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Abstract: Integration of a reverse transcribed DNA copy of the HIV viral genome into the 

host chromosome is essential for virus replication. This process is catalyzed by the virally 

encoded protein integrase. The catalytic activities, which involve DNA cutting and joining 

steps, have been recapitulated in vitro using recombinant integrase and synthetic DNA 

substrates. Biochemical and biophysical studies of these model reactions have been pivotal 

in advancing our understanding of mechanistic details for how IN interacts with viral and 

target DNAs, and are the focus of the present review.  
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1. Introduction  

HIV-1 integrase (IN) catalyses integration of the reverse transcribed DNA copy of the viral genome 

into a host chromosome (reviewed in [1]), a step which is essential for the retroviral lifecycle. 

Integrase selectively recognizes and synapses the two viral DNA ends to form a catalytically 

competent nucleoprotein complex. Understanding of structural and mechanistic foundations for  

IN-viral DNA interactions have been the subject of intense research as both a fascinating biological 

paradigm and an important therapeutic target for the development of antiretroviral therapies. Practical 
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benefits of these efforts have been manifested by the recent discovery of the strand transfer inhibitors 

(STI) and a successful launch of Raltegravir into the clinic. Strikingly, STIs selectively bind the 

preformed IN-viral DNA complex rather than free protein [2–4], thus exemplifying the significance of 

detailed characterization of the functional nucleoprotein complexes.  

2. DNA Processing and Joining Reactions Catalyzed by HIV-1 IN 

The integration of viral DNA into a host chromosome involves two chemical reactions. In the first 

step, which is called 3’-processing and takes place in the cytoplasm shortly after the viral DNA is 

made, IN hydrolyzes a GT dinucleotide from each 3’ end of the viral DNA. In the second step, IN 

catalyzes concerted integration of the processed viral DNA ends into chromosomal DNA. The sites of 

attack on the two target DNA strands are separated by 5 bp for HIV-1 IN, which leads to DNA strand 

dissociation in the small double-stranded DNA fragment between the attachment sites. The subsequent 

repair of the intermediate species by cellular enzymes completes the integration reaction. 

In infected cells IN functions in the context of a large nucleoprotein complex termed the 

preintegration complex (PIC), where a number of viral and cellular proteins contribute to retroviral 

integration [5–17]. PICs can be extracted from infected cells and used for biochemical assays in vitro 

[18–25]. However, the amounts of these nucleoprotein complexes are not sufficient to perform atomic 

structural or even lower resolution biophysical analyses. Therefore, recombinant IN and model DNA 

substrates have been employed instead to study protein-nucleic acid interactions. Typically, purified 

recombinant protein and short DNA substrates (~21-mer dsDNA mimicking the U5 end of viral DNA) 

are utilized to monitor 3’-processing and strand transfer activities (Figure 1A). These reactions, 

however, do not yield concerted integration products and instead, result in integration of one viral 

DNA end into the target DNA. More recently, assays using a longer donor DNA substrate of several 

hundred basepairs and a second circular target DNA have been devised, which allow effective 

concerted integration of two viral DNA ends [26–31] (see Figure 1B). This improved experimental 

design has furthermore allowed isolation and characterization of critical nucleoprotein intermediates 

that are reminiscent of IN-viral DNA interactions in the PIC in the infected cells [27,28]. 

Along with the biologically relevant 3’-processing and strand transfer activities, purified IN 

exhibits additional activities in vitro. The enzyme can reverse the strand transfer reaction by site 

selectively cleaving the integrated DNA. This reaction is called disintegration [32]. A recent report has 

indicated that the recombinant protein can also catalyze internal cleavage at a palindromic sequence 

mimicking LTR-LTR junction [33,34]. However, there is no evidence as yet that these additional 

catalytic activities observed in vitro can also occur in infected cells.  
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Figure 1. Schematic presentation of HIV-1 IN activity assays in vitro. (A) These reactions 

are typically performed with purified recombinant IN and 21-mer double-stranded DNA 

mimicking the U5 sequence. The enzyme first removes the GT dinucleotide from the  

3’-terminal, and then covalently joins the recessed 3’-end to the target DNA. In these 

reactions the U5 sequence serves as both viral and target DNA. The strand transfer 

products result from integration of only one viral DNA end into the target DNA, while 

pair-wise integration products are not observed. (B) The concerted integration assays and 

critical nucleoprotein intermediates. Selective interaction of IN with viral DNA ends 

results in a highly stable nucleoprotein complex termed the stable synaptic complex (SSC). 

Next, IN in the context of SSC engages with the target DNA to form the strand transfer 

complex (STC), which carries out the concerted integration reaction. These nucleoprotein 

complexes are readily separated by native agarose gel electrophoresis. Deproteinization of 

the STC leads to the formation of the concerted integration product. The asterisks in A and 

B indicate the P32 labeled 5’-end of viral DNA. 
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3. Structure of HIV-1 Integrase  

IN consists of three distinct structural and functional domains: the N-terminal domain (NTD), the 

catalytic core domain (CCD) and the C-terminal domain (CTD) (Figure 2A). Each domain directly or 

indirectly contributes to IN-DNA interactions. The NTD, which encompasses residues 1–46, is linked 

to the CCD (residues 56–186) through a linker segment of aa 47–55. Another flexible loop comprised 

of residues 187–194 connects the CCD with the CTD (residues 195–288). Results of structural biology 

studies revealed each individual domain as a dimer [35–39]. More recent two-domain crystal structures 

comprised of the CCD and CTD [40] or NTD and CCD [41] likewise unveiled dimeric organizations. 

However, dimer interfaces for individual NTDs [35] and CTDs [38] differ from those observed in the 

two domain fragments [40,41] and it is not clear how these two domains are assembled in full-length 

oligomeric IN. In contrast, the CCD-CCD interactions have remained consistent in various constructs 

[36,37,40–42] suggesting that these protein-protein contacts are likely to be also preserved in the fully 

functional nucleoprotein complex. Structural analyses of the full-length recombinant IN or its 

complexes with model DNA substrates have not been amenable to crystallographic and NMR 

approaches. 

The NTD has a HTH fold that is conserved in all retroviral and retrotansposon integrases [35,41]. It 

contains conserved pairs of histidine (H12, H16) and cysteine (C40 and C43) residues that bind zinc 

[35,43] and contributes to functional oligomerization of IN [44,45]. The mutations of Zn binding 

residues yield monomeric IN and inhibit the 3’-processing and strand transfer reactions [46,47]. 

Furthermore, recent biochemical and structural studies implicated the NTD-CCD interactions in 

functional tetramerization of IN [47,48]. The K14A substitution at the putative NTD-CCD interface 

destabilized IN tetramers and compromised IN catalytic activities [48]. 

The CCD belongs to a superfamily of polynucleotidyl transferases that share an overall fold of 

bacterial RNase H and exhibit a similar catalytic mechanism [36]. HIV-1 IN catalytic site is comprised 

of the invariant triad of acidic residues D64, D116 and E152 that act by binding divalent metal ions 

[49,50]. Mutations of these residues severely compromise IN activities in vitro and in infected cells 

[46,51,52]. Biochemical assays with purified IN revealed that it requires either Mg2+ or Mn2+ to carry 

out the reactions with model DNA substrates. Of these, Mg2+ is considered to be the physiological 

cofactor due to its relative abundance in the cells. Several structural studies have shown a single 

divalent metal bound to the active site of the HIV-1 CCD [37]. However, based on the two-metal 

mechanism for structurally and functionally similar polynucleotidyl transferases [53,54], it has been 

proposed that DNA binding stabilizes the second metal in the active site [55]. IN uses the same 

catalytic site for 3’-processing and strand transfer reactions. Therefore, the CCD is likely to harbor 

both viral and target DNA binding sites. Furthermore, the CCD is also an essential building block for 

formation of the functional multimeric IN. The CCD-CCD interface is fairly large (~1,650 Å2) and 

mutations destabilizing these interactions adversely affect IN catalytic activities [36,41].  

The C-terminal domain (CTD) is rich in basic amino acids and adopts an SH3-like fold [38]. Other 

proteins with the same fold bind the minor groove of DNA in a nonspecific manner [56–58]. Similarly, 

the CTD is thought to provide a stabilizing platform for DNA substrates. In addition, the CTD has 

been implicated in functional oligomerization of IN. L241A and L242A mutations along the  

C-terminal dimer disrupted IN dimerization and compromised catalytic activities [59].  
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Figure 2. (A) Schematic presentation of the three domain structure of HIV-1 IN. The NTD 

residues (H12, H14, C40 and C43) coordinate Zn and contribute to the functional 

multimerization. It is not entirely clear whether the NTD directly binds viral or target 

DNA. The CCD contains the catalytic DDE motif. This domain interacts with both viral 

and target DNA. A number of residues (Y143, Q148 and K159) selectively interact with 

terminal U5 bases, while S119 has been implicated in direct interactions with the target 

DNA. The CCD is also critical for the functional multimerization. The CTD is highly basic 

and non-specifically interacts with viral DNA. Several CTD residues implicated in viral 

DNA binding are indicated. It remains to be determined whether the CTD could also 

coordinate the target DNA. (B) Sequences of U3 and U5 termini of viral DNA. The base-

pairs that are identical in U3 and U5 sequences are in bold. A majority of IN-viral DNA 

mapping experiments used the U5 sequence and the interacting sites are indicated with 

circles. Note color coordination between the residues in A and respective nucleotide 

positions in B. The catalytic residues in A and the arrow pointing to the specific cleavage 

sites at U3 and U5 termini are in red. The CCD amino acids Y143, Q148 and K159 

(colored green) have been shown to selectively crosslink with the terminal nucleotides 

marked with green circles [60]. The E246C mutant is colored blue and its multiple 

crosslinking sites [61] in viral DNA are depicted by blue circles.  

