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Abstract: The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein
9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity,
versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to
other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like
Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9
is presently being applied in constructing viral mutants, preventing virus infections, eradicating
proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of
CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other
vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve
some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors,
including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation;
potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety
and risk assessment considerations. In this article, we review the published literature on the
application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9
in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of
CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the
current strategies to overcome them.

Keywords: CRISPR/Cas9; genome editing; modified Vaccinia virus Ankara; orthopoxvirus;
recombination; risk assessment; site-specific; Vaccinia virus; vaccine; vector

1. Introduction: Orthopoxviruses in Vaccines and Vector Development

The genus Orthopoxvirus (OPXVs) (family Poxviridae, subfamily Chordopoxvirinae) contains,
among others, Vaccinia virus (VACV)—the type species of the genus, Variola virus (VARV)—which
caused smallpox, Monkey poxvirus (MPXV) and Cowpox virus (CPXV). Orthopoxviruses (OPXVs)
are large (200 × 250 nm) brick shaped enveloped viral particles with a large genome (170–250 kb),
which unlike most DNA viruses, replicate in the cytoplasm of the host cell. Whereas some OPXVs
are host specific (e.g., VARV), others have broad host range and are also zoonotic (e.g., CPXV, VACV
and MPXV).

Orthopoxviruses (OPXVs) are suitable viral vectors because they have large transgene capacity
(up to 25 kilobasepairs (kbp) [1]); broad host range (including humans) [2,3]; stimulate long-term
cellular and humoral immune responses to the vectored antigen(s) despite pre-existing vector-backbone
immunity [1,4]; thermostable as a freeze-dried compound; easy to store, ship and use; and cost effective
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to manufacture. The first OPXV successfully used as a vector was Vaccinia virus (VACV). VACV was
originally applied as a vaccine agent to eradicate smallpox. The vaccination programme (WHO
1966–1980), which involved hundreds of millions of people over a large geographical area and long
period of time, generated a substantial pool of knowledge and experience on the effectiveness and side
effects of VACV. Following the induction of protective immunity against hepatitis B virus infection
by a recombinant VACV encoding hepatitis B surface antigen [5], VACV and replication-defective
VACV variants (e.g., modified Vaccinia virus Ankara (MVA) and Vaccinia virus Copenhagen (NYVAC))
became attractive for the development of recombinant vaccines/vectors against a wide range of human
and veterinary diseases [6,7]. Recombinant OPXVs encode antigens from one or several infectious
agents, antigens relevant for cancer, and genes encoding specific immune stimulating factors such as
cytokines/chemokines [8].

The broad host range of OPXVs may represent a potential risk of spill-over to non-target species,
which is not always beneficial, but also allows to reach multiple target species, such as during the
deployment of Raboral V-RG (RVG), a VACV-based recombinant Rabies vaccine that targets multiple wildlife
reservoir species for rabies control and eradication programs in Europe and North America [9,10]. A major
argument against the use of live OPXVs as vaccine vectors has been their potential of spontaneous
recombination events with naturally occurring virus relatives, such as CPXV [11–13]. Single nucleotide
polymorphisms (SNPs), insertions, deletions and genome rearrangements are commonly detected
especially around the terminal inverted repeats, which affect the genome size and may be associated
with altered infectivity and pathogenicity [14,15]. Although the replication-defective OPXV vectors
are considered safer compared to replicative competent VACV, it is possible that a replicative-deficient
and thus non-infectious virus may be recovered by the presence of a different poxvirus in the same cell;
e.g., Shope fibroma virus can reactivate VACV DNA in infected and transfected cells [16,17]. These
mechanisms are relevant when biosafety issues associated with open use or release of recombinant
OPXVs are considered [18,19]; see also our recent review on biosafety considerations of MVA [20].

2. Classical Methods for Generating Orthopoxvirus Recombinants

2.1. Methods

Recombinant OPXVs can be constructed by homologous recombination between transfected
heterologous DNA and replicating virus DNA [21], in vitro ligation [22], or by bacterial artificial
chromosome (BAC) recombineering [23]. In homologous recombination, which is the popular classical
method for modification of OPXVs, the gene(s) to be inserted is cloned into a plasmid transfer
vector and is flanked by OPXV sequences that direct recombination to the desired locus (Figure 1).
Transfection of the plasmid transfer vector into OPXV infected cells will result in homologous
recombination between the replicating OPXV DNA and the plasmid vector, resulting in the insertion
of the transgene into the OPXV genome (Figure 1). Commonly used insertion sites include the
thymidine kinase (TK) gene, haemagglutinin (HA) gene, intergenic region between the F12L and F13L
genes as well as naturally occurring deletions sites in the OPXV genome (especially with regard to
MVA) [21]. Clonal isolation of recombinant viruses can be based on colour (fluorescent proteins or
immunostaining) [21,24], antibiotic resistance [25,26], transient host range [27,28], plaque size [29,30]
or complementation [21,31]. Several rounds of plaque purification are needed to obtain a pure clone of
the desired recombinant virus as the current General Manufacturing Practice (cGMP) and guideline
(e.g., the European Union Directive 2001/18/EC) for virus-vectored vaccines require that the scaled-up
batch of the recombinant virus must be marker free and free of mutation in the expression cassette and
flanking sequences.
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Figure 1. Construction of recombinant MVA vector by homologous recombination. A plasmid that contains the gene or transgene of interest is constructed and used 
to transfect an MVA-infected cell. TK- Recombinant MVA vectors are produced by homologous recombination; TK: thymidine kinase gene; M: marker gene; TG: 
foreign gene; P: promoter; O: Origin of plasmid replication; N: Marker gene for plasmid selection. 

