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Abstract: We assessed potential economic losses and transmission to residential houses from
wildland fires in a rural area of central Navarra (Spain). Expected losses were quantified at the
individual structure level (n = 306) in 14 rural communities by combining fire model predictions
of burn probability and fire intensity with susceptibility functions derived from expert judgement.
Fire exposure was estimated by simulating 50,000 fire events that replicated extreme (97th percentile)
historical fire weather conditions. Spatial ignition probabilities were used in the simulations to
account for non-random ignitions, and were estimated from a fire occurrence model generated with
an artificial neural network. The results showed that ignition probability explained most of spatial
variation in risk, with economic value of structures having only a minor effect. Average expected loss
to residential houses from a single wildfire event in the study area was 7955€, and ranged from a low
of 740 to the high of 28,725€. Major fire flow-paths were analyzed to understand fire transmission
from surrounding municipalities and showed that incoming fires from the north exhibited strong
pathways into the core of the study area, and fires spreading from the south had the highest likelihood
of reaching target residential structures from the longest distances (>5 km). Community firesheds
revealed the scale of risk to communities and extended well beyond administrative boundaries.
The results provided a quantitative risk assessment that can be used by insurance companies and local
landscape managers to prioritize and allocate investments to treat wildland fuels and identify clusters
of high expected loss within communities. The methodological framework can be extended to other
fire-prone southern European Union countries where communities are threatened by large wildland fires.

Keywords: wildland urban interface; wildfire simulation modeling; wildfire risk transmission;
community fireshed

1. Introduction

Most wildfires that cause human fatalities and losses to property occur in the rapidly expanding
interface areas between wildlands and human development [1,2]. This area where residential and
other infrastructures intermingle with flammable vegetation is widely known as wildland-urban
interface (WUI) or rural-urban interface (RUI) [3,4]. While the former definition is mainly used
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for predominantly wildland vegetation areas surrounding developed areas, the latter is most
commonly used in Mediterranean landscapes where fuels have been influenced by human activities
for millennia [5,6]. In areas lacking sharp transitions between development and wildlands, where
structures are surrounded by hazardous fuels, the term intermix has been used to describe the
juxtaposition of fuels and dwellings [7]. In all cases, a number of factors have contributed to wildfire
losses in developed areas (hereafter WUI), including urban expansion, increased fuel loadings from
expansion of shrub and forest vegetation into abandoned agricultural lands, and suburban sprawl
over metropolitan agricultural belts [8-10]. Likewise, fire suppression policies have contributed to a
buildup of fuels in and around developed areas, resulting in higher hazard within developed areas
and structure ignition [11]. Wildland fires in the WUI are a growing concern at global scales due to
escalating losses to life and property [12,13], and have become a priority for wildfire management
policies in many fire-prone areas [14].

Previous efforts on WUI wildfire risk characterization in Mediterranean landscapes have
emphasized the importance of flammable vegetation surrounding communities [15], since fuel loadings
are directly related to fire intensity and structure loss [16]. Aggregation of dwellings (isolated, grouped
and urban center) combined with vegetation types or land covers have been proposed as a WUI
classification system to inform risk and vulnerability assessments [17,18]. Other studies have focused
on ignition likelihood to measure wildfire risk [19-21]. The vast majority of fires in the Mediterranean
basin are caused by humans [22-24], and most fire-occurrence modeling studies include explanatory
variables to describe human activities, such as population density, accessibility (e.g., distance to roads,
distance to railways, distance to forest tracks) and human activities [25,26]. However, neither of these
previous approaches account for the likelihood of loss from large fires (e.g., 5000-50,000 ha) that ignite
at some distant location and spread to urban development. Thus, low fire ignition probability close
to a WUI area does not necessarily translate to low burn probability, and vice versa. Moreover, fire
intensity can substantially vary depending on fire weather and fire front spreading direction [27,28].