 

4. Sequence and Structure of Viral DNA 

IN productively binds U5 and U3 termini of viral DNA (Figure 2B). Footprinting of PICs isolated 

from the infected cells revealed the terminal 200–250 base pairs of each viral DNA end as primary 

protein binding sites [19]. In contrast, internal regions of the viral DNA did not exhibit strong protein 

binding. DNase I digestion of the stable synaptic complex assembled with purified IN and long DNA 
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substrates implicated much smaller segments of viral DNA. Only terminal 16 and 32 bps were 

protected in the SSCs assembled with the W235H mutant and wild type IN, respectively [27,62]. The 

significantly larger footprint observed in the nucleoprotein complexes isolated from infected cells 

could probably be explained by contributions of other viral and cellular proteins associated with the 

PICs [19].  

Biochemical studies have shown that recombinant IN exhibits comparable affinities with respect to 

specific and non-specific DNA sequences. Oligodeoxynucleotides with random sequences can 

effectively compete with IN-viral DNA interactions and impair the 3’-processing reactions [63–65]. In 

the context of infected cells this inherent property of IN is unlikely to significantly deter the retroviral 

protein from its biological target, the viral DNA ends, as the assembly of the PICs takes place in the 

cytoplasm where competition from non-specific DNA sites are likely to be minimal. Once bound to the 

viral DNA, however, IN forms a very stable nucleoprotein complex [28]. Divalent metal has been 

shown to contribute to assembly and stabilization of HIV-1 IN-viral DNA complex [66–71]. 

Functional assays have shown that IN can distinguish between the viral DNA ends and nonspecific 

substrates. Mutational studies in vitro and ex vivo have indicated the importance of CA/TG 

dinucleotide pair for effective 3’-processing of the viral DNA ends [63]. Additional proximal regions 

of viral DNA have also been implicated in specific recognition of the viral DNA [60]. Mutations at 

positions 11–13 from the U5 terminus substantially compromised 3’-processing activities of 

recombinant IN in the presence of Mg2+ ions with lesser affects being observed with Mn2+, suggesting 

a differential effect of divalent metals on sequence specific binding. Another study [72] identified 

positions 17–20 to be important for effective concerted integration in vitro. At the same time these 

experiments indicated that HIV-1 IN could tolerate significant divergence in the viral DNA sequences.  

One important feature contributing to selective recognition of the LTR termini by IN could be the 

DNA end distortion. NMR analysis of a 17 base pair oligonucleotide containing the U5 terminal 

sequence revealed that base stacking and minor groove were significantly disordered at the cleavage 

site [73]. The chemical footprinting of the avian sarcoma virus (ASV) IN complex with cognate DNA, 

moreover, revealed that protein binding further destabilized the terminal three base pairs [74]. 

Significantly, the authors observed a good correlation between DNA end distortion and cleavage 

activities [74]. Introducing mismatch bases at the terminal three positions enhanced base unstacking 

and unpairing, and substantially stimulated the site specific processing activities.  

The alternative experimental strategies to identify the LTR regions important for selective 

recognition involved application of DNA analogs. Probing effects of various DNA backbone, base, 

and groove modifications on IN catalytic activities suggested that IN requires flexibility of the 

phosphodiester backbone at the scissile bond [75]. The other study examined 2’-modified nucleosides 

and 1,3-propanediol insertions in various positions of the U5 sequence [76]. Akin to the mutagenesis 

experiments [60] divalent metal dependent effects were observed upon altering certain regions of the 

DNA [76]. Nucleoside modifications at positions 3, 5 and 6 significantly diminished Mg2+ dependent 

activities, while Mn2+ dependent reactions were less affected. In contrast, Mg2+ and Mn2+ dependent 

activities were equally impaired when the modifications were introduced at positions 7–9 [76]. Taken 

together, the biochemical approaches enabled the delineation of several important features of viral 

DNA essential for formation of the functional nucleoprotein complexes. Nevertheless, the detailed 
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mechanism for selective recognition remains elusive. Ideally, atomic structures of IN complexes with 

specific and non-specific DNAs would be necessary to fully address this question.  

5. Mapping HIV-1 IN-Viral DNA Interactions 

IN functions as a multimer. Mutagenesis experiments have shown that two inactive mutants of IN 

with substitutions in different domains of the protein can be combined to regain the catalytic function 

[77–79]. These results have indicated that different monomers within the IN multimer provide 

complementary rather than symmetrical contacts to DNA [77–79].  

At the sub- to low-micromolar concentrations of IN normally used in the in vitro activity assays, the 

protein exists as a mixture of monomers, dimers and tetramers in the absence of DNA [64,80–82]. 

Interactions between individual subunits are highly dynamic in the unliganded IN [48], but are 

stabilized by DNA binding [27]. Time resolved fluorescence anisotropy measurements indicated that 

individual IN subunits bind viral DNA in a cooperative manner with a stoichiomery of two IN 

monomers bound to each viral DNA end [34,83]. Small angle X-ray scattering experiments have also 

indicated that monomeric IN could assemble onto a short specific DNA as dimers and effectively 

catalyze 3’-processing reactions [84]. These studies have suggested that a dimeric IN could suffice to 

process one viral DNA end [85,86].  

A number of studies have suggested that a tetramer of IN synapses the two viral DNA ends into the 

fully functional nucleoprotein complex. Crosslinking experiments have revealed IN tetramers as a 

dominant species in the nuclear extracts of infected cells [14]. Consistently, the stable synaptic 

complexes assembled in vitro contained a tetrameric form of IN [27]. Efforts to more directly visualize 

the size of the nucleoprotein complexes included atomic force microscopic analysis of ASV IN in its 

free form and in the complex with cognate short DNA, which also demonstrated substrate-induced 

assembly of the IN tetramer [87]. Similar results were obtained by electron microscopy and singe-

particle image reconstruction of HIV-1 IN complex with a model DNA junction mimicking the pair-

wise integration structure [88]. Other studies [62,89], however, proposed that a higher order oligomer 

(for example, octamer) of IN could be formed during the concerted integration. We will return to 

discussion of IN oligomeric states later in the context of IN interactions with its principal cellular 

cofactor lens epithelium derived growth factor (LEDGF/p75).  

To identify IN amino acids directly interacting with DNA substrates photo and chemical cross-

linking studies have been conducted [60,89–93]. These experiments revealed several key contact 

points. For example, the CCD residues (K159, Q148 and Y143) have been shown to specifically tether 

with the nucleotide analogs incorporated at the terminal portion of the viral DNA ends [60,90]. K159 

is part of the helix containing the catalytic E152 and could directly interact with viral DNA. Y143 and 

Q148 are situated in the flexible loop and could contribute to accurate positioning of viral and target 

DNA substrates. Consistent with this, Pommier and co-workers have found that the STI  

1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone effectively interrupted the disulfide 

cross-linking between Q148C and the C2 of viral DNA, suggesting the importance of these 

nucleoprotein contacts for the strand transfer step [92].  

IN-viral DNA crosslinking experiments have also implicated a number of the CTD residues in 

interactions with distal segments of the LTR [60,89,93,94]. The reactive bases introduced in the region 
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centered at 6–7 base-pairs from the U5 terminal were found to effectively tether with the CTD amino 

acids. For example, Gao et al. observed a strong crosslink between the E246C mutant and position A7 

[94]. However, analysis of additional DNA positions (G2, G5, A7, G16 and G19) conducted by our 

group revealed comparable reactivity of E246C with all the substrates examined [61]. The latter results 

are consistent with the non-specific mode of the CTD-DNA interactions and indicate that the exact 

locations of the CTD in the functional nucleoprotein complex could not be reliably determined from 

these experiments. Indeed, even though the U5 sequence has been used in these experiments, IN could 

bind with equal affinity to specific and non-specific ends of the 21-mer double stranded DNA thus 

differently positioning the CTD on the DNA. It should also be noted that majority of the CTD contacts 

implicated in DNA binding are lysines and arginines [61], which could potentially engage in charge-

charge interactions with the phosphate backbone of viral DNA.  

Sequence alignments between HIV and other retroviral INs have also been exploited for 

identification of IN amino acids contributing to viral DNA recognition. Leis and coworkers introduced 

several ASV IN residues at analogous positions in HIV-1 IN and monitored whether these 

substitutions altered their preferences for LTR sequences [95,96]. HIV-1 IN residues that changed 

specificity included V72, S153, K160, I161, G163, V165, H171 and L172 suggesting that these amino 

acids could directly or indirectly contribute to viral DNA recognition. In separate studies highly 

conserved HIV-1 IN residues were targeted by site directed mutagenesis to evaluate their roles for 

virus replication [97,98]. The authors grouped the mutations that solely affected the integration step in 

class I, while the substitutions that exhibited additional assembly and/or reverse transcription defects 

were placed in class II. Overall, these ex vivo experiments [97,98] have been instrumental for 

dissecting the functionally essential residues and validating the biological importance of a number of 

amino acids identified from in vitro analysis of model IN-viral DNA complexes.  