Figure 1. Construction of recombinant MVA vector by homologous recombination. A plasmid that contains the gene or transgene of interest is constructed and used to
transfect an MVA-infected cell. TK- Recombinant MVA vectors are produced by homologous recombination; TK: thymidine kinase gene; M: marker gene; TG: foreign
gene; P: promoter; O: Origin of plasmid replication; N: Marker gene for plasmid selection.
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Alternatively, in vitro ligation can be used to generate the transgene of interest with desired
flanking regions by PCR, and this naked DNA sequence is transfected into cells infected with OPXV [32]
or direct in vitro ligation to create chimeric OPXV DNA. In this method, the OPXV genome is cleaved
at unique restriction endonuclease sites and a transgene expression cassette can be directly ligated
to produce a recombinant DNA. Since OPXV DNA is not infectious, viruses with the modified
recombinant DNA are recovered by transfecting the chimeric DNA molecules into cells infected with a
helper poxvirus [22]. BAC recombineering is another approach for generating chimeric poxviruses.
In this method, the entire OPXV genome is cloned as a BAC and the major steps involved include;
(i) generation of pre-BAC clones by insertion of mini-F plasmid shuttle vector into the OPXV genome;
(ii) isolation of BAC clones from pre-BAC OPXV DNA; (iii) amplification of the BAC clones (BAC
miniprep); (iv) gene editing by Red recombineering in E. coli and (v) rescue of the genomic BAC clone
with a helper fowlpox virus [33,34]. For clinical applications, BAC clones of OPXV vectors must be
free of marker genes, mini-F plasmid and any other bacterial sequence. These unwanted sequences are
usually removed by en passant mutagenesis [35], Cre/LoxP or FLP/FRT (Flippase/Flippase Recognition
Target) recombination systems [36,37].

2.2. Limitations

Generally, these systems require tedious laborious multi-steps with low efficiency among
other limitations. Generating candidate recombinant vaccines by homologous recombination is
limited by; (i) low recombination efficiency (<3%); (ii) time consuming processes such as generating
the plasmid with the transgene and plaque purification of the recombinant virus; (iii) transgene
instability upon virus expansion; (iv) requirement for 200–500 bp of flanking DNA sequence (which
favour recombination into off-target sites); and (vi) lack of multiple editing of several genes in
parallel [21,22,38–41]. Although in vitro ligation obviates the need for cloning in bacteria,
the introduction of marker genes to improve selection efficiency can be labour intensive and technically
demanding. In addition, this method cannot be used to edit every gene in the OPXV genome due to
the lack of unique restriction endonuclease sites across the genome [40]. At present, no OPXV-vectored
vaccine intended for clinical trials or marketing authorization application has been generated by direct
in vitro ligation [22]. Unlike homologous recombination, BAC recombineering requires less than 50 bp
of flanking arms, generates marker free recombinants without time consuming plaque purification,
and allows editing of multiple genes in parallel as well as the isolation of fitness-disadvantaged
mutants [33]. However, BAC recombineering poses the risk of insertion of bacterial sequences and
transposons into BAC clones as well as the potential risk of recombination between the BAC clone
genome and the helper poxvirus during virus reconstitution [34]. Currently, no poxvirus-vectored
vaccine generated by BAC recombineering is in clinical development although the method has been
used to demonstrate that the six major deletions in the genome of the MVA vector are not sufficient for
its host range defect in most mammalian cells [42]. Thus, for convenience, effectiveness, cost and time,
a more efficient and straightforward approach to editing OPXV genomes for generating recombinants
would be beneficial to vaccine and vector development.

3. CRISPR/Cas9—A New Addition to Modern Genome Editing Toolbox

The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)/associated protein 9) is one of the latest introductions to the tools of modern genome
editing. Derived from the Streptococcus pyogenes Type II CRISPR/Cas system [43,44] where the gRNA
(guide RNA)-guided cas gene targets and breaks DNA at specific sequences [45,46], CRISPR/Cas9
has been adapted to editing genomes of virtually any organism [43,44,47]. In bacteria and archae
where it plays an important role in the adaptive immune defence process, CRISPR/Cas activity
is generally characterized by (1) adaptation—which leads to insertion of new spacers in the
CRISPR locus; (2) expression—which primes the system for action by expressing the cas gene
and transcribing the CRISPR into, first a precursor CRISPR/RNA (crRNA), and then a mature
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crRNA; (3) interference—during which the target nucleic acid is recognized by its PAM (a conserved
dinucleotide-containing Protospacer Adjacent Motif sequence upstream of the crRNA binding region)
and nicked by the combined action of crRNA, a transactivating CRISPR RNA (tracrRNA) and
Cas proteins [48]. In CRISPR/Cas9, crRNA and tracrRNA are fused to form sgRNA (single guide
RNA) [45,46], which directs the Cas9 to the specific DNA sequence to be cut (Figure 1).

The repair of the specific single double-stranded break made by CRISPR/Cas9 in a targeted region
of the DNA by the preferred Non-Homologous End Joining (NHEJ) is error prone. Thus, during repair
by this pathway, substitutions, insertions and deletions (indels) often occur leading to frameshift or
premature stop codon that can inactivate the gene [49,50]. The less preferred Homology Directed Repair
(HDR) can be induced in the presence of a homologous gene template (Figure 2C), which is precisely
incorporated into the cut region via homologous recombination [49,50]. Either or both pathways
can be manipulated for genome editing by the CRISPR/Cas9 system—NHEJ for gene knock-out,
and HDR for gene knock-in. CRISPR/Cas9 technology has been successfully used to introduce
changes in the genomes of viruses [51], bacteria [52], yeasts [53], plants [54], and animals [55–57]. This
technology is now widely explored as a therapeutic strategy against infections [58] (Tables 1 and 2,
Sections 2.1 and 2.2), various non-malignant and malignant diseases [59–63], and in vaccine
development and gene therapy [64,65]. In cancer treatment, clinical trials of CRISPR/Cas9-based
therapy have been initiated [63], and several preclinical studies involving CRISPR/Cas9-mediated
correction of human genetic diseases are underway [66].
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Figure 2. (A) crRNA and tracrRNA are fused to form the sgRNA; (B) sgRNA interacts with Cas9
and with a section (a short homologous sequence of about 20 nt –protospacer) on the target DNA
(e.g., a virus, provirus or genomic DNA), thus directing the Cas9 to a specific site on a target
DNA. The Cas9 nuclease activity results in a double stranded cut (indicated with the scissors) in
the target DNA; the cut stimulates the cell’s DNA repair mechanism. RNP Complex: Cas9/gRNA
Ribonucleoprotein. (C) In the presence of a DNA template with flanking sequences homologous to the
cut regions of a target DNA, the Homology Directed Repair (HDR) mechanism can be activated and be
exploited to generate a recombinant virus, e.g., recombinant MVA. M: marker gene; TG: foreign gene;
and P: promoter.
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Table 1. Overview of CRISPR/Cas9 applications in genome editing of orthopoxvirus and other human
viruses of clinical relevance.