To better account for the spatial scale of wildfire risk to human communities, a growing number
of researchers have employed wildfire simulation methods [29,30]. Both burn probability and fire
intensity in the home ignition zone (HIZ, the immediate 30-60 m-buffer area around dwellings) [11]
can be estimated by simulating a large number of fires (e.g., 10*~10°) to assess wildfire exposure from
large fires [31,32]. These estimates can be then used in risk assessments to quantify the potential
socioeconomic impacts, including expected net value change on residential structures [27,28,33].
While it is generally agreed that higher wildfire exposure results in larger losses in the WUI, variability
in structure susceptibility and economic valuation can substantially affect risk estimates at the scale
of individual dwellings. For instance, high overall exposure levels can be mitigated by construction
materials and structure design [34]. These differences in construction can be incorporated into risk
assessments using different susceptibility relationships [35,36]. Simulation studies can also be used
to understand the scale of risk to communities to help identify responsible landowners [37,38].
For instance, using wildfire transmission analysis, fire effects on valued resources can be traced
back to the ignition location [39], and landscape planning to reduce hazardous fuels can then target
these areas for fuel treatments [40].

In this paper, we assess potential wildfire economic losses and transmission to residential houses
in the rural communities of Juslapefia Valley, northern Spain. We used simulation modeling to map
the source of wildfire exposure to communities and estimated the expected financial loss at the scale
of individual structures. The simulation modeling incorporated a fine scale ignition probability grid
developed from historical fire locations. Simulation outputs were used to estimate a number of
exposure metrics, including burning probability and fire intensity. We estimated expected loss in the
community using wildfire exposure metrics combined with a structure susceptibility function. The later
was generated by a panel of local experts using an interactive structured communication technique.
We also conducted a transmission analysis to delineate community firesheds and understand the
source of wildfire exposure to communities. The methods provide a number of new ways to examine
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wildfire exposure to communities that can inform wildfire protection and improve fire resiliency in
rural-urban interface areas in the Mediterranean region.

2. Material and Methods

2.1. Study Area

The study area is located in the Juslapefia Valley, central Navarra (Spain), 18 km north of the
city of Pamplona (Figure 1A). The Juslapefia Valley is a 31.63 km? municipality with 548 inhabitants
dispersed among 14 small rural villages or councils (minimum administrative division). The climate
is transitional Mediterranean with annual rainfall around 1000 mm, a water shortage period from
July to September corresponding to the wildfire season, and average maximum temperatures over
30 °C in the warmest month (meteo.navarra.es). The landscape is a mosaic of dryland cereal crops
covering the valley bottom, mesoxerophytic pastures with shrubby edgings on marginal agricultural
lands (Genista scorpius L., Juniperus communis L., Buxus sempervirens L., and Prunus spinosa L.), downy
oak (Quercus pubescens Mill.) forests on south facing slopes (replaced by Quercus ilex L. in shallow
soil foothills), beech (Fagus sylvatica L.) forests on high elevation north facing slopes, and scattered
stands of black pine (Pinus nigra Arn.) [41]. Land management is largely conditioned by ownership.
Most forests and natural herbaceous pastures are council common lands and agricultural fields are
owned by local inhabitants. Community housing is located at mid-slopes, usually surrounded by
agricultural lands and orchards at the front southern side, and forested lands arrive closer at the
back (Figure 1B). We focused our analysis on residential houses (1 = 306 structures), and we did not
consider other structures or constructions such as agricultural warehouses. In the study area, there are
no industrial sites or sport-recreational facilities. The largest observed wildfires are characterized as
fast-spreading one-day summer events with less than 1000 ha burned (e.g., Juslapefia Fire in 2009 and
San Cristobal Fire in 2001). Most fires are caused by humans, while lightning represents only 5% of
ignitions (1985 to 2013 fire records; mapama.gob.es).
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Figure 1. Location of the Juslapefa Valley (3163 ha) in central Navarra (Spain) (A). The numbers
refer to the regional cadaster council polygon (1 to 16) and municipality code (B). The 36,000-ha
wildfire modeling domain framed by the landscape file (LCP) encompassing the study area had a
wider extension to the south to account for incoming fires from the fire-prone areas of central Navarra.
Land covers in the cultural landscapes present sharp edges in vegetation (B urban center of the council
No. 8). Detailed cartography and cadaster polygons (scale 1/5000) were used to generate surface fuel
maps (sigpac.navarra.es) and locate residential houses (catastro.navarra.es) (C). The HIZ is the 60-m
buffer around structures [11], and was calculated for each residential house to conduct this study. In the
figure (C) we show the external HIZ contour of the residential houses in urban center of the council No. 8.
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2.2. Wildfire Simulation

