
Review

Ecological Impacts of Emerald Ash Borer in Forests at
the Epicenter of the Invasion in North America

Wendy S. Klooster 1,*, Kamal J. K. Gandhi 2, Lawrence C. Long 3, Kayla I. Perry 4 ID ,
Kevin B. Rice 5 and Daniel A. Herms 6

1 Department of Entomology, The Ohio State University, Columbus, OH 43210, USA
2 Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA;

kgandhi@warnell.uga.edu
3 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA;

lclong2@ncsu.edu
4 Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center,

Wooster, OH 44691, USA; perry.1864@osu.edu
5 Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; ricekev@missouri.edu
6 The Davey Tree Expert Company, Kent, OH 44240, USA; dan.herms@davey.com
* Correspondence: klooster.2@osu.edu; Tel.: +1-614-292-2764

Received: 31 March 2018; Accepted: 3 May 2018; Published: 5 May 2018
����������
�������

Abstract: We review research on ecological impacts of emerald ash borer (EAB)-induced ash mortality
in the Upper Huron River watershed in southeast Michigan near the epicenter of the invasion
of North America, where forests have been impacted longer than any others in North America.
By 2009, mortality of green, white, and black ash exceeded 99%, and ash seed production and
regeneration had ceased. This left an orphaned cohort of saplings too small to be infested, the
fate of which may depend on the ability of natural enemies to regulate EAB populations at low
densities. There was no relationship between patterns of ash mortality and ash density, ash
importance, or community composition. Most trees died over a five-year period, resulting in
relatively simultaneous, widespread gap formation. Disturbance resulting from gap formation
and accumulation of coarse woody debris caused by ash mortality had cascading impacts on forest
communities, including successional trajectories, growth of non-native invasive plants, soil dwelling
and herbivorous arthropod communities, and bird foraging behavior, abundance, and community
composition. These and other impacts on forest ecosystems are likely to be experienced elsewhere as
EAB continues to spread.

Keywords: Invasive species; Fraxinus spp.; Agrilus planipennis Fairmaire; disturbance; gap ecology;
coarse woody debris; non-target impacts; forest succession; soil arthropods; tri-trophic interactions

1. Introduction

Alien phytophagous insects, including emerald ash borer (EAB, Agrilus planipennis Fairmaire
(Coleoptera: Buprestidae)), have altered forest composition, structure, and function throughout much
of North America [1–3]. EAB was first detected in North America in 2002 in southeast Michigan
and neighboring Ontario [4–6]. Subsequent analyses of dendrochronological data indicated that the
beetle was established and killing trees by the 1990s [7]. Since its introduction to North America, EAB
has caused extensive mortality of ash (Fraxinus spp.) [8–15], and to a lesser degree white fringetree
(Chionanthus virginicus L.) [16,17]. Since its initial detection, numerous studies have examined the
biology, ecology, and management of EAB [5,18–20].

The objective of this paper is to review research on the direct and indirect ecological impacts of
the EAB invasion on the flora and fauna of forests in the Upper Huron River watershed, which extends
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across western Oakland County, southeastern Livingston County, and north central Washtenaw County
in southeast Michigan. These forests are near the presumed epicenter of the EAB invasion in Canton
Township, Michigan [7], and thus have been impacted by EAB longer than others in North America.
Prior to the EAB invasion, black (F. nigra Marshall), green (F. pennsylvanica Marshall), and white
(F. americana L.) ash were the most common ash species on hydric swamps, mesic lowlands and flood
plains, and xeric upland sites, respectively [14,21]. As EAB continues to expand its distribution in
North America, the results of these studies provide insights into the ways EAB may impact other
ecosystems, which are predicted to be substantial at multiple scales [22,23]. Furthermore, EAB is also
causing extensive mortality of European ash (F. excelsior L.) in eastern Europe [24,25] where it may
have ecological impacts comparable to those in North America.