Virus Target in Virus Genome Description Reference

Vaccinia virus
N1L, A46R Dual deletions of N1L and A46R virulence

and host immune regulation genes [64]

TK Deletion of TK gene to increase selective
replication in cancer cells [65]

Epstein-Barr Virus EBNA1, OriP, W repeats Inhibition of EBV replication and clearance
of virus from infected tumour cells [67]

EBNA1, EBNA3C, EBNA-LP
BKRF4 Decrease in viral load/replication [68,69]

Human Immunodeficiency
Virus-1

LTR, Gag, Pol, Tat, Rev, Env

Disruption of single loci partially inhibited
viral replication and created escape
mutants; Disruption of multiple loci
completely abrogated viral replication and
prevented virus escape

[70,71]

5′-3′ LTR region

Precise removal of entire pro-viral genome
spanning 5′-3′LTR from latently infected
human CD4+ T cells; diminished viral
replication in infected human primary
CD4+ T cells

[72]

TATA box, Transactivation
Response (TAR) element, Rev
Response element (RRE)

Specific changes in HIV-1 genome may
avoid DSB repair of CRISPR/Cas9
introduced changes in HIV-1 and
generation of resistant HIV-1 strains

[73]

Gag, Pol, Rev, LTR Inhibition HIV-1 infection (early phase) [74,75]

Gap, Pol, Env, Rev LTR, Vif, Affects viral replication and escape [75–77]

JC Polyomavirus
non-coding control region
(NCCR), Capsid proteins VP1 and
VP2

Editing NCCR and late region inhibits virus
replication [78]

Adenovirus (Adv-EGFP and
Adv-DsRed recombinants)

Enhanced green fluorescent
protein (EGFP) and Red
fluorescent protein

Targeted site-specific mutations in EGFP
and DsRed transgenes [79]

Herpes Simplex Virus-1

ICP0, non-coding region
UL37-UL38 ICP0 double knock out [80]

miRNAs –BART5, BART6 and
BART16 Inhibition of HSV-1 replication [81]

Intergenic space UL26-UL27 Induce recombination [82]

Human Cytomegalovirus UL54, UL44, UL57, UL70, UL105,
UL86, UL84, US6, US7, US11 Inhibition of HCMV replication [81]

Hepatitis B Virus

Covalently closed circular DNA
(cccDNA) Inactivation of HBV cccDNA [83–87]

Several conserved genomic
regions Inhibition of viral replication [88]

HBV surface protein (HBsAg)
encoding region Inhibition of viral replication [89]

HBV core (HBcAg) and surface
(HBsAg) proteins

Reduced HBV expression;
clearance of virus [90]

Human Papilloma Virus-16 E6, E7 genes, promoter of E6/E7
Reduced proliferation of HPV16-positive
cells and inhibition of tumorigenicity in
xenograft studies

[91]

Zika virus 24 conserved genomic regions of
Zika virus

CRISPR/Cas9-based methodology to
discriminate strains at single base
resolution

[92]
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Table 2. Overview of CRISPR/Cas9 applications in virus-host interaction.

Virus Target Effect PMID

Hepatitis A virus
Cellular protein
glucose-regulated
protein 78 (GRP78)

Antiviral protein: knockout of GRP78 enhances
HAV replication in Huh7 cells [93]

Hepatitis B virus

Cellular proteins p53 and
PTEN

Knockout of p53 and PTEN accelerates
HBV-induced HCC in adult HBV transgenic
mice

[94]

miR-3188 KO of miR-3188 inhibited xenograft tumour
growth of HBV-positive HCC in nude mice [95]

Complete genome
Complete removal of integrated HBV genome
in HCC resulted in very low levels of
supernatant HBV DNA, HBsAg and HBeAg

[96]

CDC42 KO of CDC42 in HuH-7-HBx cells reduced
proliferation mediated by pX protein of HBV [97]

DNA polymerase K KO prevents conversion of relaxed circular
HBV DNA into ccc DNA [98]

S and X genes Reduced viral infectivity [99,100]

Regulatory region Inhibits HBV replication [101]

Hepatitis C Virus

STAT1 and STAT2 in
Huh-7.5 cells

Inhibition of HCV replication by IFNλ depends
on STAT1 and STAT2, while STAT2 is necessary
for IFNα-induced inhibition of HCV replication

[102]

ISG15 KO of ISG15 increases HCV replication [103]

CLDN1, OCLN and CD81 are necessary for
cell-free entry and cell-to-cell transmission of
the virus

[104]

Herpes Simplex Virus-1 LULL1 LULL1 KO reduces HSV-1genome replication
10-fold [105]

ICP0 Reduced viral infectivity [106]

Human Immunodeficiency
Virus-1

CCR5
KO of the CCR5 receptor in CD34+
hematopoietic stem cells makes them resistant
to HIV

[107]

Cellular genes Interaction between capsid protein and
IFNα-induced antiviral factors [108]

LTR and gag gene Cleavage of integrated viral DNA resulting in
eradication of the virus [109]

Cellular protein
SAMHD1

Moe efficient HIV-1 infection in SAMHD1 KO
THP-1 cells [110]

LTR Remove integrated viral genome [111–113]

CCR5 KO of CCR5 co-receptor prevents HIV-1
infection [114,115]

LTR Activation of latent HIV-1 infection [116]

CXCR4 KO of CXCR4 makes CD4+ cells resistant to
HIV-1 infection [117]

ESCRT-II KO of ESCRT-II reduces virus production and
budding [118]

ER-Mannosidase I gene
(MAN1B1) MAN1B1 is involved in env degradation [119]

TSPO (mitochondrial
translocator protein) TSPO inhibits HIV-1 Env expression [120]
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Table 2. Cont.