We gathered multiple datasets and geospatial inputs for this modeling approach (Figure 2).
We simulated wildfire spread and behavior (fire size, burned area polygons, flame length probabilities,
and conditional burn probability) within a 36,000-ha fire modeling domain. Overall, we conducted
separated simulations for the most frequent extreme weather conditions of the wildfire season, thus
obtaining different sets of modeling outputs. All the output raster grids were obtained at modeling
resolution. Details are presented below in the following sections (Table 1).
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Figure 2. Wildfire simulation and analysis process summary flowchart. Wildfire simulation requires
fire weather, landscape and fire ignition input data. Fire initiation, transmission, exposure and risk
analysis use different fire modeling outputs. Exposure and risk analyses were conducted at individual
structure HIZ level. Results were presented in maps or graphics. See Table 1 for the abbreviations.

Table 1. Summary table with the abbreviations used in this study for the main geospatial inputs,
modeling outcomes and analysis results. The terms are described and contextualized for the use in this
study. We provide further details in the following sections.

Name (Abbreviation) Description and Use

Area surrounding structures within a 30-60 m-buffer [11]. HIZ was used
Home ignition zone (HIZ) to assess wildfire exposure and risk on the individual residential houses
located in the study area.

Fire occurrence probability grid (0-1) generated by artificial neural
Ignition probability (IP) network analysis [26] of historical ignition locations. It was used to
calculate FPI and generate the simulated fire ignition locations.

Fire size (ha) resulting from each individual simulated wildfire. Fire size
Fire size (FS) is output from simulations along with the ignition location. It was
combined with IP to generate FPL
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Table 1. Cont.

Name (Abbreviation) Description and Use

Is the grid generated with FS and IP, and it was used to identify large fire
initiation areas [31]. The FPI provides spatially explicit valuable
information to target anthropic fire ignition prevention priority areas on
fire-prone landscapes.

Fire potential index (FPI)

Probability of a fire of a specific flame length given that a pixel burns
under the simulated conditions. FLP is output in 0.5-m classes and sums
to 1 for a given pixel. A distribution of flame lengths is generated for each
pixel since fires can arrive as heading, flanking or backing fires.

Flame length probability (FLP)

Probability-weighted flame length (m) calculated from the FLP output.
Conditional flame length (CFL) CFL was summarized for the HIZ to estimate wildfire hazard and
exposure to residential houses [35].

Number of times a pixel burns as a proportion of the total number of
simulated fires (0-1). BP average values for each HIZ were used to
estimate wildfire likelihood and assess wildfire exposure to residential
houses [35].

The susceptibility of structures as a function of flame length represented
by percent value loss (%) [42]. It was obtained from expert judgment [35].

Burn probability (BP)

Response function (RF)

Expectation of gain or loss in values expressed on a percentage basis

(%) [28]. Derived from combining burn probability, intensity, and
susceptibility functions to estimate expected change on a percentage basis
for structures [27]. Only expected losses were considered in the study.

Expected net value change (eNVC)

Expected loss expressed specifically in economic values (€) given a fire
ignition and spread at assumed extreme fire weather conditions.
Quantified as the product of the cadaster value of the structures and the
average eNVC within the HIZ.