2. Timing and Patterns of Ash Mortality

EAB has caused extensive ash mortality in the Upper Huron River watershed [8,11–14].
Dendrochronological analyses revealed that EAB-induced ash mortality occurred in this watershed
as early as 1994 (L. Becker, D.A. Herms, and G.C. Wiles, unpublished data), and overall mortality
of ash with stem diameters >2.5 cm had reached 40% by 2005 [14,21]. Initially, decline of black ash
slightly exceeded that of green and white ash [14]. By 2008, however, mortality of all three species
was greater than 95%, and peaked at 99.7% in 2009 [13]. Hence, following a long lag period since the
onset of mortality, nearly 60% of trees died over a five-year period from 2005–2009, resulting in nearly
simultaneous, widespread gap formation (Figure 1). The extremely high mortality of these North
American ash species has been attributed to their low resistance to EAB relative to coevolved Asian
ash hosts [26]. As EAB continues to spread in “defense free space” [3], white, green, and black ash
may experience functional extirpation (sensu [27]) in which their populations decline to the point that
they no longer provide significant ecosystem function and services [22].
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River watershed in southeast Michigan as mortality of ash increased from 40% to >99% between 2005
and 2009.
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The relationships between host density or tree species diversity and population and impact
of alien phytophagous insects have been documented [28–30]. However, Smith et al. [14] found no
relationship between EAB-induced ash mortality and ash density, nor any other measure of community
composition including ash basal area, ash importance, total stand density, total stand basal area, or any
indices of tree diversity. Similarly, Knight et al. [10] observed no relationship between ash density
and percentage ash mortality in Ohio, although ash mortality proceeded faster in stands with lower
density of ash. These studies, conducted across an ash density gradient from low to very high and
across a broad spatial area, suggest the potential to prevent ash mortality via silvicultural management
is extremely limited [10,14].

From 2004–2006, there was a negative relationship between percentage ash mortality in the Upper
Huron River watershed and distance from the presumed epicenter of the invasion in Canton Township,
Michigan [7], with mortality decreasing 2% per km from the epicenter [14]. By 2007, however, this
relationship plateaued as ash mortality exceeded 90% across the entire watershed [14]. Decreasing ash
decline and mortality with increasing distance from the invasion epicenter was also documented by
other studies conducted at various spatial scales [8,31].

3. Ash Recruitment and Regeneration

3.1. Ash Seed Bank, Seedling Regeneration and Basal Sprouting

Where mature ash trees are present, their regeneration is generally substantial [32]. This was the
case in the Upper Huron River watershed, where ash recruitment and regeneration have been assessed
in several studies in response to the near complete mortality of reproductively mature trees [8,13,33].
Klooster et al. [13] conducted extensive soil sampling from 2005–2008 to characterize changes in the
ash seed bank. The soil seed bank depleted quickly as ash mortality approached 95%, and the number
of viable ash seeds declined until none were detected in 2007 or 2008. Rapid depletion of the seed
bank was confirmed by the lack of newly germinated ash seedlings (with cotyledons), which were not
detected after 2008 despite extensive sampling of the seedling layer [13]. These data from both soil
samples and forest floor surveys suggest that new ash regeneration ceased completely as mortality
of ash trees exceeded 95%. Kashian and Witter [8] also observed steep declines in the density of ash
seedlings in the Upper Huron River watershed.

Epicormic basal sprouting can contribute to ash regeneration [34] and is a common response of
ash trees that have had their canopies killed by EAB [33,35], especially for open-grown trees (Figure 2).
However, no such regeneration was observed by Klooster et al. [13] in the closed-canopy mixed
deciduous forests of the Upper Huron River watershed, where basal sprouts exhibited low vigor
and died with the canopy or soon thereafter, perhaps due to strong interspecific competition for
light and other resources in the understory of these diverse forests [14]. Conversely, Kashian [33]
observed significant regeneration from basal sprouts (with some producing seed) in small, nearly
pure stands of green ash where interspecific competition would not have been a factor. In addition,
the 58% ash mortality documented by Kashian [33] would have generated larger canopy gaps than
observed by Klooster et al. [13], where ash was a significantly lower component of more diverse forest
stands [14]. In southeastern Ontario, Aubin et al. [35] also observed substantial ash regeneration from
basal sprouting. However, inter- and intraspecific competition experienced by regenerating ash would
have been limited there as well, because the amount of pre-EAB ash basal area in the sampled stands
was greater than twice that of all other species combined, and more than 99% ash basal area died
following EAB establishment [35].
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Figure 2. Vigorous epicormic basal sprouting often occurs in response to canopy decline in open-grown
ash infested with emerald ash borer (EAB) but was not observed by Klooster et al. [13] in closed canopy,
mixed deciduous forests of the Upper Huron River watershed in southeast Michigan.