Virus Target Effect PMID

Human Immunodeficiency
Virus-2 BST2 (=tetherin) in H9 cells BST2 is necessary for HIV-2 release [121]

Epstein-Barr Virus

Multiple cellular proteins sgRNA library was used to identify cellular
targets that EBV uses to transform cells [122]

CD63 KO reduces exosomal package of LMP1 [123]

BART promoter Protocol 558 bp deletion in BART promoter [124,125]

Episomal EBV genome which facilitates
cloning and sequencing [126]

Ebola virus ER chaperones calnexin and
calreticulin

KO of calnexin or/and calreticulin decrease
expression of EBOV glycoprotein GP in
HEK293T cells

[127]

Picornavirus
(polio and entero) Multiple cellular proteins sgRNA library was used to identify cellular

targets [128]

Zika virus AXL (attachment factor for
ZIKV) KO of AXL has no effect on ZIKV entry [129]

Zika and Dengue virus

ER-localized signal
peptidase SEC11

Cavinafungin, an antiviral drug against
Zika and Dengue viruses, inhibits signal
peptidase and thereby inhibits virus
replication

[130]

Genome-wide screen of host
genes

AXL, NDST1, EXT, EMC and other cellular
proteins are required for viral entry [131]

Flavivirus Genome-wide screen of host
genes

Reduce flavivirus infection: ER-associated
signal peptide complex (SPCS1) [132]

Alphaviruses Cellular genes Antiviral activity against alphaviruses
(IFR3-STING pathway) [133]

KSHV

Cellular protein SIRT1
KO of SIRT1 reduced cell proliferation and
colony formation of KSHV-transformed
cells

[134]

Cellular Lipoxin A4 receptor
(=ALX/FPR)

Effect on KSHV-mediated
anti-inflammatory response [135]

RSV Cellular IDO
(indoleamine-2,3-dioxygenase)

RSV regulates immune response of
mesenchymal stem cells by upregulating
expression of IDO

[136]

HCMV Cellular protein kinase R Viral replication [137]

JCPyV LTAg Inhibition of LTAg expression inhibits viral
replication [138]

Sindbis virus eIF2A or/and eIF2D eIF2 KO HAF1 cells had no effect on
translation of viral mRNA [139]

4. Applications of CRISPR/Cas9 in Genome Editing of OPXVs and Other Viruses of
Clinical Relevance

4.1. Targeted Editing of Virus Genomes

Viruses depend on host factors for their replication, thus, it was more challenging, compared
to self-reproducing organisms, to adapt modern genome editing tools in editing virus genomes [80].
The success being recorded with CRISPR/Cas9 in generating virus mutants, inactivating viral
replications and clearing viruses from infected cells (Tables 1 and 2) can be attributed to the simplicity,
flexibility, robustness and low cost of the technique (See Section 6). In VACV, CRISPR/Cas9 has been
used to generate mutants [64] that can be employed as vaccine vectors against infectious diseases,
and vectors for cancer treatment and gene therapy. The TK gene—whose deletion mutants are restricted
to replication in cancer cells, and the NIL and A46R genes that play important roles in VACV virulence
and host immune response have been edited using CRISPR/Cas9 [65], showing the ability of the system
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to edit VACV genome. In addition, in silico analysis revealed that virtually every gene in the VACV
genome can be targeted by CRISPR/Cas9:sgRNA-directed site specific mutation, and multiple target
sites for efficient HDR mediated homologous recombination have been identified in VACV genome [64].
However, CRISPR/Cas9 indels efficiency of specific genes of the cytoplasmic replicating VACV can
be low, as exemplified for N1L and A46R where the efficiency of specific mutations was ~10% [64],
unlike the higher efficiency (50%) in Adv-EGFP (Adenovirus-Enhanced green fluorescent protein)
when EGFP was targeted, and (47.5%) in Herpes Simplex virus type-1 (HSV-1) when the TK gene
was targeted [79]. Both Adv and HSV-1 replicate in the nucleus where the NHEJ mechanism is more
efficient. Nonetheless, high efficiencies (62.5% and 85% respectively) of HDR-mediated CRISPR/Cas9
editing at the same N1L and A46R gene loci in the presence of a template for recombination (the
tumour-associated antigen, TRP2, flanked by homologous sequences targeting both sides of NIL and
A46R) were achieved using a plasmid encoding Cas9 without nuclear localization signal [64].

Direct targeting and precise inactivation of proviral genomic regions of the human
immunodeficiency virus (HIV-1), Epstein-Barr virus (EBV), JC polyomavirus (JCPyV), herpes simplex
virus type 1 (HSV-1), hepatitis B virus (HBV), and human papilloma virus (HPV-16) in infected
cells by CRISPR/Cas9 have been achieved with varying degree of success (Table 1). For example,
in HIV-1, genes relevant for the virus infection, replication, and escape have been successfully
disrupted (Table 1). In a particular study, the entire proviral genome spanning 5′-3′ Long Terminal
Repeats was precisely removed from latently infected human CD4+ T cells [72], and further infections
were prevented by persistent co-expression of Cas9 and sgRNA in the HIV-1-eradicated cells [111].
Disruption of HIV-1 replication and inhibition of viral infection at early phase has also been achieved
by CRISPR/Cas9:sgRNA system [74,75]. Similarly, in HSV-1 and HBV, precise disruption or removal
of genes that are relevant for virus replication [81,88,89], recombination [82], or reduce expression of
specific genes leading to virus clearance [90] have been achieved (Table 1); see also [140] for a review
on application of CRISPR/Cas9 against human viruses. Targeting multiple genomic locations achieved
better disruption of virus replication and prevented development of mutants that are resistant to the
sgRNA in HIV-1 [70,73,111], HSV-1 [80,81], HBV [88–90], and EBV [67,68,81].

4.2. Virus-Host Interaction

Another strategy to interfere with viral infection is CRISP/Cas9-mediated targeting of host cell
factors crucial for the viral life cycle. CRISPR/Cas9 mediated disruption of genes expressing receptors
or co-receptors required for viral infection can protect host cells against infection. This has been
demonstrated for HIV-1 co-receptors CCR5 [107,114,115,141,142] and CXCR4 [117], the poliovirus
receptor [128], the HCV receptor molecules CD81, occluding (OCLN) and claudin-1 (CLDN1) [104,143],
and the AXL receptor for Zika virus in HeLa cell infection [131]. However, ablation of AXL in human
neural progenitor cells had no effect on Zika virus entry [129]. Hence, the use of AXL as a receptor by
Zika virus may be cell-specific.

CRISPR/Cas9 genomic editing can also be used to identify cellular proteins acting as anti-viral
defense molecules. Disruption of the genes encoding IRF3, STAT1, IPS1 or STING showed that these
proteins are important in anti-viral response to the alphaviruses Chikungunya virus, Venezuelan
equine encephalitis virus, and Sindbis virus infection [133]. STAT1 and STAT2 are required for
inhibition of HCV replication by IFN-λ, while only STAT2 is involved in IFN-α induced inhibition of
HCV replication [102]. CRISPR/Cas9-mediated knockout of the TSPO gene (encoding mitochondrial
translocator protein) or MAN1B1 gene (encoding endoplasmic reticulum Class 1α mannosidase) in
HEK293T cells demonstrated that these proteins are implicated in degradation of HIV-1 Env, resulting
in inhibition of HIC-1 replication [119,120].