Expected economic loss (eEL)

2.2.1. Landscape File and Fire Weather Input Data

We compiled the complete set of input data as required by the FlamMap fire simulator [43],
including landscape file (LCP) and wildfire season extreme fire weather data. The LCP is a gridded
frame containing the characteristics of the terrain, surface fuels and canopy fuel metrics. The terrain
(aspect, slope and elevation) was derived from 5-m resolution digital terrain model raster data (ign.es).
Standard fuel models [44,45] were assigned to 1/5000 scale land use land cover considering species
composition, shrub cover and forest growth stage (idena.navarra.es and sigpac.navarra.es) (Figure 3).
Canopy metrics (canopy height, canopy base height, canopy bulk density and canopy cover), were
derived from low density LIDAR data (0.56 returns m?; ign.es) using FUSION [31,46]. The surface
fuel and canopy metric characterization and required raster grid generation were detailed in previous
studies [47,48]. The LCP was assembled at 20-m resolution [49] and comprised a 36,000-ha fire
modeling domain (Figure 1A). Extreme fire weather conditions were derived using Fire Family
Plus [50] from the hourly records of the Pamplona automatic weather station (1999 to 2015 records;
meteo.navarra.es), as the 97th percentile ERC-G fuel moisture content [51] and wildfire season
dominant winds (Table 2). We generated five wind scenarios considering the most frequent wind
directions (frequency >5% in weather records) during wildfire season and the respective 97th percentile
wind speeds.
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[ 1Council boundaries
[JStudy area

Land cover (fuel model code)
Il Urban development (NB1)
771 Water bodies (NB8)

777 Orchard (NB3)
[JGarden (GR1)

[ Low shrubland (GS1)
[_ICereal crop (GR5)

[ 1Meadow (GR2)
[THerbaceous pasture (GR4)
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Figure 3. Land cover map (idena.navarra.es) and assigned fuel models [44,45] for the wildfire modeling.
The large urban development areas in the southeast correspond to the capital city of Pamplona.
Cereal crops occupy all the flat cultivated areas to the south and mountains in the northern part are
covered by mosaics of different forest types. See fuel model parameter details in the references [44,45].

Table 2. Fire weather input data, corresponding to the historical 97th percentile conditions, used for
wildfire simulations. We considered the most frequent wind directions (frequency >5%) during the
last 17 wildfire seasons. Historical weather data were gathered from the meteorological station of
Pamplona (meteo.navarra.es). We used standard fuel models for fire modeling, see references [44,45]
for further details.

Wind Scenario Fuel Moisture Content (%)

Fuel Model [44,45]

. . eed s Fuel Loadin,
Direction (°) (k?rf:-h—l) Probability Category 8 gISé i gﬁi ,I TU3, PCL, GR1, SH3,
SH6, SH5 SH3, GR3 TL2, SHS8
67.5 32 0.43 1-h 4 6 8
337.5 35 0.28 10-h 5 7 9
45.0 19 0.17 100-h 8 9 12
180.0 31 0.06 Live herbaceous 20 45 70
225 23 0.06 Live woody 60 85 100

GS1 =low load, dry climate grass-shrub; GR2 = low load, dry climate grass; GR4 = moderate load, dry climate grass;
GR5 = low load, humid climate grass; SH6 = low load, humid climate shrub; SH5 = high load, dry climate shrub;
TU3 = moderate load, humid climate timber-grass shrub; PCL = closed and low litter pine stands; SH3 = moderate
load, humid climate shrub; GR3 = low load, very coarse, humid climate grass; GR1 = short, sparse dry climate grass;
SH3 = Moderate load, humid climate shrub; TL2 = low load broadleaf litter; SH8 = high load, humid climate shrub.”

2.2.2. Fire Occurrence Modeling

We used artificial neural networks (ANNSs) to construct a fire occurrence model, and ultimately to
generate a 20-m resolution ignition probability grid encompassing the modeling domain. A 10,000-fire
ignition point input file for wildfire simulation was then created from the ignition probability (IP)
grid masked to burnable fuels. ANN models are robust pattern detectors which can approximate
mathematical relationships with non-normal distributions and spatially correlated variables where
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other statistical models could cause multicollinearity [52,53], and have been successfully applied to
fire occurrence prediction in previous work [26,54].