3.2. The Orphaned Cohort: Demography of Regenerating Ash

Prior to the EAB invasion, ash recruitment and regeneration were substantial in the Upper Huron
River watershed, as Fraxinus was the most common genus in the understory and seedling layers of
the stands sampled by Smith et al. [14] (Figure 3). As ash mortality exceeded 99%, the ash seed bank
became depleted and ash seedling recruitment ceased, leaving only an orphaned cohort of previously
established ash seedlings and saplings too small to be colonized by EAB, where they may persist for
many years (Figure 4). The EAB population also continued to persist in the region at low levels despite
the precipitous decline in its carrying capacity [36]. Each year, a proportion of ash saplings grows large
enough to be colonized by EAB, and in aftermath forests in southeastern Ontario, EAB was found
to be colonizing 19% of regenerating stems as small as 2.0 cm in diameter [35]. The fate of ash in the
Upper Huron River watershed will depend on the degree that the orphaned cohort of regenerating
saplings can survive and reproduce in the presence of low-density EAB populations [13].
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most common woody species in the forest understory in the Upper Huron River watershed in
southeast Michigan.
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growth, as evidenced by this plant that grew less that one cm between 2009 when it was tagged and
2016 when it was remeasured.

3.3. Biological Control and the Fate of the Orphaned Cohort

The degree to which ash survive to reproduce may be dependent in large part on whether natural
enemies can regulate EAB populations at low levels [32,37]. Woodpeckers are the most important
predators of EAB and are capable of causing high mortality on individual trees [38–42]. Predation
rates by woodpeckers, however, were highly variable across sites and from tree-to-tree [38,40,42].
Woodpeckers caused limited mortality of EAB in saplings [43] and have been observed to decrease
parasitoid populations by preying on parasitized EAB larvae, which may interfere with biological
control [41]. In another study, however, woodpeckers did not affect rates of EAB parasitism [44].

Native and introduced parasitoids can also be important sources of EAB mortality [39,40].
Braconid wasps (Atanycolus spp.) native to North America parasitize EAB in Michigan, but with
variable effects on EAB populations [43,45]. In a classical biological control program, several EAB
parasitoids native to Asia have been introduced to North America [46]. Although Spathius agrili
Yang (Hymenoptera: Braconidae) has had little success becoming established in the northern United
States, Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) has contributed to EAB mortality,
and Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) has become the dominant biotic factor
causing EAB mortality in southeastern Michigan [37,43,47]. Based on life table analyses, Duan et al. [43]
concluded that T. planipennisi decreased the growth rate of EAB populations in saplings by more than
50%, and Margulies et al. [48] found more live ash saplings where higher numbers of parasitoids had
been released. However, given the long residence time of ash seedlings and saplings in the understory,
this may reflect their density when parasitoids were initially released, which was not reported.

If biological control agents and other natural enemies can regulate EAB at low levels, perhaps
ash can regenerate at densities sufficient to restore significant ecosystem services lost during the EAB
invasion [13,33,37]. However, it remains to be demonstrated that parasitoids and other mortality
agents can exert temporal density dependent effects powerful enough to regulate EAB at low densities.
Parasitism rates by T. planipennisi declined substantially in trees with stem diameters >12 cm due to the
inability of their short ovipositors to penetrate thicker bark [37,40,43]. Furthermore, North American
ash species planted in Asia have experienced high mortality from EAB [49,50], even in the presence of
coevolved natural enemies.

4. Impacts on Other Flora and Fauna

Widespread and relatively simultaneous mortality of ash has been predicted to have substantial
direct and indirect ecological impacts on forest structure, function, and community composition via
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gap formation as trees die, as well as accumulation of coarse woody debris as dead trees fall [3,51].
This disturbance can alter soil microbial communities [52], hydrology [53,54], and carbon and nutrient
cycling [22,52,54], ultimately leading to community-level effects on successional trajectories [55],
facilitation of the establishment and spread of exotic plants [56], and impacts on native fauna [57,58].
Some effects of ash mortality will dissipate relatively quickly as canopy gaps close via regeneration in
the understory and growth of dominant and subdominant trees [59,60]. For example, the effects of
increased light availability on soil moisture and the foliar chemistry of understory plants will be more
ephemeral than the ecological impacts of the accumulation and decomposition of coarse woody debris,
and the persistent legacy of altered succession.