Alternatively, CRISPR/Cas9 can be used to prevent that the virus evades inflammation and the
immune response. This strategy has been successfully applied to enhance the immune response against
respiratory syncytial virus (RSV). RSV can infect mesenchymal stem cells (MSCs), which are known to
regulate immune response via immune regulatory factors, including cytokines, interferons, inducible
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nitric oxidase, and indoleamine-2,3-dioxygenase 1 (IDO-1). RSV infection of MSCs resulted in ~70-fold
increase in IDO-1 protein levels [136]. Conditioned medium from RSV infected MSCs gave significantly
lower proliferation of peripheral blood mononuclear cells (PBMCs) compared to conditioned medium
from mock infected cells. The authors showed that CRISPR/Cas9-mediated knockout of the IDO1 gene
in MSCs cells prevented the anti-proliferative effects of conditioned medium from RSV-infected MSCs,
and concluded that that RSV-induced expression of IDO might diminish the protective immunity
against RSV infection.

Genomic editing is an elegant technique to identify host cell proteins that are involved in viral
replication. The CRISPR/Cas9 method allowed the identification of a luminal domain such as LAP1
(LULL1) as a crucial host protein in assembly and packaging of HSV-1 [105], while cellular protein
kinase R blocks HCMV replication [137]. HCV replication is inhibited by the ubiquitin-like protein
ISG15 [103], while knockout of cellular DNA polymerase K prevents conversion of relaxed circular
HBV DNA into covalently closed circular DNA and subsequent HBV replication [98]. BST-2 or
tetherin was shown to prevent the budding of HIV-2 [121]. HIV-1 production is reduced and viral
export is impaired in cells where the endosomal sorting complex for transport II protein EAP45
has been ablated [118], whereas knockout of the SAMHD1 gene, encoding the deoxynucleoside
triphosphate triphosphohydrolase SAM domain- and HD domain containing protein 1 (a), increased
HIV-1 infection [110].

Genomic editing has also identified several cellular proteins used by members of the Flaviviridae
family. West Nile virus, Dengue virus, Zika virus, Yellow fever virus, Japanese encephalitis virus,
and HCV replication all depended on genes whose products are associated with endoplasmic
functions such as translocation, protein cleavage, and N-linked glycosylation (e.g., OSTC, STT3A,
SEC61B, SEC63, SPCS1, SPCS3, translocon-associated protein complex proteins SSR1, SSR2 and
SSR3), as well as in endocytosis (RAB5C, RABGEF, WDR7, ZFYVE20), posttranslational modification
(NDST1, SST3A, EXT1 and EXT3), and in transmembrane processing and maturation (EMC1-10, SSR2,
and SSR3) [131,132,143]. Moreover, HCV replication depended on RNA binding proteins (e.g., ELAVL1)
and enzymes involved in metabolism such as riboflavin kinase and flavin adenine dinucleotide
synthetase 1 [143]. Translation of Sindbis virus subgenomic mRNA did not require eIF2A and
eIF2D [139]. The calnexin and calrectulin proteins, which are part of the reticulum chaperone system,
are required for efficient Ebolavirus glyprotein production [127]. Genomic editing of >10,000 genes
in HeLa cells by CRISPR/Cas9 identified the ST3GAL1 (ST3 β-galactoside α-2,3-sialyltransferase 1),
STGAL 4, COG1 and COG5 (encoding component of oligomeric Golgi complex 1, respectively complex
5), and MGAT5 (mannosyl (α-1,6-) glycoprotein β-1,6-N-acetyl-glucosaminyltransferase) as essential
host genes for enterovirus replication [128]. The cellular proteins SAMD9 and WDR6 form host
restriction factor that prevent VACV replication in human cells [144]. CRISPR/Cas9-mediated mutation
of the gene for glucose-regulated protein 78 (GRP78), an endoplasmic reticulum chaperone, enhanced
hepatitis A virus replication [93].

4.3. Cellular Genes and Viral Induced Tumorigenesis and Pathogenicity

Finally, host cell genome editing unveiled cellular genes involved in the virulent properties of
viruses. CRISPR/Cas9-mediated ablation of p53 and PTEN accelerated liver tumorigenesis in HBV
transgenic mice [94], while HBV-mediated upregulation of cellular microRNA miR-3188 promoted cell
proliferation, cell growth, migration, and invasion of HCC cells [135]. Moreover, CRISPR/Cas9-based
studies showed that the HBV protein HBX stimulates proliferation and cell mobility, and inhibits
apoptosis of the hepatocellular carcinoma HuH-7 cells via the small GTPase CDC42 [97]. CRISPR/Cas9
editing showed that the cellular protein CD63 is involved in exosomal transmission of the Epstein-Barr
virus (EBV) latent membrane protein 1 (LMP1) oncoprotein [123] and identified 57 cellular genes in
EBV-dependent Burkitt’s lymphoma and 87 genes in EBV-infected lymphoblastoid essential for cell
growth and survival [122]. These genes encode among others, proteins involved in signal transduction,
tumour suppressors, cell cycle control and cell survival. CRISPR/Cas9-mediated knockout of the



Viruses 2018, 10, 50 12 of 27

NAD+-dependent protein deacetylase SIRT1, a potential oncoprotein, suppressed proliferation and
colony formation in soft agar of KSHV-transformed cells. These findings suggest that SIRT1 contributes
to KSHV-induced tumorigenesis [134]. The genes EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1,
and SYVN1 whose products belonged to the endoplasmic reticulum-associated protein degradation
pathway protected against West Nile virus- and Saint Louis encephalitis virus-induced cell death.
However, knockout of these genes did not block viral replication [145].