Several lines of evidence have emerged that IN undergoes significant conformational change upon 

DNA binding. Our mass spectrometry (MS) based footprinting experiments have uncovered DNA 

induced structural rearrangement involving the flexible loop between the CCD and CTD [61]. 

Bushman and coworkers have detected differential cross-linking of CTD residues with blunt ended and 

processed DNA substrates, suggesting protein structural changes upon cleavage of the viral DNA 

terminus [94]. Asante-Appiah and Skalka have revealed a metal dependent-conformational 

rearrangements, which affected the recognition of the CCD and CTD, but not the NTD, by domain 

selective antibodies [99]. Roth and co-workers have found that the functional IN tolerated the insertion 

of a 19 amino acid sequence at the helix connecting the CCD and CTD [100]. These observations 

collectively point to the importance of the linker loop of aa 187–194 (Figure 2A) for providing much 

needed flexibility to the CCD and the CTD to productively assemble onto viral DNA. 

6. HIV-1 IN Interactions with the Target DNA 

In common with other retroviruses HIV-1 IN exhibits a weak primary sequence preference for 

integration sites [101–107]. While in cells different retroviruses display distinguishable integration site 

preferences, the target DNA sequence is probably a minor contributor to this. In the case of HIV-1 the 

interactions of the retroviral enzyme with chromatin are strongly mediated by the cellular transcription 
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coactivator LEDGF/p75 and active genes are favored for integration (see [108, 109] for recent reviews 

and the following chapter).  

In vitro experiments have indicated that a wide variety of DNA sequences could serve as targets for 

the stand transfer reactions [101–104]. At the same time a number of studies noted preferential 

integration in distorted DNA sites [110,111]. For example, in vitro ASV and HIV INs primarily 

targeted sites adjacent to stem loop structures in a plasmid DNA cruciform [112]. The importance of 

the target DNA distortion for effective integration has also been noted in the context of chromatinized 

templates [110–114]. DNA assembled into nucleosomes was more favorable for integration than naked 

DNA with the most bent regions of DNA on the nucleosomes being preferentially targeted [110–114].  

To identify IN residues interacting with the target DNA, Katzman and co-workers used an elegant 

approach in which they compared sequence variations in patient-derived HIV-1 integrases with 

alterations in the preferred integration sites in the target DNA and identified a small number of amino 

acids substitutions [115]. These substitutions were then examined for their interactions with the target 

DNA in vitro. These experiments have clearly delineated the importance of HIV-1 IN residue S119 for 

the target site selection, while the substitutions at this position did not affect IN interactions with viral 

DNA [115]. More recent efforts from the same group have extended the target DNA binding platform 

to include 5 additional CCD amino acids [116].  

Earlier crosslinking studies have suggested that the NTD and the CCD could also interact with the 

target DNA [89,93]. However, these experiments were performed with the dumbbell DNA, which is a 

substrate for disintegration rather than for 3’-processing or stand transfer reaction. Furthermore, 

detailed mutagenesis studies of the NTD and the CTD residues [46,48,98,117–119] failed to identify 

phenotypes resembling to those observed with S119 substitutions [115]. Mutations of functionally 

significant residues in the NTD and CTD equally impaired 3’-processing (which does not involve 

interactions with the target DNA) and stand transfer activities. Therefore, it remains obscure whether 

the NTD and the CCD could directly contribute to target DNA binding.  

7. Concerted Integration Intermediates 

The majority of biochemical and biophysical studies reviewed above have been conducted using 

recombinant IN and short DNA substrates and revealed important details for IN-DNA interactions. 

However, these reaction conditions yield integration of only one viral DNA end into the target DNA 

(termed as half-site integration), rather than concerted integration of a pair of viral DNA ends (termed 

as full-site integration) as occurs in vivo. More recently, modifications of reaction conditions allowed 

effective full-site integration of two viral DNA ends [26–31]. The most notable change in the assay has 

been the replacement of short DNAs with a longer donor DNA substrate (~1 kbps) and a second 

circular target DNA (compare Figures 1 A and B). It is unclear why longer donor DNA substrates are 

favored for the pair-wise integration, given that IN selectively binds only a small terminal region of 

viral DNA. It has also been noted that preprocessed DNAs preferentially yield half-site reaction 

products, while the blunt-ended DNA substrates are more efficient for full-site integration [26].  

The optimized reaction conditions allowed Li et al. to isolate and characterize critical nucleoprotein 

intermediates involved in the pair-wise integration [27,28]. Using the azido-containing aryl β-diketo 

acid inhibitor the authors effectively trapped the first important reaction intermediate, the stable 
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synaptic complex formed between a tetramer of IN and two viral DNA ends. Particularly noteworthy is 

the observation that the SSC is as stable as the integrase complex with viral DNA assembled in the 

context of the PIC [27,28]. The SSC effectively resists treatments with the buffers containing high 

ionic strength or detergents. In contrast, stable nucleoprotein complexes are not formed upon IN 

interactions with a single viral DNA end in reactions that lead to half-site integration or with long 

DNAs that lack the LTR sequence [27,28]. 

The 3’-processing reactions take place within the SSC. IN remains stably associated with the pair of 

viral DNA ends and engages target DNA to form a second stable complex termed the strand transfer 

complex (STC) [27,28]. This complex carries out concerted integration of the pair of viral DNA ends 

into target DNA. Li et al. have monitored the reaction time course with two-dimensional gel 

electrophoresis and found that two DNA strand transfer steps occur sequentially and exhibit slow 

kinetics [27]. At early reaction time points the authors detected the intermediate species, which 

contained one viral DNA covalently integrated into the target DNA, while the other viral DNA was 

non-covalently held within the STC. At the later time points, however, essentially all the STC 

contained both viral DNA ends integrated, suggesting that once the correct nucleoprotein complex is 

assembled, the concerted integration is highly efficient [27].  

8. LEDGF/p75 Strongly Modulates HIV-1 IN-DNA Interactions 

LEDGF/p75 is a principal binding partner for HIV-1 and other lentiviral INs and markedly 

enhances the integration process in the infected cells (see [109] for recent review). The cellular protein 

functions as a bifunctional tether: its C-terminal part contains integrase binding domain (IBD) that 

directly engages lentiviral IN, while the N-terminal part tethers the PICs to the chromatin. In vitro 

experiments carried out with purified proteins and model DNA substrates indicated that LEDGF/p75 

strongly modulates strand transfer activities [30,47,48,120,121]. In the reactions with short donor 

DNA substrates and circular target plasmid, LEDGF/p75 potently enhanced both half-site and 

concerted integration reactions [47,120,122]. However, in the assays with long donor DNA substrates, 

the cellular cofactor almost exclusively stimulated integration of only one viral DNA end [30,48]. The 

reasons for different outcomes with short and long donor DNA substrates are not understood.  

Interestingly, order-of-addition experiments performed with long donor DNA indicated that  

sub-stoichiometric amounts of LEDGF/p75 added to the preformed IN-viral DNA complex modestly 

stimulated concerted integration [30]. However, preincubation of LEDGF/p75 with IN and subsequent 

addition of viral DNA to the reaction selectively impaired concerted integration, whereas the half-site 

strand transfer was markedly elevated [30]. While the structural basis for these observations has been 

obscure, initial clues have emerged from recent MS footprinting and x-ray crystallographic studies of 

IN-LEDGF/p75 interactions [47,48].  

Our group has shown that direct binding of LEDGF/p75 or LEDGF IBD strongly stabilizes highly 

dynamic interactions of IN subunits and promotes IN tetramerization [48]. Furthermore, MS 

footprinting experiments identified intra- and inter-protein-protein interactions and enabled detailed 

modeling of the complex (Figure 3A) [48]. The model has suggested that in the preformed  

IN-LEDGF/p75 complex a pair of active sites of IN are separated about ~29 Å, which would enable 

the retroviral enzyme to effectively catalyze 3’-processing and strand transfer reactions. However, the 
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concerted integration would not be efficient as this distance is larger than the ~15 Å or 5 bps 

separation expected between two insertion sites in the target DNA (Figure 3A). This model is 

consistent not only with in vitro functional studies [30,48,121] but also with the observations in 

infected cells [5,123]. For example, overexpression of the IBD effectively impaired HIV-1 replication 

in target cells [5,123]. Of note, the IBD was significantly more effective at suppressing HIV-1 

replication in LEDGF/p75 deficient cells (555-fold) compared with cells containing normal 

LEDGF/p75 levels (~30-fold) [5]. A potential competition between the IBD and endogenous 

LEDGF/p75 cannot fully explain these observations. Instead, in vitro functional assays and MS-

footprinting experiments suggest that the IBD binding to IN prior to IN-viral DNA complex formation 

could stabilize a tetrameric form of IN, which is not fully functional [48]. Collectively, these findings 

suggest that HIV-1 IN tetramers formed in the IN-viral DNA and IN-LEDGF/p75 complex may not be 

identical and that the productive integration would require the following sequence of events. Highly 

dynamic HIV-1 IN subunits first assemble onto two viral DNA ends to form the stable synaptic 

complex, where two catalytic sites position themselves for pair-wise integration. This IN tetramer-viral 

DNA complex then binds LEDGF/p75, with the cellular protein directing the PICs to the active genes 

without significantly affecting the prearranged IN-viral DNA conformations.  

Studies with other lentiviral INs have also indicated differential modulation of their function and 

structure by LEDGF/p75. For example, the cellular cofactor almost exclusively stimulated concerted 

integration catalyzed by equine infectious anemia virus IN, while the addition of LEDGF/p75 to 

bovine immunodeficiency virus IN equally enhanced half- and full-site integration products [124]. 