The historical fire ignitions within the fire modeling domain (200 ignitions in all, 1985 to 2013
fire records; mapama.gob.es) and the same number of random no-fire observations were matched
to topography (elevation, aspect, slope), land cover class, population density, and accessibility
(distance to roads, tracks, railways, urban areas and powerlines) 20-m resolution raster grids (ign.es;
idena.navarra.es). Ten percent of the fire and no-fire observation variable dataset (40 cases) was
set apart for validation purposes before model building. We selected feed-forward, multilayered,
non-linear, fully connected, cascade-correlation networks [55], built using Neural Works Predict®
v.3.30 software (NeuralWorks Predict®3.30, Serial Number NPSC30-70755, Carnegie, PA, USA) [56]
with an adaptive gradient learning rule, a variant of the general algorithm of back-propagation [57],
and a weight decay factor which inhibited complexity of the models [58]. The historic fire records of
fire and no-fire observations for model building (90%) were further divided in two. One part was
used for iterative training (70%, 252 cases) and the other part (30%, 108 cases) for early stopping, the
periodic assessment of performance accuracy in order to avoid losing generalization capacity due to
overtraining [59]. The cascade-correlation models followed a similar procedure to [60,61], in which the
model architecture (number of nodes in the hidden layer) is optimized during training.

The best model found had an 8-6-1 (input-hidden—output) structure, and classification rates
of 0.78-0.73-0.69 for training—test—validation datasets (Table 3). When selecting the best ANN
classification model, we looked for the highest classification rate on observed and predicted fire/no-fire
observations, balanced results between the three datasets and a parsimonious architecture. Variables
in the model, by order of importance, were distance to forest tracks (three times input to the model),
distance to urban areas (twice input to the model), distance to powerlines (twice input to the model),
and population density (once input to the model). Finally, this best fire occurrence model was run
at 20-m resolution pixel level to generate the ignition probability grid (IP; values ranging between 0
and 1; Figure 4).

Table 3. Classification table with the results for the best occurrence model. The model was generated
with Neural Works Predict® v.3.30 software. This occurrence model was used to generate a 20-m
resolution ignition probability grid (Figure 4). Geospatial variables associated with the historical fire
ignitions (200 fire ignitions, 1985 to 2013 fire records; mapama.gob.es) (1) and a random sample with
the same number of no-fire observations (0) were included within the fire modeling domain. A set of
40 cases (10%) was used for the validation of the model.

Classification Rate Class 0 1 Total

0.756 0 99 32 131

Training 0.802 1 24 97 121
0.779 Total 123 129 252

0.679 0 36 17 53

Test 0.782 1 12 43 55
0.731 Total 48 60 108

0.765 0 13 4 17

Validation 0.609 1 9 14 23

0.687 Total 22 18 40
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Figure 4. Ignition probability grid generated with an artificial neural network using the geospatial
variables associated with the observed ignition data (1985 to 2013 historic fire records; mapama.gob.es).
This fire occurrence grid was used to generate the 10,000 fire ignition input data masked to burnable
fuels in the wildfire modeling domain. Unburnable areas (IP = 0) correspond to urban development,
roads and water bodies.

2.2.3. Wildfire Spread and Behavior Simulation

We used FlamMap to simulate wildfires under conditions of constant fuel moisture, wind speed
and wind direction [43]. We conducted five different weather scenarios at 20-m resolution, with
10,000 wildfires per scenario (Table 2). FlamMap uses the two-dimensional fire growth minimum travel
time algorithm (MTT) [62], which has been widely used worldwide at a broad range of scales with
multiple purposes [63-66]. The MTT algorithm replicates fire growth based on the Huygens’ principle,
where the growth and behavior of the fire edge is modeled as a vector or wavefront [62], and fire
spread distance is predicted by the Rothermel’s surface fire spread model [67]. Fire duration was set at
6 hour, in agreement with the active fire spread duration of the observed largest wildfire events in the
study area (i.e., Juslapefia 2009). We did not consider barriers to fire spread or fire suppression efforts.
Overall, modeled fires burned burnable pixels at least once and more than 100 times on average.