5. CRISPR/Cas9: A Veritable Tool for Advancement of OPXV-Based Vaccines and Vectors?

Several OPXV-based recombinant vaccines and vectors are currently at different stages of clinical
trials. Many of the vaccines and vectors are based on VACV, MVA, NYVAC, Raccoon poxvirus,
and modified Vaccinia Tian Tian (MVTT) OPXV strains, and they target malignancies (e.g., prostate,
skin, colorectal, breast and ovarian cancer) [146–149]) and infectious diseases (e.g., AIDS, malaria,
ebola, tuberculosis, hepatitis, influenza) (Supplementary Table S1). In many parts of Europe, Canada
and USA, a VACV recombinant vaccine–Raboral V-RG was deployed to eradicate Rabies virus
from the wild fox population [9,10], and several OPXV-based vectored vaccines have been used
in preventing animal diseases [150]. Despite these advances, none of the OPXV-based recombinant
vectors or vaccines has been licensed for human use. The main drawbacks include low predictability of
attenuation; sub-optimal immunogenicity; transgene instability; potential for reversion of attenuation
or to wild-type strain; potential of transmission to non-target hosts; and exchange of genetic materials
with viral strains in the environment [20], which are some of the considerations for efficacy, patient’s
safety and environmental safety during evaluation of genetically modified vaccines and vectors for
approval [18–20]. Can the CRISPR/Cas9 system facilitate the development of OPXV-based recombinant
vaccines with a superior level of immunogenicity, limited potential to spread to non-target host,
relatively stable against reversion of attenuation, high predictable level of attenuation not offered by
the classical methods?

5.1. Genome and Transgene Stability

Apart from arming the recombinants with the transgenes against the targeted disease, several
strategies to increase the efficacy, e.g., immunogenicity, of OPXV-based recombinant vaccines and
vectors include insertion of immunomodulatory and co-stimulatory genes, and gene deletion both
to attenuate and increase immune induction. In MVA the immunomodulatory genes targeted for
deletion include 146R [151], 153L [152], 157L [153], 159R [153], 183R [154], 184R [154], O19L [155],
and 050L [156]. In many cases, several genes are deleted in parallel. This strategy has been used to
improve antigen presentation, priming of immune cells and subsequent synthesis of immune effectors
and host response to transgenes [152–155]. For oncolytic VACV and MVA recombinants, knock-out
(or replacement with intended transgene) of the TK gene to restrict virus replication to tumour cells
is an additional strategy to ensure safety. A genome editing system such as CRISPR/Cas9:sgRNA
that requires few virus multiplication cycles will reduce selection pressure on the vectored vaccine.
For example, the TK gene was replaced (with the red fluorescent protein (RFP)) at a greater than
90% rate in VACV [65]; further, several sgRNA target sites have been mapped on VACV genome
enabling targeting of multiple genes in parallel. The technology has been applied to effectively
develop an efficient anti-H5N1 polyvalent duck vaccine within 3 weeks [157]. High selection pressure
often results when recombinants must be passaged through multiple cycles, especially in knock-in of
several antigens for polyvalent vaccines/vectors. With the current classical methods, it can take up to
10 rounds (lasting 4–6 weeks) of plaque purification (with low success rate) of obtaining the desired
recombinant [158]; but with CRISPR/Cas9, desired VACV recombinants were obtained in 3 rounds of
purification [64]. Indeed, the CRISPR/Cas9 in combination with Cre/Lox system has been used to
develop a stable anti-pseudorabies virus (PRV) vaccine of pig [159]. Recombinant PRV with double
gene deletion was obtained in a single round of plaque purification (instead of 10 rounds of plaque
purification by traditional strategy), which enhanced both the efficacy and stability of the recombinant
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vaccine [159]. Transgene instability (mutation in the insert) and/or genome instability (mutation
outside the insert) in recombinants can result from high selection pressure due to multiple passage
cycles. Instability in rMVAs have been reported [41,160,161]; in one of the reports [160] the transgene
was completely lost. Transgene/genome instability can compromise the efficacy of the vaccine; and
loss transgene(s) will impede post-release monitoring or monitoring of escaped recombinants given
that the transgene(s) is the tag for tracking the recombinants.

5.2. Predictability of Attenuation and Host Range Restriction

Apart from history of safe use, the good safety profile of MVA is predicated on the virus’s host
range restriction—being unable to produce progeny viruses in human cells and most mammalian cell
lines. However, the molecular basis for MVA’s host restriction has yet to be determined because the
specific gene deletions and mutations that are responsible for the lack of full replication in most cells
have not been identified [42], although the deletions and mutations responsible for the virus overall
attenuation are known [162]. For example, the finding, using BAC recombineering, that the six major
VACV gene deletions in MVA were not sufficient for the latter’s restricted host range indicates the
existence of other culprits, but the limitations of BAC and the other classical methods have been a
hindrance in elucidating these [42]. In addition, the exact roles of the several mutations across the
genome of MVA have not been deciphered. At the moment, production of viral progenies in human
vaccinees and subsequent spread to non-target hosts cannot be completely ruled out because only
a limited range of human and mammalian cell lines have been tested for full virus multiplication;
moreover, in some human cell-lines, e.g., HeLa and HEK293, semi-productive infections have been
reported [163,164]. The advantages of CRISPR/Cas9 system can be exploited to elucidate the molecular
basis of MVA attenuation and host range restriction. This information will help to develop measures
to avoid or reduce spread of rMVAs and transgenes to non-target hosts and the environment.

5.3. Elucidation of Factors that Influence rMVA Vaccines and Vectors

In addition to lack of knowledge of the specific mutations that determine MVA host range
restriction, knowledge gaps exist in the study of virus and host factors that influence rMVA
vaccines/vectors. Research is currently underway to establish how transgene stability is affected
by expression levels of transgene, timing of transgene expression, transgene insertion site,
and sequence/structure of the transgene/flanking region [161,165,166]. Also, more research is required
to elucidate how rMVAs are influenced by promoter choice and promoter spacer length [41,167],
and host cell used for recombinant virus amplification [11]. Given the simplicity with which
recombinant VACV was generated by the CRISPR/Cas9 system, an exponential increase of its
application in basic research targeting the highlighted issues in generating recombinant OPXVs
is expected. Filling these knowledge gaps will advance the design of rMVA vaccines and vectors;
it will also facilitate the risk assessment of such products.

6. CRISPR/Cas9 Versus Other Modern Genome Editing Tools

Currently, CRISPR/Cas9 technology is being applied more extensively than TALENs
(Transcription Activator-Like Effector Nucleases), ZFN (Zinc Finger Nucleases), ODM (Oligonucleotide
Directed Mutagenesis), Cre/Lox and FLP-FRT recombination systems. TALENS and ZFN were
previously considered the best programmable and precise techniques for genome editing [168]. Like
CRISPR/Cas9, both TALENs and ZFN are chimeras of sequence-specific DNA-binding guides that
are linked to a non-specific DNA cleavage nuclease. However, unlike Cas9 which is an RNA-guided
nuclease, Fok1 in TALENs and ZFN are guided by a protein. TALENs are fusions between the
FokI DNA cleavage domain and DNA-binding domains derived from TALE proteins, while ZFNs
are fusions between the FokI DNA cleavage domain and zinc-finger proteins. Both TALENs and
CRISPR/Cas9 are based on bacteria secretion systems (TALENs on the Genus Xanthomonas bacteria
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Type III secretion system [169]; CRISPR/Cas9 on Streptococcus pyogenes Type II secretion system [43,44]).
ZFN and TALENs both share the similarity of the use of Fok1 restriction endonuclease.