Recently a co-crystal structure of maedi-visna virus (MVV) IN in the complex with the IBD has been 

reported, which has revealed four distinct tetrameric forms of this lentiviral IN in the complex with 

LEDGF/p75 [47]. Of these, in three tetramers the spacing between a pair of DDE motifs was 

significantly greater (~ 27 Å) than that required for concerted integration. These findings agree very 

well with our model for the HIV-1 IN-LEDGF/p75 interactions [48] (also see Figure 3A), and 

reinforce the notion that relative positioning of the two active sites could indeed be one of the main 

reasons for differential modulation of strand transfer activities by LEDGF/p75.  

Of note, one of MVV IN tetramers observed in the crystallographic studies contained a pair of 

active sites optimally situated to carry out effective concerted integration reactions [47]. Significant 

variations in relative positioning and orientations between the two dimers allowed a pair of DDE 

motifs from opposing CCDs to approach 15 Å separation [47]. The results with MVV IN have been 

exploited to build a molecular model for the HIV-1 counterpart [47] (also see Figure 3B). Comparison 

of the two models (Figures 3A and B) reveals “open” and “closed” conformations for IN tetramers. It 

is now of significant interest to clarify whether there is a correlation between the relative abundance of 

these two distinct tetrameric forms of IN in the reaction mixture and relative yield of half- and full-site 

integration products. Studies to test these potential structure-function relationships are currently 

underway in our group and very likely also in other laboratories.  
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Figure 3. Molecular models for two distinct forms of HIV-1 IN tetramers. (A) An “open” 

conformation of tetrameric IN. This model is based on the HIV-1 IN two domain (NTD-

CCD) structure [41] and our MS footprinting results [48] indicating that such a 

conformation is stabilized by LEDGF/p75 in the absence of viral DNA. This “open” 

conformation of tetrameric IN could catalyze 3’-processing and half-site integration 

reactions, however an incorrect spacing (~29 Å) between the two active sites would 

hamper the concerted integration. (B) A “closed” conformation of HIV-1 IN tetramer. This 

model was built by Hare et al. using one of the crystal forms of the MVV IN structure [47], 

where the catalytic sites are positioned optimally for concerted integration. It has been 

proposed that this structure could be stabilized by two viral DNAs [47]. However, viral 

DNAs have not been included in the model. Instead, the relative positioning of two 

catalytic sites with respect to the target DNA is shown to demonstrate the 5 bps separation 

consistent with a pair-wise integration. Red arrows point to the target scissile bonds. 

Individual subunits are colored cyan, green, yellow and orange. Side chains of catalytic 

residues in green and yellow subunits are depicted in red. For clarity only NTD-CCD 

fragments are depicted, while the CTDs, which are also present in these models [47,48], 

are not shown.  

 
 

9. Molecular Modeling of the Functional Nucleoprotein Complexes  

Crystallographic determination of the two-domain structures prompted molecular modeling 

research [41,61,89,94,95,125–129]. The two crystal structures [40,41] can be superimposed through 

the common CCD to generate a plausible model for the full length protein. Biochemical and 

biophysical results reviewed above have further aided in positioning viral DNA in the multimeric IN. 

Additional clues for IN-DNA interactions have been provided from the crystal structure of prokaryotic 

transposase 5 (Tn5) in complex with cognate DNA (reviewed in [130]). Tn5 and HIV-1 IN share the 

structurally and functionally similar CCDs. Moreover, the crystal structure implicates individual Tn5 

subunits in establishing complementary contacts with cognate DNA [130], which parallels well with 

the asymmetric mode of viral DNA binding to HIV-1 IN protomers [77–79].  

A majority of the models generated up to date implicate the IN tetramer in interactions with two 

viral DNA ends [41,61,94,95,126–129]. Such a stoichiometry for protein-DNA interactions is 
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supported by a number of experimental results [14,27,87,88]. Despite this principal agreement the  

IN-DNA models obtained by different groups vary significantly in positioning individual protein 

subunits and domains as well as DNA binding channels in the nucleoprotein complex, indicating that 

the available experimental data comprises an insufficient number of constraints for formulating a 

common outcome [41,61,89,94,95,125–129]. Indeed, while there is a good consensus that different 

monomers provide complementary contacts to viral DNA, it is not clear whether these interactions are 

enabled by individual subunits within a dimeric IN, or two subunits each from separate dimer 

contribute to viral DNA binding. Therefore, some modeling studies [61,125,126] employed a strategy 

where one viral DNA was coordinated to IN dimer and then two IN dimer-viral DNA complexes were 

assembled together to compose the SSC. Alternative approaches [41,127,128] have considered 

utilizing IN tetramer as a minimal viral DNA binding platform, where two dimers are stabilized by two 

viral DNA ends. 

The absolute requirement for every modeling analysis has been to position DDE motifs over the 

respective scissile bond [41,61,89,94,95,125–129]. The crosslinking and mutagenesis data implicating 

immediate vicinity of the catalytic site in interactions with terminal bases of viral DNA [60,90] are 

also normally considered in these in silico experiments. Furthermore, the available models implicate 

the CCD in direct interactions with the target DNA, which is consistent with the experimental findings 

indicating the role of S119 in the target site selection [115,116].  

The published models also agree that the CTD interacts with viral DNA. However, exact 

positioning of this domain with respect to viral DNA sequence varies significantly. This is not 

surprising given a non-specific nature of the CTD-DNA interactions observed in crosslinking studies 

[61]. The available models disagree regarding the role of the CTD in coordinating the target DNA. As 

discussed above, while earlier crosslinking experiments suggested potential binding of the CTD with 

the target DNA in the context of the dumbbell DNA, these interactions could not be confirmed by 

detailed mutational analysis. Therefore, the exact role of the CTD in target DNA binding remains 

uncertain.  

The main inconsistency between different models is in asserting the role of the NTD. In some 

models the NTD is implicated in direct interactions with viral DNA [61,125], while other studies limit 

its contributions to protein-protein contacts [41,126–128]. Our MS-based footprinting analysis of the 

IN-DNA complex has revealed DNA dependent shielding of the surface accessibility of N-terminal 

K14 [61]. However, protections in the nucleoprotein complex could arise from direct protein-DNA or 

DNA induced protein-protein interactions. Further site directed analysis from our group [48] clarified 

the importance of K14 for dimer-dimer interactions, which in turn is essential for formation of the 

catalytically competent IN tetramer. Our findings [48] have been fully corroborated by more recent 

crystallographic analysis of the MVV IN-IBD complex [47], which show that the tetrameric structure 

is stabilized by intermolecular interactions between the NTD of one dimer and the CCD of another 

dimer. Yet, what configurations the NTDs adopt in the context of the full length protein or its complex 

with viral and target DNAs remains enigmatic. 

The recent two domain structure of MVV integrase tetramer [47], where two active sites are 

optimally positioned for concerted integration provides a new useful building block for modeling 

experiments. In fact, Hare et al. have been able to superimpose partial HIV-1 integrase structures onto 

their MVV structure to generate a model of the full-length tetramer devoid of significant steric clashes 
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[47]. The authors have suggested that such a tetramer could be stabilized by the bound DNA, but at the 

same time, they have acknowledged that the protein could undergo significant conformational change 

upon viral DNA binding. Thus, the efforts to generate a plausible model for the synaptic complex 

continue.  

10. Remaining Questions and Outlook 

A wealth of biochemical and biophysical data has been generated over the past two decades and 

provided insights into HIV-1 IN-DNA recognition mechanisms. Yet, atomic details of the protein-

nucleic acid interactions are missing. Instead, the two domain structures of HIV-1 IN have been 

determined and formed a platform for molecular modeling research. However, a complex nature of the 

multi subunit arrangements in the functional complex and the asymmetric mode of viral DNA binding 

have presented a real challenge to generate a consensus model for the IN-viral DNA complex. Where 

do we go from here? Below we outline a few priority areas as a part of a wider roadmap toward 

detailed understanding of structural and mechanistic details of HIV-1 integration.  

Crystallographic efforts to determine the IN-viral DNA structure are ongoing. Recently, high 

concentrations of purified IN-DNA complexes were obtained as required for structural determination 

[131]. For this, Alian et al. used soluble mutant IN and disulfide-mediated crosslinking to stabilize the 

nucleoprotein complex [131]. Significantly, this complex was functionally competent and coordinated 

STI. Further adjustments may still be required, though, to obtain the complex amenable to atomic 

analysis. Alternative strategies involve using other retroviral enzymes. For example, recombinant 

prototype foamy virus IN from the Spumavirus genus is highly soluble and robustly catalyzes the 

concerted integration reactions with 16-bps substrates [132], thus presenting an intriguing model for 

detailed structural analysis.  

Recent reports have defined a powerful in vitro model system for assembly of the SSC that closely 

mimic IN-viral DNA interactions in PICs [26–31]. A logical continuation of these studies is to scale up 

the SSC preparations for their subsequent characterization with various biophysical approaches. For 

example, we are currently analyzing the SSCs with the MS-based footprinting method. Equally, the 

applications of other experimental tools previously utilized in studies with IN-short DNA complexes 

can now be extended to probing the concerted integration intermediates. These experiments could shed 

light on organization of individual protein subunits within the fully functional nucleoprotein complex.  

