of HVSCD59 as compared to the conserved
primate CD59 glycosylation sites [113]. While further studies are required to determine the exact
mechanism of protection, or lack thereof, the viral mimicry of complement control proteins has been
observed in numerous other viruses [163].

Antagonism of host-cellular proteins is a hallmark for productive infection in viruses.
Downregulation of CD59 from the surface of virus-infected cells is a common cellular mechanism
hijacked by viral particles to promote complement-mediated lysis either for viral egress or chronic
disease manifestation. For instance, CD59 is significantly reduced in monocytes from DENV-infected
patients [127]. Similar results have been seen in patients with chronic HBV infection. Using HBV
transgenic mice expressing HBV genome, Qu et al. showed decreased levels of CD59 at both mRNA
and protein levels [61]. Similar observations were seen in hepatocytes infected with HBV and this
downregulation was specific to CD59, as neither CD55 nor crry (another complement controlling
protein) were significantly changed upon infection. It is now known that the HBV core protein, which
is responsible for this downregulation, sensitizes hepatocytes, thus resulting in lysis and subsequent
liver damage [109]. HepG2 cells transfected with HBV core protein selectively form complexes with
CD59 and they are recapitulated in liver samples from HBV patients. Interestingly, these complexes
are seen to translocate to the nucleus, resulting in decreased surface expression and an overall increase
in susceptibility to MAC [109].
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The modulation of CD59 levels on the cell surface has also been employed by other viruses.
For instance, varicella-zoster virus upregulates CD59 in thymus/liver and dorsal root ganglia (DRG)
xenografts in-vivo. Interestingly, this upregulation is tissue or cell-specific, as similar infections in skin
xenografts showed only modest upregulation [111]. The exact mechanism of this upregulation remains
unclear. CD59 upregulation is thought to be a consequence of upstream NF-kB activation; however,
VZV is known to inhibit NF-kB signaling in skin implants. Interestingly, antibodies against CD59 block
infection to a range of echoviruses in RD cells. Noteworthy is that echovirus 7 uses DAF as a receptor
for entry and that blocking CD59 does not affect the virus binding to DAF or cell-to-cell spread. It is
hypothesized that CD59 acts at an early stage of virus entry but not during the attachment.

CD59 is involved in diverse and essential cellular functions, especially in its protection of “self”
from complement-mediated lysis. Thus, it is not surprising that viruses have evolved strategies to
exploit this function, either through incorporation of it into viral envelopes or by mimicking the
functional capacity of CD59. CD59 also appears to be an attractive target for therapeutic strategies to
prevent or control viral pathogenesis. Indeed, recent therapeutic efforts have focused on inhibiting
CD59 by using hCD59 inhibitors [164], or antibodies combined with anti-HIV Env antibody or serum
from HIV-1 infected individuals [165]. However, the challenge is that CD59 molecule is widely
distributed on the cell surface and performs some important cellular functions. Therefore, strategies to
specifically target CD59 on the virion membrane should be pursued.

5. Concluding Remarks and Future Perspectives

Some general conclusions can be drawn from the research performed on uPAR and CD59 proteins
related to viral infections. First, Ly6/uPAR proteins can function through direct and indirect mechanisms.
Second, Ly6/uPAR molecules influence viral infection in a cell context-dependent and virus-specific
fashion. Last, the function of Ly6/uPAR is related to the GPI-anchored topology of these proteins,
as well as their lipid-raft localizations.

Notably, most Ly6/uPAR-family members remain uncharacterized in the context of viral infection.
This is especially important, given that some of these proteins may have a redundant, cooperative,
or synergistic effect in viral infection. For example, knockdown of one Ly6/uPAR member may
affect—either inhibit or enhance—the functions of others during viral replication. While GPI anchor is
known to affect the protein location and interactions with others, how exactly the Ly6/uPAR proteins
with a GPI anchor regulate cell signaling, migration, and other physiological processes involved in
viral infection remain largely unknown. Hence, it would be interesting and informative to use global
and comparative approaches to examine the effects of LY6/uPAR family members in the context of
innate and adaptive immune response to viral infection. Finally, most of the published studies have
been derived from in vitro or mouse experiments, roles of Ly6/uPAR in human viral infections need to
be determined, including under pathological conditions. Additionally, genetic mapping and single
nucleotide polymorphism (SNP) studies of human Ly6/uPAR genes will provide insights into the role
of Ly6/uPAR-family members in viral infection and virus-host co-evolution.
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