The genomes of HIV-1, HPVs, HSV-2 and HBV have also been edited using TALENs and ZFN [170–174],
but to a lesser extent compared to CRISPR/Cas9. All three genome editing tools are associated with
off-target effects, sub-optimal efficiency in non-bacterial systems and generation of escape viruses,
however, CRISPR/Cas9 achieves a much higher efficiency (up to 85% for HDR mediated CRISPR/Cas9
knock-in in VACV [64]) than TALENs and ZFN. In addition, CRISPR/Cas9 is relatively easy to design
and construct requiring only the fusion of a 20-nucleotide genomic target site into the overall sgRNA.
Further, algorithms are available to predict putative off-target sequences of a sgRNA, and the Cas9
nuclease is re-usable. On the other hand, custom design and synthesis of TALENS and ZFN, which
are based on the rearrangement of their modular DNA-binding domains, require labourious cloning
techniques and rigorous testing [175,176]. Further, the cost of the CRISPR/Cas9 system is much
lower—approximate cost required to generate a single, gene specific candidate CRISPR/Cas9 reagent is
<100 USD compared to circa 1000 USD for TALENS and 5–10,000 USD for ZFN [177]. These advantages
have made the CRISPR/Cas9 system more robust and applicable to overcoming the challenges related
to virus genome editing. The superiority of CRISPR/Cas9 notwithstanding, researchers are combining
some properties of TALENS and ZFN with CRISPR/Cas9 to achieve an improved system. For example,
Cas9 has been fused to FokI (fCas9) to achieve reduced off-target effect of the CRISPR system [178].

7. Limitations of CRISPR/Cas9 in Virus Genome Editing

Sub-optimal efficiency in eukaryotic cells and viruses: high efficiency (up to 100%) of CRISPR/Cas
system has been obtained in bacteria in which the system is naturally expressed [179], but in eukaryotic
cells, e.g., human cell lines, efficiency of the Streptococcus-derived CRISPR/Cas9 varies between 2%
and 38% [180,181], although studies with cells and living organisms have demonstrated up to 100%
efficiency with improved CRISPR/Cas9 systems [49,182–185]. Beside not being a natural system
in eukaryotes, CRISPR/Cas9 will be expected to be less efficient in editing the double alleles of a
densely packed eukaryotic chromosome compared to the simpler haploid bacterial chromosome, but
various strategies are being employed to improve efficiencies in non-bacterial systems. For viruses,
the number of genome copies varies in infected cells—fewer genome copies will be present early in
the infection cycle than later when viral genome replication has occurred. Virus replication site and
multiplicity of infection (MOI) are other factors that have been reported to influence the efficiency of
CRISPR/Cas9 in editing of virus genomes [64,65]. For example, and as stated in Section 4, the efficiency
of NEHJ-mediated CRISPR/Cas9-induced specific indels in VACV was less than 10% [64], although for
the HDR mediated homologous recombination at the same gene loci of N1L and A46R, the efficiencies
were 60% and 94% respectively [64,65]. However, in HSV-1 the CRISPR/Cas9 indel efficiency at the gE
gene locus was as high as 50%; and 47.5% in a recombinant adenovirus (Adv-EGFP) when enhanced
green fluorescent protein (EGFP) was used as the target gene to be edited by Cas9 [79]. The lower
genome editing efficiency observed in VACV was attributed to the site of replication being in the
cytoplasm where the efficiency of NEHJ DNA repair mechanism is low compared to the nucleus.
In Adv, genome editing peaked between 24 and 36 h post transfection [79], which are time points when
viral genome replication had occurred with attendant high viral copies. High virus density—MOI of
1–10 was found optimal for Adv and VACV [64,79].

Furthermore, sgRNA concentration and sensitivity [79]; number of genes to be edited e.g.,
knock-in of single genes (e.g., 62.5% efficiency of N1L and 85% efficiency of A46R) was more efficient
than the simultaneous knock-in of both genes (60% efficiency) [64]. Efforts, such as inhibiting the error
prone NHEJ while giving a competitive advantage to HDR, are underway to improve the efficiency of
the CRISPR/Cas9. For example, introduction of NHEJ inhibitor, SCR7, to the CRSPR/Cas9 system
greatly increased its efficiency in gene knock-in editing of HSV-1 [80]. Also modifications in the current
sgRNA structure such that it is closer to the structure of the bacterial tracrRNA has been shown to
improve the efficiency of CRISPR/Cas9 knock-out genome editing [186].
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Target specificity and off-target effect: the sequence specificity of the widely used Cas9 from
Streptococcus pyogenes Cas9 permits up to four nucleotide base mismatches between the sgRNA and
complementary sequence of the target nucleic acid, thus resulting in non-specific binding which
often leads to cleavage of non-target regions of the genome [43,187,188]. Mismatch tolerance has
been reported to generally depend on position of mismatched nucleotide in the sgRNA relative to
the PAM sequence [189], concentration of sgRNA:Cas9 complexes, sgRNA length and activity [188].
Determinant of sgRNA: Cas9 specificity and thus off-target effect of a CRISPR/Cas9 system include
sgRNA sequence construct, Cas9: sgRNA abundance, length and composition of PAM, nature of
seed region, i.e., PAM-proximal 10–12 bases, accessibility and abundance of seed match genomic
site and sgRNA scaffold; for a comprehensive review on determinants of Cas9:sgRNA specificity
see [190]. For example, Bi et al. showed through sequence alignment that their sgRNA constructs for
modifications of Adv and HSV-1 had different off-targets: 76 sgRNA-175 off-target sites are present in
the human genome in which 19 are located in the exons of protein-coding genes [79]. The off-target
sites for sgRNA-174, sgRNA-173, and sgRNA-206 that are present in the human genome are 123, 34,
and 8, respectively [79]. However, the genome of viruses being smaller (most viruses have a genome
between 3000–200,000 nucleotides compared to the 3 × 109 in the human genome), fewer off-target
effects can be expected. For example, when the sgRNA-175 sequence was aligned against the Adv
and HSV-1 genomes, no significant homologous sequence was found [79]. Similar observation of no
potential off-target region was obtained when the sgRNAs used in editing the VACV were aligned to
the virus genome [64,65].