While there is a general consensus that the principal function of LEDGF/p75 is to tether PICs to the 

chromatin, many important structural and mechanistic details regarding how LEDGF/p75 modulates 

IN interactions with viral DNA or navigates the SSC through the chromatinized DNA remain to be 

elucidated. Moreover, we still do not understand why the length of viral DNA so dramatically affects 

the pair-wise integration. Particularly puzzling are the observations that LEDGF/p75 can stimulate 

both half- and full-site integrations with short DNA, while the cellular cofactor selectively impairs the 

concerted integration with long donor DNA substrates. The efforts to further optimize in vitro reaction 

conditions will continue to approach conditions and the efficacy of concerted intergration observed in 

infected cells. Toward this end a recent study has established in vitro conditions, where reconstituted 

polynucleosomes serve as target acceptor templates for physiologically relevant analysis of the 
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integration process [133]. Further in vitro and ex vivo experiments are warranted to elucidate important 

details of how LEDGF/p75 promotes integrase-chromatin interactions. 

Recent biochemical and structural studies have indicated the highly flexible nature of IN subunit-

subunit interactions, and that assembly of the fully functional nucleoprotein complex requires very 

accurate interplay between interacting subunits [47,48]. It is intriguing to exploit this complex multi 

subunit organization as a novel therapeutic target. A broad skepticism for developing small molecule 

inhibitors for protein-protein interactions can be met with the alternative hypothesis that the potential 

inhibitors could stabilize inactive conformation of multimeric IN rather than compete with subunit-

subunit interactions. A rationale for this is provided by the observations that IBD stabilizes a 

tetrameric form of IN, which effectively catalyzes 3’-processing and half-site integration, but is 

selectively impaired for concerted integration [48]. As further proof-of-principal we have recently 

shown that a small molecule inhibitor can stabilize a functionally compromised multimeric form of 

HIV-1 IN [134]. Further research in this direction may well lead to the development of new allosteric 

inhibitors of IN that could complement Raltegravir and other retroviral compounds in treating aids 

patients. 

Acknowledgments 

We are grateful to Robert Craigie for critical reading of the manuscript and providing valuable 

comments. Our research on HIV-1 integrase is supported by NIAID/NIH grants AI062520 and 

AI077341 (to M.K.). 

References and Notes 

1. Brown, P.O. Integration. In Retroviruses; Coffin, J.M., Hughes, S.H., Varmus, H.E., Eds.; Cold 

Spring Harbor Laboratory: Plainview, NY, USA, 1997; pp. 161–204. 

2. Grobler, J.A.; Stillmock, K.; Hu, B.; Witmer, M.; Felock, P.; Espeseth, A.S.; Wolfe, A.; 

Egbertson, M.; Bourgeois, M.; Melamed, J.; Wai, J.S.; Young, S.; Vacca, J.; Hazuda, D.J. Diketo 

acid inhibitor mechanism and HIV-1 integrase: Implications for metal binding in the active site of 

phosphotransferase enzymes. Proc. Natl. Acad. Sci. USA 2002, 99, 6661–6666. 

3. Hazuda, D.J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J.A.; Espeseth, A.; 

Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M.D. Inhibitors of strand transfer that prevent 

integration and inhibit HIV- 1 replication in cells. Science 2000, 287, 646–650. 

4. Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.; Ferrara, M.; Fiore, F.; Gardelli, 

C.; Gonzalez Paz, O.; Hazuda, D.J.; Jones, P.; Kinzel, O.; Laufer, R.; Monteagudo, E.; Muraglia, 

E.; Nizi, E.; Orvieto, F.; Pace, P.; Pescatore, G.; Scarpelli, R.; Stillmock, K.; Witmer, M.V.; 

Rowley, M. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase 

inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem. 2008, 51, 5843–5855. 

5. Llano, M.; Saenz, D.T.; Meehan, A.; Wongthida, P.; Peretz, M.; Walker, W.H.; Teo, W.; 

Poeschla, E.M. An essential role for LEDGF/p75 in HIV integration. Science 2006, 314,  

461–464. 

6. Lewinski, M.K.; Yamashita, M.; Emerman, M.; Ciuffi, A.; Marshall, H.; Crawford, G.; Collins, 

F.; Shinn, P.; Leipzig, J.; Hannenhalli, S.; Berry, C.C.; Ecker, J.R.; Bushman, F.D. Retroviral 



Viruses 2009, 1              

 

 

728

DNA integration: Viral and cellular determinants of target-site selection. PLoS Pathog. 2006, 2, 

e60. 

7. Farnet, C.M.; Haseltine, W.A. Integration of human immunodeficiency virus type 1 DNA in vitro. 

Proc. Natl. Acad. Sci. USA 1990, 87, 4164–4168. 

8. Bukrinsky, M.I.; Sharova, N.; McDonald, T.L.; Pushkarskaya, T.; Tarpley, W.G.; Stevenson, M. 

Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency 

virus type 1 with viral nucleic acids following acute infection. Proc. Natl. Acad. Sci. USA 1993, 

90, 6125–6129. 

9. Buckman, J.S.; Bosche, W.J.; Gorelick, R.J. Human immunodeficiency virus type 1 nucleocapsid 

zn(2+) fingers are required for efficient reverse transcription, initial integration processes, and 

protection of newly synthesized viral DNA. J. Virol. 2003, 77, 1469–1480. 

10. Carteau, S.; Batson, S.C.; Poljak, L.; Mouscadet, J.F.; de Rocquigny, H.; Darlix, J.L.; Roques, 

B.P.; Kas, E.; Auclair, C. Human immunodeficiency virus type 1 nucleocapsid protein specifically 

stimulates Mg2+-dependent DNA integration in vitro. J. Virol. 1997, 71, 6225–6229. 

11. Carteau, S.; Gorelick, R.J.; Bushman, F.D. Coupled integration of human immunodeficiency virus 

type 1 cDNA ends by purified integrase in vitro: Stimulation by the viral nucleocapsid protein. J. 

Virol. 1999, 73, 6670–6679. 

12. Chen, H.; Engelman, A. The barrier-to-autointegration protein is a host factor for HIV type 1 

integration. Proc. Natl. Acad. Sci. USA 1998, 95, 15270–15274. 

13. Lee, M.S.; Craigie, R. A previously unidentified host protein protects retroviral DNA from 

autointegration. Proc. Natl. Acad. Sci. USA 1998, 95, 1528–1533. 

14. Cherepanov, P.; Maertens, G.; Proost, P.; Devreese, B.; Van Beeumen, J.; Engelborghs, Y.; De 

Clercq, E.; Debyser, Z. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 

protein in human cells. J. Biol. Chem. 2003, 278, 372–381. 

15. Shun, M.C.; Raghavendra, N.K.; Vandegraaff, N.; Daigle, J.E.; Hughes, S.; Kellam, P.; 

Cherepanov, P.; Engelman, A. LEDGF/p75 functions downstream from preintegration complex 

formation to effect gene-specific HIV-1 integration. Genes Dev. 2007, 21, 1767–1778. 

16. Engelman, A. Host cell factors and HIV-1 integration. Future HIV Ther. 2007, 1, 415–426. 

17. Lee, M.S.; Craigie, R. Protection of retroviral DNA from autointegration: Involvement of a 

cellular factor. Proc. Natl. Acad. Sci. USA 1994, 91, 9823–9827. 

18. Wu, W.; Henderson, L.E.; Copeland, T.D.; Gorelick, R.J.; Bosche, W.J.; Rein, A.; Levin, J.G. 

Human immunodeficiency virus type 1 nucleocapsid protein reduces reverse transcriptase pausing 

at a secondary structure near the murine leukemia virus polypurine tract. J. Virol. 1996, 70, 7132–

7142. 

19. Chen, H.; Wei, S.Q.; Engelman, A. Multiple integrase functions are required to form the native 

structure of the human immunodeficiency virus type I intasome. J. Biol. Chem. 1999, 274, 17358–

17364. 

20. Bowerman, B.; Brown, P.O.; Bishop, J.M.; Varmus, H.E. A nucleoprotein complex mediates the 

integration of retroviral DNA. Genes Dev. 1989, 3, 469–478. 

21. Brown, P.O.; Bowerman, B.; Varmus, H.E.; Bishop, J.M. Correct integration of retroviral DNA in 

vitro. Cell 1987, 49, 347–356. 



Viruses 2009, 1              

 

 

729

22. Fujiwara, T.; Mizuuchi, K. Retroviral DNA integration: Structure of an integration intermediate. 

Cell 1988, 54, 497–504. 

23. Ellison, V.; Abrams, H.; Roe, T.; Lifson, J.; Brown, P. Human immunodeficiency virus 

integration in a cell-free system. J. Virol. 1990, 64, 2711–2715. 

24. Lee, Y.M.; Coffin, J.M. Efficient autointegration of avian retrovirus DNA in vitro. J. Virol. 1990, 

64, 5958–5965. 

25. Engelman, A. Isolation and analysis of HIV-1 preintegration complexes. Methods Mol. Biol. 

2009, 485, 135–149. 

26. Li, M.; Craigie, R. Processing of viral DNA ends channels the HIV-1 integration reaction to 

concerted integration. J. Biol. Chem. 2005, 280, 29334–29339. 

27. Li, M.; Mizuuchi, M.; Burke, T.R., Jr.; Craigie, R. Retroviral DNA integration: Reaction pathway 

and critical intermediates. Embo J. 2006, 25, 1295–1304. 

28. Li, M.; Craigie, R. Nucleoprotein complex intermediates in HIV-1 integration. Methods 2009, 47, 

237–242. 