4.1. Successional Trajectories Following Ash Mortality

EAB-induced ash mortality is likely to alter successional trajectories, as other overstory and
understory species respond to widespread, relatively simultaneous gap formation [14,22,61]. As ash
mortality in the Upper Huron River watershed reached a peak, the most common genera in
the overstory were oak (Quercus) and maple (Acer), which thus appear likely to benefit from
released competition, at least in the short term [14]. Conversely, oaks were underrepresented in
the understory [14], perhaps due to limited recruitment and/or deer browsing (e.g., [62,63]), while
maple and basswood (Tilia) species were the most common taxa in the understory (other than ash),
suggesting that their dominance could increase over time [14]. Elm (Ulmus) was underrepresented in
the overstory relative to the understory [14], probably due to the impact of Dutch elm disease [64].

The effects of ash mortality and gap formation on radial trunk growth varied by species [65].
Of 11 taxa sampled, all of which are native to the study site, the majority of species that exhibited
positive correlations between ash importance value (prior to EAB-induced mortality) and diameter
growth (increased ring width) were shade-tolerant (sugar maple, A. saccharum Marshall; red maple,
A. rubrum L.) or intermediate (hickory, Carya; white oak, Q. alba L.; red oak, Q. rubra L.) tree species.
Diameter growth of most shade-intolerant species (black cherry, Prunus serotina Ehrh.; poplar, Populus;
larch, Larix; tulip tree, Liriodendron tulipifera L.) was not correlated with ash importance value, with
the exception of walnut (Juglans). At sites in Ohio, the radial growth of maples and elm increased
following EAB-induced ash mortality [22,61].

4.2. Facilitation of Invasive Plants

Some invasive plants are more vigorous and reproductive in forest gaps than under closed
canopies where light is limited (e.g., [56,66,67]). EAB may trigger an “invasional meltdown” [68]
if widespread gap formation caused by ash mortality facilitates the establishment and spread of
invasive plants by increasing light availability and/or relaxing interspecific competition for other
resources [3]. Consistent with this hypothesis, Klooster [69] found that in the Upper Huron River
watershed the growth rate of alien woody shrubs—specifically multiflora rose (Rosa multiflora
Thunb.), Amur honeysuckle (Lonicera maackii (Rupr.) Herder), and autumn olive (Elaeagnus umbellata
Thunb.)—increased to a much greater degree in canopy gaps created by ash mortality than did the
growth rate of native understory plants, such as ash seedlings, spicebush (Lindera benzoin (L.) Blume),
American hornbeam (Carpinus caroliniana Walter), and American hophornbeam (Ostrya virginiana
(Mill.) K. Koch). Hoven et al. [56] observed a similar pattern in Ohio forests where radial growth of
Amur honeysuckle was directly related to the degree of ash mortality. These patterns are consistent
with the species’ adaptions to light availability. The dominant species of alien flora are adapted to
respond to increased light availability, while the native shrubs consisted largely of shade-adapted,
understory species, which typically exhibit lower phenotypic plasticity in response to variation in
light availability [70,71]. However, Klooster [69] found no effect of EAB-induced gap formation on the
density of alien plants, perhaps because not enough time had lapsed since the onset of ash mortality to
impact their population dynamics.
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4.3. Arthropod Herbivores of Ash

The decline and mortality of ash trees are expected to directly impact phytophagous arthropods
that use ash as a host for at least part of their life cycle [72,73]. In a review of published literature,
Gandhi and Herms [72] found host records for 281 arthropod herbivores of ash in six taxa (Arachnida:
Acari; Hexapoda: Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera), including
folivores, sap feeders, phloem/xylem feeders, gall formers, and seed predators. Most species (208)
were polyphagous and thus were considered to face a low risk of population decline in response
to ash mortality due to the prevalence of alternative host plants. However, 43 native and one alien
species were reported to be specialist herbivores of ash, and thus were considered to face a high risk of
local extirpation [72]. Wagner and Todd [73] conducted an appraisal of published and unpublished
host records for specialist invertebrate herbivores of ash based on expert assessment by taxonomic
authorities and concluded that 98 species may be imperiled by the EAB invasion.