Several methods exist to detect off-target effects of the CRISPR/Cas9 technology (for a review
see [191]). T7E1 cleavage assay, sequencing PCR-amplified potential off-target sites, whole genome
sequencing (WGS) or exome sequencing are the most commonly used techniques. While WGS
and exosome sequencing provides most sequencing data, these methods will identify variations
throughout the complete or coding genome. Therefore, algorithms (e.g., CRISPR Design web server
(http://crispr.mit.edu) that predict potential off-target sites should be used to authenticate whether de
novo mutations in genomes are caused by CRISPR/Cas9-mediated genome editing events. Moreover,
the mutation frequency may also indicate whether the mutations are the result of CRISPR/Cas9 or
occurred spontaneously because the estimated spontaneous mutation frequency of the human genome
is around 1.5 × 10−9 [192].

Various strategies are being devised to increase specificity and minimize CRISPR/Cas9 off-target
effects. One strategy is to generate Cas9 nickase mutants, which required two sgRNAs on opposite
strands flanking the target site for its double strand break activity [180,193,194]. A Cas9 nickase fused
to cytidine deaminase has also been used to achieve site-specific single-base mutations in multiple
gene loci [57]. Another strategy was to fuse a catalytically inactive Cas9 and the FokI endonuclease
(fCas9) to produce an RNA-guided active FokI-dead-Cas9 nuclease [178,195,196]. Inhibition of Cas9
by anti-CRISPR protein AcrIIA4 has also been reported [197]. Truncation of sgRNAs such that they
bear shortened regions of target site complementarity has also been used to reduce the off-target effect
of CRISPR/Cas9 system [193,195,198]. Further, algorithms are being used to predict off-target sites in
the viral genomes for a specific sgRNA [199].

Development of resistant escape virus variants: viruses have been reported to develop resistance to
CRISPR/Cas9 or acquire revertant phenotypes over multiple infection cycles. Wang et al. [76] reported
HIV-1 resistance to CRISPR/Cas9 in a viral evolution experiment using CD4+ T cells expressing
Cas9/sgRNA that targets the HIV-1 genome. The group showed viral escape from Cas9/sgRNA on
the basis of Cas9-induced indels in the targeted viral sequence [76]. The indels were not deleterious for
viral replication, but were refractory to recognition by the same sgRNA in a different infection cycle
as a result of changing the sequences of target DNA. Sites of resistance in HIV-1 induced by indels
are common in the Cas9 cleavage sites [70,73,76,111]. Indels are more common in coding regions than
non-coding regions; in the experiment by Yoder and co-workers, indels at targeted non-coding regions
were single base-pairs, but were 3 base-pairs in coding regions [73].

http://crispr.mit.edu
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Similarly, in human cytomegalovirus (HCMV) and HSV-1 where essential genes were targeted for
editing by CRISPR/Cas9, virus variants that harbour mutations but still express functional proteins
were detected [81]. This type of escape variants were able to bypass CRISPR/Cas9 editing by the same
CRISPR/Cas9:sgRNA in subsequent passages [81]. However, when multiple essential genes were
targeted using several sgRNAs, development of escape variants was prohibited [81]. Combinatorial
CRISPR/Cas9 gene editing approach has also been used to halt development of escape variants [70].
Targeting sgRNAs to DNA sequences that are transcribed in codons for essential amino acids in the gene
product could also help in prohibiting development of resistant variants, because any substitutions
of these crucial amino acids will render the resultant proteins non-functional. Further, development
of new Cas9 to cleave at sites outside the target has also been proposed as a strategy to inactivate
resistant variants [200,201].

8. Conclusions and Future Prospects

The CRISPR/Cas9 system is revolutionizing genome editing approaches. Compared to other
target-guided nuclease-based methods, the robustness, effectiveness, low cost and simplicity of
CRISPR/Cas9 has made it easily adaptable to editing the genomes of almost any organism including
viruses. The technique has been used to customize modifications in several viruses with the aim
of generating recombinant mutants, inhibition of virus replication, excision of provirus genes or
mutations in host cell receptors to prevent virus infection. The successful application of CRISPR/Cas9
to generate mutant VACV recombinants paves the way for its application in genome editing of other
vaccine/vector-relevant OPXV strains. The technique can thus be applied in tackling some of the
hindrances to approval of OPXV-based recombinant vaccines and vectors, which include sub-optimal
immunogenicity, non-predictability of attenuation, reversion of attenuation, transgene/genome
instability, potential of spread of transgenes to wildtype strains and/or close human and animal
contacts of vaccinees or patients undergoing oncolytic therapies.

However, the full potential of CRISPR/Cas9 will be realised when several of the limitations of
the technique including off-target mutations, escape virus variants and sub-optimal efficiency are
overcome. Several improved CRISPR/Cas9 systems are already being developed, e.g., the Cas9 nickase
variants which improves specificity by requiring two sgRNAs on opposite strands flanking the target
site; the Cas9 nickase-cytidine deaminase fusion, which is used to achieve site-specific single-base
mutation without requiring double strand breaks; the Fok1-dead-Cas9 nuclease -a catalytically inactive
Cas9 employed to minimize the endonuclease activity of Cas9; and inhibition of Cas9 by AcrIIA4 to
reduce off-target activity of Cas9. CRISPR/Cas9 can also be coupled to synthetic biology techniques,
thus, enabling genome manipulation to the extent which the classical molecular biology techniques
cannot, thus opening new frontiers in vaccine and vector development.

Further, the full potential of the CRISPR/Cas9 system will be harnessed for vaccine and vector
development if, from the early stage, research in the area of safety, including biosafety related to the
use of the technique is also taken into consideration. Presently, the focus of research on CRISPR/Cas9
is predominantly on improving specificity and efficiency, and limiting off- and on-target effects of
the system. Research is also required on the biosafety implications of off- and on-target effects of the
CRISPR/Cas9 mutations, in particular, characterizing the outcomes of such unintended effects by
coupling them to phenotypic changes in the virus and host. The results of such research will contribute
to advancing the use of the technique in advancing OPXV-based vaccine/vector development. It will
also help in the on-going debate in the European Union and other regions of the world on how to
regulate products of CRISPR/Cas9.
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