29. Sinha, S.; Pursley, M.H.; Grandgenett, D.P. Efficient concerted integration by recombinant human 

immunodeficiency virus type 1 integrase without cellular or viral cofactors. J. Virol. 2002, 76, 

3105–3113. 

30. Pandey, K.K.; Sinha, S.; Grandgenett, D.P. Transcriptional coactivator LEDGF/p75 modulates 

human immunodeficiency virus type 1 integrase-mediated concerted integration. J. Virol. 2007, 

81, 3969–3979. 

31. Sinha, S.; Grandgenett, D.P. Recombinant human immunodeficiency virus type 1 integrase 

exhibits a capacity for full-site integration in vitro that is comparable to that of purified 

preintegration complexes from virus-infected cells. J. Virol. 2005, 79, 8208–8216. 

32. Chow, S.A.; Vincent, K.A.; Ellison, V.; Brown, P.O. Reversal of integration and DNA splicing 

mediated by integrase of human immunodeficiency virus. Science 1992, 255, 723–726. 

33. Delelis, O.; Parissi, V.; Leh, H.; Mbemba, G.; Petit, C.; Sonigo, P.; Deprez, E.; Mouscadet, J.F. 

Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric 

HIV-1 integrase. PLoS One 2007, 2, e608. 

34. Delelis, O.; Carayon, K.; Saib, A.; Deprez, E.; Mouscadet, J.F. Integrase and integration: 

Biochemical activities of HIV-1 integrase. Retrovirology 2008, 5, 114. 

35. Cai, M.; Zheng, R.; Caffrey, M.; Craigie, R.; Clore, G.M.; Gronenborn, A.M. Solution structure of 

the N-terminal zinc binding domain of HIV-1 integrase. Nat. Struct. Biol. 1997, 4, 567–577. 

36. Dyda, F.; Hickman, A.B.; Jenkins, T.M.; Engelman, A.; Craigie, R.; Davies, D.R. Crystal 

structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl 

transferases. Science 1994, 266, 1981–1986. 

37. Goldgur, Y.; Dyda, F.; Hickman, A.B.; Jenkins, T.M.; Craigie, R.; Davies, D.R. Three new 

structures of the core domain of HIV-1 integrase: An active site that binds magnesium. Proc. Natl. 

Acad. Sci. USA 1998, 95, 9150–9154. 

38. Eijkelenboom, A.P.; Lutzke, R.A.; Boelens, R.; Plasterk, R.H.; Kaptein, R.; Hard, K. The DNA-

binding domain of HIV-1 integrase has an SH3-like fold. Nat. Struct. Biol. 1995, 2, 807–810. 



Viruses 2009, 1              

 

 

730

39. Lodi, P.J.; Ernst, J.A.; Kuszewski, J.; Hickman, A.B.; Engelman, A.; Craigie, R.; Clore, G.M.; 

Gronenborn, A.M. Solution structure of the DNA binding domain of HIV-1 integrase. 

Biochemistry 1995, 34, 9826–9833. 

40. Chen, J.C.; Krucinski, J.; Miercke, L.J.; Finer-Moore, J.S.; Tang, A.H.; Leavitt, A.D.; Stroud, 

R.M. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for 

viral DNA binding. Proc. Natl. Acad. Sci. USA 2000, 97, 8233–8238. 

41. Wang, J.Y.; Ling, H.; Yang, W.; Craigie, R. Structure of a two-domain fragment of HIV-1 

integrase: Implications for domain organization in the intact protein. Embo J. 2001, 20,  

7333–7343. 

42. Goldgur, Y.; Craigie, R.; Cohen, G.H.; Fujiwara, T.; Yoshinaga, T.; Fujishita, T.; Sugimoto, H.; 

Endo, T.; Murai, H.; Davies, D.R. Structure of the HIV-1 integrase catalytic domain complexed 

with an inhibitor: A platform for antiviral drug design. Proc. Natl. Acad. Sci. USA 1999, 96, 

13040–13043. 

43. Bushman, F.D.; Engelman, A.; Palmer, I.; Wingfield, P.; Craigie, R. Domains of the integrase 

protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc 

binding. Proc. Natl. Acad. Sci. USA 1993, 90, 3428–3432. 

44. Zheng, R.; Jenkins, T.M.; Craigie, R. Zinc folds the N-terminal domain of HIV-1 integrase, 

promotes multimerization, and enhances catalytic activity. Proc. Natl. Acad. Sci. USA 1996, 93, 

13659–13664. 

45. Lee, S.P.; Xiao, J.; Knutson, J.R.; Lewis, M.S.; Han, M.K. Zn2+ promotes the self-association of 

human immunodeficiency virus type-1 integrase in vitro. Biochemistry 1997, 36, 173–180. 

46. Engelman, A.; Craigie, R. Identification of conserved amino acid residues critical for human 

immunodeficiency virus type 1 integrase function in vitro. J. Virol. 1992, 66, 6361–6369. 

47. Hare, S.; Di Nunzio, F.; Labeja, A.; Wang, J.; Engelman, A.; Cherepanov, P. Structural basis for 

functional tetramerization of lentiviral integrase. PLoS Pathog. 2009, 5, e1000515. 

48. McKee, C.J.; Kessl, J.J.; Shkriabai, N.; Dar, M.J.; Engelman, A.; Kvaratskhelia, M. Dynamic 

modulation of HIV-1 integrase structure and function by cellular lens epithelium-derived growth 

factor (LEDGF) protein. J. Biol. Chem. 2008, 283, 31802–31812. 

49. Fayet, O.; Ramond, P.; Polard, P.; Prere, M.F.; Chandler, M. Functional similarities between 

retroviruses and the IS3 family of bacterial insertion sequences? Mol. Microbiol. 1990, 4,  

1771–1777. 

50. Kulkosky, J.; Jones, K.S.; Katz, R.A.; Mack, J.P.; Skalka, A.M. Residues critical for retroviral 

integrative recombination in a region that is highly conserved among retroviral/retrotransposon 

integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 1992, 12, 2331–2338. 

51. Hazuda, D.J.; Wolfe, A.L.; Hastings, J.C.; Robbins, H.L.; Graham, P.L.; LaFemina, R.L.; Emini, 

E.A. Viral long terminal repeat substrate binding characteristics of the human immunodeficiency 

virus type 1 integrase. J. Biol. Chem. 1994, 269, 3999–4004. 

52. Leavitt, A.D.; Robles, G.; Alesandro, N.; Varmus, H.E. Human immunodeficiency virus type 1 

integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during 

infection. J. Virol. 1996, 70, 721–728. 

53. Yang, W.; Steitz, T.A. Recombining the structures of HIV integrase, RuvC and RNase H. 

Structure 1995, 3, 131–134. 



Viruses 2009, 1              

 

 

731

54. Beese, L.S.; Steitz, T.A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli 

DNA polymerase I: A two metal ion mechanism. Embo J. 1991, 10, 25–33. 

55. Lins, R.D.; Straatsma, T.P.; Briggs, J.M. Similarities in the HIV-1 and ASV integrase active sites 

upon metal cofactor binding. Biopolymers 2000, 53, 308–315. 

56. Robinson, H.; Gao, Y.G.; McCrary, B.S.; Edmondson, S.P.; Shriver, J.W.; Wang, A.H. The 

hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 1998, 392, 202–205. 

57. Krueger, J.K.; McCrary, B.S.; Wang, A.H.; Shriver, J.W.; Trewhella, J.; Edmondson, S.P. The 

solution structure of the Sac7d/DNA complex: A small-angle X-ray scattering study. Biochemistry 

1999, 38, 10247–10255. 

58. Gao, Y.G.; Su, S.Y.; Robinson, H.; Padmanabhan, S.; Lim, L.; McCrary, B.S.; Edmondson, S.P.; 

Shriver, J.W.; Wang, A.H. The crystal structure of the hyperthermophile chromosomal protein 

Sso7d bound to DNA. Nat. Struct. Biol. 1998, 5, 782–786. 

59. Lutzke, R.A.; Plasterk, R.H. Structure-based mutational analysis of the C-terminal DNA-binding 

domain of human immunodeficiency virus type 1 integrase: Critical residues for protein 

oligomerization and DNA binding. J. Virol. 1998, 72, 4841–4848. 

60. Esposito, D.; Craigie, R. Sequence specificity of viral end DNA binding by HIV-1 integrase 

reveals critical regions for protein-DNA interaction. Embo J. 1998, 17, 5832–5843. 

61. Zhao, Z.; McKee, C.J.; Kessl, J.J.; Santos, W.L.; Daigle, J.E.; Engelman, A.; Verdine, G.; 

Kvaratskhelia, M. Subunit-specific protein footprinting reveals significant structural 

rearrangements and a role for N-terminal Lys-14 of HIV-1 Integrase during viral DNA binding. J. 

Biol. Chem. 2008, 283, 5632–5641. 

62. Bera, S.; Pandey, K.K.; Vora, A.C.; Grandgenett, D.P. Molecular Interactions between HIV-1 

integrase and the two viral DNA ends within the synaptic complex that mediates concerted 

integration. J. Mol. Biol. 2009, 389, 183–198. 

63. LaFemina, R.L.; Callahan, P.L.; Cordingley, M.G. Substrate specificity of recombinant human 

immunodeficiency virus integrase protein. J. Virol. 1991, 65, 5624–5630. 

64. van Gent, D.C.; Elgersma, Y.; Bolk, M.W.; Vink, C.; Plasterk, R.H. DNA binding properties of 

the integrase proteins of human immunodeficiency viruses types 1 and 2. Nucleic Acids Res. 