In the short term, populations of some wood-borers and bark beetles that colonize declining
and dead ash trees may increase in parallel with availability of suitable hosts [72]. However, their
populations are predicted to eventually decline as snags fall and subsequently decay (e.g., [74]).
For example, in a study conducted in the Upper Huron River watershed, Ulyshen et al. [75] reared
18 species of saproxylic beetles from ash limbs that had been suspended in the canopy or placed on the
ground. The highly polyphagous cerambycid, Neoclytus acuminatus Fabricius, was the most common
species collected. The buprestid Agrilus subcinctus Gory and the curculionid Hylesinus aculeatus Say,
were also collected and face greater threat of local extirpation because they are largely or entirely
restricted to ash [75]. Population declines of arthropod species that utilize ash as a host will likely have
cascading impacts on biota with which they interact (e.g., symbionts and natural enemies), and the
impacts may reverberate across the food web [72,73].

4.4. Ground-Dwelling Invertebrates

Widespread tree mortality caused by alien insects may also have indirect effects on invertebrate
populations and communities [3]. Perry and Herms [76] proposed a model of dynamic temporal effects
of disturbance caused by tree-killing invasive insects, including gap formation and accumulation of
coarse woody debris (CWD) (Figure 5), on ground-dwelling invertebrate populations and communities.
The model predicts the magnitude of effects of gap formation and accumulation of CWD will
transition over time in opposing ways as ash mortality in the stand progresses from early to late
stages. The formation of canopy gaps is predicted to have the greatest impact on ground-dwelling
invertebrate diversity and abundance during early stages of ash mortality when gaps are presumably
at their maximum size after tree death, with impacts diminishing over time as gaps close. Impacts
of CWD, in contrast, are predicted to increase over time [76] as ash trees die, standing snags fall, and
CWD accumulates and decomposes on the forest floor. For example, Higham et al. [74] observed rapid
accumulation of CWD across a chronosequence of ash mortality in Ohio, and in the Upper Huron
River watershed, the number of fallen ash trees increased by 76% from 2008–2012, and volume of ash
CWD increased by 53% [77].

Experimental tests have been broadly consistent with these predictions. In a study conducted
in stands experiencing early stages of ash mortality in northern Ohio, gap formation decreased
the abundance of ground beetles (Carabidae) and other ground-dwelling arthropod taxa, as well
as species richness and diversity, while the effects of CWD were less substantial [78,79]. Similarly,
during early stages of ash mortality in the Upper Huron River watershed in southeast Michigan,
ground beetle abundance and diversity decreased as ash mortality and gap size increased [80].
At the same sites during late stages of ash mortality, the effects of gaps—which by then were
smaller—on ground-dwelling invertebrate communities were minimal, while the abundance, evenness,
and diversity of soil arthropods and exotic earthworms were highest adjacent to decomposing ash
CWD [81,82].
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4.5. Tri-Trophic Impacts on Swallowtail Butterflies

As ash mortality generates canopy gaps, insect herbivores of understory plants may be impacted
indirectly by the effects of increased light availability on the quality of their host plants. For example,
foliar concentrations of secondary metabolites are often higher in plants in the sun than in the same
species growing in shade [83,84]. Common prickly ash (Zanthoxylum americanum Mill.), a native
understory shrub in southeast Michigan, is the only host in the Upper Huron River watershed for giant
swallowtail butterfly (Papilio cresphontes Cramer) larvae (Figure 6). The foliage of prickly ash contains
furanocoumarins [85], which are photoactivated secondary metabolites that become more bioactive
and toxic to herbivores when exposed to ultraviolet light [86]. Rice [87] found that prickly ash growing
in canopy gaps created by ash mortality contained higher foliar concentrations of furanocoumarins
than conspecifics in the shaded understory. Although giant swallowtail butterfly larvae are capable of
detoxifying furanocoumarins [88], larvae still grew more slowly on plants in canopy gaps [87].
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The slow growth–high mortality hypothesis predicts that slower growing larvae will experience
greater mortality because of their longer exposure to natural enemies [89,90]. Average daily probability
of mortality from natural enemies (15%) was equivalent for larvae feeding on plants in gaps and
shade [87]. Hence, if the lower growth rate of larvae feeding on plants in canopy gaps delays
completion of the larval stage, mortality from natural enemies should increase as indirect effects of
EAB-induced ash mortality and gap formation cascade across trophic levels [87].
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4.6. Effects on Bird Behavior and Communities