1991, 19, 3821–3827. 

65. Smerdon, S.J.; Jager, J.; Wang, J.; Kohlstaedt, L.A.; Chirino, A.J.; Friedman, J.M.; Rice, P.A.; 

Steitz, T.A. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase 

of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1994, 91, 3911–3915. 

66. Bujacz, G.; Alexandratos, J.; Wlodawer, A.; Merkel, G.; Andrake, M.; Katz, R.A.; Skalka, A.M. 

Binding of different divalent cations to the active site of avian sarcoma virus integrase and their 

effects on enzymatic activity. J. Biol. Chem. 1997, 272, 18161–18168. 

67. Gao, K.; Wong, S.; Bushman, F. Metal binding by the D,DX35E motif of human 

immunodeficiency virus type 1 integrase: Selective rescue of Cys substitutions by Mn2+ in vitro. 

J. Virol. 2004, 78, 6715–6722. 

68. Hazuda, D.J.; Felock, P.J.; Hastings, J.C.; Pramanik, B.; Wolfe, A.L. Differential divalent cation 

requirements uncouple the assembly and catalytic reactions of human immunodeficiency virus 

type 1 integrase. J. Virol. 1997, 71, 7005–7011. 



Viruses 2009, 1              

 

 

732

69. Lee, S.P.; Censullo, M.L.; Kim, H.G.; Han, M.K. Substrate-length-dependent activities of human 

immunodeficiency virus type 1 integrase in vitro: Differential DNA binding affinities associated 

with different lengths of substrates. Biochemistry 1995, 34, 10215–10223. 

70. Yi, J.; Asante-Appiah, E.; Skalka, A.M. Divalent cations stimulate preferential recognition of a 

viral DNA end by HIV-1 integrase. Biochemistry 1999, 38, 8458–8468. 

71. Vercammen, J.; Maertens, G.; Gerard, M.; De Clercq, E.; Debyser, Z.; Engelborghs, Y.  

DNA-induced polymerization of HIV-1 integrase analyzed with fluorescence fluctuation 

spectroscopy. J. Biol. Chem. 2002, 277, 38045–38052. 

72. Brin, E.; Leis, J. HIV-1 integrase interaction with U3 and U5 terminal sequences in vitro defined 

using substrates with random sequences. J. Biol. Chem. 2002, 277, 18357–18364. 

73. Renisio, J.G.; Cosquer, S.; Cherrak, I.; El Antri, S.; Mauffret, O.; Fermandjian, S. Pre-organized 

structure of viral DNA at the binding-processing site of HIV-1 integrase. Nucleic Acids Res. 2005, 

33, 1970–1981. 

74. Katz, R.A.; DiCandeloro, P.; Kukolj, G.; Skalka, A.M. Role of DNA end distortion in catalysis by 

avian sarcoma virus integrase. J. Biol. Chem. 2001, 276, 34213–34220. 

75. Johnson, A.A.; Sayer, J.M.; Yagi, H.; Patil, S.S.; Debart, F.; Maier, M.A.; Corey, D.R.; Vasseur, 

J.J.; Burke, T.R., Jr.; Marquez, V.E.; Jerina, D.M.; Pommier, Y. Effect of DNA modifications on 

DNA processing by HIV-1 integrase and inhibitor binding: Role of DNA backbone flexibility and 

an open catalytic site. J. Biol. Chem. 2006, 281, 32428–32438. 

76. Agapkina, J.; Smolov, M.; Barbe, S.; Zubin, E.; Zatsepin, T.; Deprez, E.; Le Bret, M.; Mouscadet, 

J.F.; Gottikh, M. Probing of HIV-1 integrase/DNA interactions using novel analogs of viral DNA. 

J. Biol. Chem. 2006, 281, 11530–11540. 

77. Engelman, A.; Bushman, F.D.; Craigie, R. Identification of discrete functional domains of HIV-1 

integrase and their organization within an active multimeric complex. Embo J. 1993, 12,  

3269–3275. 

78. van den Ent, F.M.; Vos, A.; Plasterk, R.H. Dissecting the role of the N-terminal domain of human 

immunodeficiency virus integrase by trans-complementation analysis. J. Virol. 1999, 73, 3176–

3183. 

79. van Gent, D.C.; Vink, C.; Groeneger, A.A.; Plasterk, R.H. Complementation between HIV 

integrase proteins mutated in different domains. Embo J. 1993, 12, 3261–3267. 

80. Vincent, K.A.; Ellison, V.; Chow, S.A.; Brown, P.O. Characterization of human 

immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants 

with amino-terminal mutations. J. Virol. 1993, 67, 425–437. 

81. Jenkins, T.M.; Engelman, A.; Ghirlando, R.; Craigie, R. A soluble active mutant of HIV-1 

integrase: Involvement of both the core and carboxyl-terminal domains in multimerization. J. 

Biol. Chem. 1996, 271, 7712–7718. 

82. Deprez, E.; Tauc, P.; Leh, H.; Mouscadet, J.F.; Auclair, C.; Brochon, J.C. Oligomeric states of the 

HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 2000, 39, 

9275–9284. 

83. Deprez, E.; Barbe, S.; Kolaski, M.; Leh, H.; Zouhiri, F.; Auclair, C.; Brochon, J.C.; Le Bret, M.; 

Mouscadet, J.F. Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. 

Mol. Pharmacol. 2004, 65, 85–98. 



Viruses 2009, 1              

 

 

733

84. Baranova, S.; Tuzikov, F.V.; Zakharova, O.D.; Tuzikova, N.A.; Calmels, C.; Litvak, S.; Tarrago-

Litvak, L.; Parissi, V.; Nevinsky, G.A. Small-angle X-ray characterization of the nucleoprotein 

complexes resulting from DNA-induced oligomerization of HIV-1 integrase. Nucleic Acids Res. 

2007, 35, 975–987. 

85. Faure, A.; Calmels, C.; Desjobert, C.; Castroviejo, M.; Caumont-Sarcos, A.; Tarrago-Litvak, L.; 

Litvak, S.; Parissi, V. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids 

Res. 2005, 33, 977–986. 

86. Guiot, E.; Carayon, K.; Delelis, O.; Simon, F.; Tauc, P.; Zubin, E.; Gottikh, M.; Mouscadet, J.F.; 

Brochon, J.C.; Deprez, E. Relationship between the oligomeric status of HIV-1 integrase on DNA 

and enzymatic activity. J. Biol. Chem. 2006, 281, 22707–22719. 

87. Bao, K.K.; Wang, H.; Miller, J.K.; Erie, D.A.; Skalka, A.M.; Wong, I. Functional oligomeric state 

of avian sarcoma virus integrase. J. Biol. Chem. 2003, 278, 1323–1327. 

88. Ren, G.; Gao, K.; Bushman, F.D.; Yeager, M. Single-particle image reconstruction of a tetramer 

of HIV integrase bound to DNA. J. Mol. Biol. 2007, 366, 286–294. 

89. Heuer, T.S.; Brown, P.O. Photo-cross-linking studies suggest a model for the architecture of an 

active human immunodeficiency virus type 1 integrase-DNA complex. Biochemistry 1998, 37, 

6667–6678. 

90. Jenkins, T.M.; Esposito, D.; Engelman, A.; Craigie, R. Critical contacts between HIV-1 integrase 

and viral DNA identified by structure-based analysis and photo-crosslinking. Embo J. 1997, 16, 

6849–6859. 

91. Mazumder, A.; Neamati, N.; Pilon, A.A.; Sunder, S.; Pommier, Y. Chemical trapping of ternary 

complexes of human immunodeficiency virus type 1 integrase, divalent metal, and DNA 

substrates containing an abasic site. Implications for the role of lysine 136 in DNA binding. J. 

Biol. Chem. 1996, 271, 27330–27338. 

92. Johnson, A.A.; Santos, W.; Pais, G.C.; Marchand, C.; Amin, R.; Burke, T.R., Jr.; Verdine, G.; 

Pommier, Y. Integration requires a specific interaction of the donor DNA terminal 5'-cytosine 

with glutamine 148 of the HIV-1 integrase flexible loop. J. Biol. Chem. 2006, 281, 461–467. 

93. Heuer, T.S.; Brown, P.O. Mapping features of HIV-1 integrase near selected sites on viral and 

target DNA molecules in an active enzyme-DNA complex by photo-cross- linking. Biochemistry 

1997, 36, 10655–10665. 

94. Gao, K.; Butler, S.L.; Bushman, F. Human immunodeficiency virus type 1 integrase: 

Arrangement of protein domains in active cDNA complexes. Embo J. 2001, 20, 3565–3576. 

95. Chen, A.; Weber, I.T.; Harrison, R.W.; Leis, J. Identification of amino acids in HIV-1 and avian 

sarcoma virus integrase subsites required for specific recognition of the long terminal repeat Ends. 

J. Biol. Chem. 2006, 281, 4173–4182. 

96. Dolan, J.; Chen, A.; Weber, I.T.; Harrison, R.W.; Leis, J. Defining the DNA substrate binding 

sites on HIV-1 integrase. J. Mol. Biol. 2009, 385, 568–579. 

97. Lu, R.; Limon, A.; Devroe, E.; Silver, P.A.; Cherepanov, P.; Engelman, A. Class II integrase 

mutants with changes in putative nuclear localization signals are primarily blocked at a 

postnuclear entry step of human immunodeficiency virus type 1 replication. J. Virol. 2004, 78, 

12735–12746. 



Viruses 2009, 1              

 

 

734

98. Lu, R.; Limon, A.; Ghory, H.Z.; Engelman, A. Genetic analyses of DNA-binding mutants in the 

catalytic core domain of human immunodeficiency virus type 1 integrase. J. Virol. 2005, 79, 

2493–2505. 

99. Asante-Appiah, E.; Skalka, A.M. A metal-induced conformational change and activation of HIV-

1 integrase. J. Biol. Chem. 1997, 272, 16196–16205. 

100. Puglia, J.; Wang, T.; Smith-Snyder, C.; Cote, M.; Scher, M.; Pelletier, J.N.; John, S.; Jonsson, 

C.B.; Roth, M.J. Revealing domain structure through linker-scanning analysis of the murine 

leukemia virus (MuLV) RNase H and MuLV and human immunodeficiency virus type 1 integrase 

proteins. J. Virol. 2006, 80, 9497–9510. 

101. Bor, Y.C.; Miller, M.D.; Bushman, F.D.; Orgel, L.E. Target-sequence preferences of HIV-1 

integration complexes in vitro. Virology 1996, 222, 283–288. 

102. Goodarzi, G.; Chiu, R.; Brackmann, K.; Kohn, K.; Pommier, Y.; Grandgenett, D.P. Host site 

selection for concerted integration by human immunodeficiency virus type-1 virions in vitro. 

Virology 1997, 231, 210–217. 

103. Fitzgerald, M.L.; Grandgenett, D.P. Retroviral integration: In vitro host site selection by avian 

integrase. J. Virol. 1994, 68, 4314–4321. 

104. Carteau, S.; Hoffmann, C.; Bushman, F. Chromosome structure and human immunodeficiency 

virus type 1 cDNA integration: Centromeric alphoid repeats are a disfavored target. J. Virol. 

1998, 72, 4005–4014. 

105. Holman, A.G.; Coffin, J.M. Symmetrical base preferences surrounding HIV-1, avian 

sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc. Natl. Acad. Sci. USA 

2005, 102, 6103–6107. 

106. Stevens, S.W.; Griffith, J.D. Sequence analysis of the human DNA flanking sites of human 

immunodeficiency virus type 1 integration. J. Virol. 1996, 70, 6459–6462. 

107. Wu, X.; Li, Y.; Crise, B.; Burgess, S.M.; Munroe, D.J. Weak palindromic consensus sequences 

are a common feature found at the integration target sites of many retroviruses. J. Virol. 2005, 79, 

5211–5214. 

108. Ciuffi, A.; Bushman, F.D. Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends 

Genet. 2006, 22, 388–395. 

109. Engelman, A.; Cherepanov, P. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 

replication. PLoS Pathog. 2008, 4, e1000046. 

110. Pruss, D.; Reeves, R.; Bushman, F.D.; Wolffe, A.P. The influence of DNA and nucleosome 

structure on integration events directed by HIV integrase. J. Biol. Chem. 1994, 269,  

25031–25041. 

111. Pruss, D.; Bushman, F.D.; Wolffe, A.P. Human immunodeficiency virus integrase directs 

integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl. Acad. Sci. 

USA 1994, 91, 5913–5917. 

112. Katz, R.A.; Gravuer, K.; Skalka, A.M. A preferred target DNA structure for retroviral integrase in 

vitro. J. Biol. Chem. 1998, 273, 24190–24195. 

113. Pryciak, P.M.; Sil, A.; Varmus, H.E. Retroviral integration into minichromosomes in vitro. Embo 

J. 1992, 11, 291–303. 



Viruses 2009, 1              

 

 

735

114. Pryciak, P.M.; Varmus, H.E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate 

retroviral integration target site selection. Cell 1992, 69, 769–780. 

115. Harper, A.L.; Skinner, L.M.; Sudol, M.; Katzman, M. Use of patient-derived human 

immunodeficiency virus type 1 integrases to identify a protein residue that affects target site 

selection. J. Virol. 2001, 75, 7756–7762. 

116. Harper, A.L.; Sudol, M.; Katzman, M. An amino acid in the central catalytic domain of three 

retroviral integrases that affects target site selection in nonviral DNA. J. Virol. 2003, 77,  

3838–3845. 

117. Lutzke, R.A.; Vink, C.; Plasterk, R.H. Characterization of the minimal DNA-binding domain of 

the HIV integrase protein. Nucleic Acids Res. 1994, 22, 4125–4131. 

118. Williams, K.L.; Zhang, Y.; Shkriabai, N.; Karki, R.G.; Nicklaus, M.C.; Kotrikadze, N.; Hess, S.; 

Le Grice, S.F.; Craigie, R.; Pathak, V.K.; Kvaratskhelia, M. Mass spectrometric analysis of the 

HIV-1 integrase-pyridoxal 5'-phosphate complex reveals a new binding site for a nucleotide 

inhibitor. J. Biol. Chem. 2005, 280, 7949–7955. 

119. van Gent, D.C.; Groeneger, A.A.; Plasterk, R.H. Mutational analysis of the integrase protein of 

human immunodeficiency virus type 2. Proc. Natl. Acad. Sci. USA 1992, 89, 9598–9602. 

120. Hare, S.; Shun, M.C.; Gupta, S.S.; Valkov, E.; Engelman, A.; Cherepanov, P. A novel co-crystal 

structure affords the design of gain-of-function lentiviral integrase mutants in the presence of 

modified PSIP1/LEDGF/p75. PLoS Pathog. 2009, 5, e1000259. 

121. Raghavendra, N.K.; Engelman, A. LEDGF/p75 interferes with the formation of synaptic 

nucleoprotein complexes that catalyze full-site HIV-1 DNA integration in vitro: Implications for 

the mechanism of viral cDNA integration. Virology 2007, 360, 1–5. 

122. Priet, S.; Gros, N.; Navarro, J.M.; Boretto, J.; Canard, B.; Querat, G.; Sire, J. HIV-1-associated 

uracil DNA glycosylase activity controls dUTP misincorporation in viral DNA and is essential to 

the HIV-1 life cycle. Mol. Cell 2005, 17, 479–490. 

123. De Rijck, J.; Vandekerckhove, L.; Gijsbers, R.; Hombrouck, A.; Hendrix, J.; Vercammen, J.; 

Engelborghs, Y.; Christ, F.; Debyser, Z. Overexpression of the lens epithelium-derived growth 

factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J. Virol. 

2006, 80, 11498–11509. 

124. Cherepanov, P. LEDGF/p75 interacts with divergent lentiviral integrases and modulates their 

enzymatic activity in vitro. Nucleic Acids Res. 2007, 35, 113–124. 

125. De Luca, L.; Vistoli, G.; Pedretti, A.; Barreca, M.L.; Chimirri, A. Molecular dynamics studies of 

the full-length integrase-DNA complex. Biochem. Biophys. Res. Commun. 2005, 336,  

1010–1016. 

126. Karki, R.G.; Tang, Y.; Burke, T.R., Jr.; Nicklaus, M.C. Model of full-length HIV-1 integrase 

complexed with viral DNA as template for anti-HIV drug design. J. Comput. Aided Mol. Des. 

2004, 18, 739–760. 

127. Podtelezhnikov, A.A.; Gao, K.; Bushman, F.D.; McCammon, J.A. Modeling HIV-1 integrase 

complexes based on their hydrodynamic properties. Biopolymers 2003, 68, 110–120. 

128. Wielens, J.; Crosby, I.T.; Chalmers, D.K. A three-dimensional model of the human 

immunodeficiency virus type 1 integration complex. J. Comput. Aided Mol. Des. 2005, 19,  

301–317. 



Viruses 2009, 1              

 

 

736

129. Michel, F.; Crucifix, C.; Granger, F.; Eiler, S.; Mouscadet, J.F.; Korolev, S.; Agapkina, J.; 

Ziganshin, R.; Gottikh, M.; Nazabal, A.; Emiliani, S.; Benarous, R.; Moras, D.; Schultz, P.; Ruff, 

M. Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 

cofactor. Embo J. 2009, 28, 980–991. 

130. Steiniger-White, M.; Rayment, I.; Reznikoff, W.S. Structure/function insights into Tn5 

transposition. Curr. Opin. Struct. Biol. 2004, 14, 50–57. 

131. Alian, A.; Griner, S.L.; Chiang, V.; Tsiang, M.; Jones, G.; Birkus, G.; Geleziunas, R.; Leavitt, 

A.D.; Stroud, R.M. Catalytically-active complex of HIV-1 integrase with a viral DNA substrate 

binds anti-integrase drugs. Proc. Natl. Acad. Sci. USA 2009, 106, 8192–8197. 

132. Valkov, E.; Gupta, S.S.; Hare, S.; Helander, A.; Roversi, P.; McClure, M.; Cherepanov, P. 

Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic 

Acids Res. 2009, 37, 243–255. 

133. Botbol, Y.; Raghavendra, N.K.; Rahman, S.; Engelman, A.; Lavigne, M. Chromatinized templates 

reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro. 

Nucleic Acids Res. 2008, 36, 1237–1246. 

134. Kessl, J.J.; Eidahl, J.O.; Shkriabai, N.; Zhao, Z.; McKee, C.J.; Hess, S.; Burke, T.R., Jr.; 

Kvaratskhelia, M. An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule. 

Mol. Pharmacol. 2009, 76, 824–832. 

 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