EAB-induced ash mortality may also affect bird behavior and communities indirectly by altering
the availability of food resources and nesting habitat. Woodpeckers and other insectivorous birds that
forage primarily on bark or dead wood may be ecologically primed to benefit from the EAB invasion,
at least temporarily, as a dramatic pulse of food from the EAB outbreak leads to increased reproduction
and population growth, followed by a sharp population decline caused by resource depletion as ash
trees die and the EAB population crashes (e.g., [5,91]). For example, data from the citizen science
program Project FeederWatch revealed a signature of the EAB invasion near the epicenter in southeast
Michigan that was not detected elsewhere, as Red-bellied Woodpecker (Melanerpes carolinus L.) and
White-breasted Nuthatch (Sitta canadensis L.) numbers initially increased, while those of Downy
Woodpecker (Picoides pubescens L.) and Hairy Woodpecker (Picoides villosus L.) initially declined and
then increased several years later [92].

Long [93] monitored bird communities and foraging behavior during the winter across a gradient
of EAB impact ranging from near complete ash mortality in southeast Michigan to early stages
of EAB invasion in southwestern Ohio. He found that Downy, Hairy, Red-bellied, and Pileated
(Dryocopus pileatus L.) Woodpecker all spent more time foraging on ash trees in stands with active
EAB infestations, and that these stands had higher numbers of Downy Woodpecker. Red-bellied
Woodpecker was significantly less abundant in stands in which the EAB outbreak had run its course.

Forest stands with high ash mortality had more diverse bird assemblages than did stands
experiencing low ash mortality. Stands with high ash mortality had greater herbaceous groundcover,
shrubby regeneration, and canopy fragmentation relative to stands with low ash mortality, which
created nesting habitat and resulted in a shift in the breeding bird community to species more typical
of open habitats [93].

5. Summary and Conclusions

It is clear from this review that EAB already has substantially impacted forests near the epicenter of
the invasion of North America. In the Upper Huron River watershed in southeast Michigan, mortality
of black, green, and white ash exceeded 99% by 2009, with nearly 60% occurring over a five-year period.
As would be expected when mortality is so comprehensive, there were no relationships between ash
mortality and ash density, species diversity, or any other measure of stand composition. New ash
recruitment ceased as the ash seedbank was depleted and no new seedlings were detected, leaving
only an orphaned cohort of previously established ash seedlings and saplings too small to be infested
by EAB. The degree to which ecosystem services provided by ash can be restored may depend in large
part on whether introduced biological control agents and other natural enemies can regulate EAB
populations at densities low enough to facilitate significant ash regeneration.

The relatively simultaneous, widespread canopy gap formation followed by a steady
accumulation of downed coarse woody debris has triggered a cascade of direct and indirect effects
on plant and animal communities. Forest successional trajectories have been altered, growth rates of
exotic plants have increased, specialist herbivores of ash are threatened with local extirpation, and the
abundance and diversity of ground-dwelling invertebrates have been impacted, as have behavior and
abundance of overwintering and breeding birds.

While these studies have increased our understanding of the ecological impacts of EAB, future
research may focus on elucidating rates and patterns of gap closure and successional trajectories in
different forest types; whether ash mortality and accumulation of CWD alter nutrient cycling and
hydrological processes; long-term impacts of gap formation on alien and native understory flora; and
impacts of ash mortality on ash herbivores and biodiversity at the landscape-level. Such studies will
inform efforts focused on increasing resilience and restoration of ash ecosystems as the EAB invasion
of North America proceeds.
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