FlamMap outputs burn probability (BP) and flame length probability (FLP) grids, as well as a fire
size (FS) text file and the fire perimeters (polygons). The burn probability (BP) is the number of times
a pixel burns as a proportion of the total number of fires, and is defined as follows:

BP=F/n 1)

where F is the number of times a pixel burns and 7 is the number of simulated fires per run (n = 10,000
in this study). Specifically, the conditional burn probability in the study area is the BP given that a fire
ignites within the fire modeling domain and spreads for 6 hours at assumed fuel moisture and weather
conditions (97th percentile fire weather). Fire intensity [68] is first predicted by the MTT algorithm [62]
and is converted into flame length as:

FL = 0.0775 x [0-46 )
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where FL is flame length (m) and I fireline intensity (kW-m~! , kW = kilowatt). Then the program
calculates a FLP regular point grid (at the fire simulation resolution) from the multiple burning fires at
different flame lengths (i.e., backing, heading and flanking fire spread flame lengths). For every pixel
in the FLP output, the probability of flame length is calculated at i categories of different fire intensity
levels (FILs), given that at least one of the simulated fires has burned the pixel. In this study, FILs were
obtained as twenty 0.5-m flame length categories (for FIL;-FIL;9 and FILyy >9.5 m).

In the fire size (FS) text file output generated by FlamMap, the simulated burned area (ha) is
attributed to each xy coordinate fire ignition. Moreover, we also obtained burned-area polygon
shapefiles associated with each simulated fire and minimum travel time (MTT) major flow-paths
polyline shapefiles for the five fire weather scenarios (Table 2). Travel pathways are straight lines that
connect nodes and intersect cells to form segments for which fire behavior is calculated from the input
data [43].

2.3. Expert Judgement of Structure Susceptibility

We used a response function (RF) to approximate structure susceptibility (potential losses) using
fire intensity level model outputs [36]. To generate a customized RF for residential houses in the
study area, we used the Delphi method [69]. The Delphi method is an iterative questionnaire process
used to obtain a reliable consensus from a carefully selected expert panel, and it has been used in
previous studies to determine wildfire causality from the personnel involved in fire suppression
activities [70,71].

We conducted a face-to-face and anonymous two-round questionnaire process with the regional
firefighting “Bomberos de Navarra” chiefs, focusing on the most experienced in WUI fire suppression
in central Navarra. Fire intensity is the main causative factor of home loss given that a fire reaches a
housing structure, and therefore in the questionnaire, potential value loss of structures (as a percentage)
was associated to four different fire intensity class response functions (intensity levels of FIL;, FIL,-FILy,
FIL5-FIL7, and FILg-FILyg). The four fire intensity classes were selected considering previous studies
and the capabilities of existing geospatial tools to integrate the fire modeling outputs with potential
fire effects [36,49]. In the first round of the questionnaire process, the experts filled the questionnaire
anonymously according to their own personal experience to reduce the effect of dominant individuals.
Then in the second round, the questionnaire was repeated to the same experts, but included results
from the first round (average values and deviation in the fire intensity classes) to meet a higher
consensus and refine the final results. The obtained custom RF presented moderate to strong losses
in housing structures as fire intensity increased (Table 4), similar to RFs obtained in other studies
conducted in Mediterranean areas [35].

Table 4. Custom response function (RF) used to approximate fire effects in terms of value loss (%) on
residential houses in the study area [42]. The fire modeling output fire intensity levels (FILs) were
grouped into four classes for the geospatial risk assessment [49]. We used the Deplhi method to obtain
the susceptibility function from an expert panel composed of the most experienced firefighter chiefs on
wildland urban interface fire suppression [69]. The wildfire had negative impacts in structures at all
fire intensities.

Relative Net Value Change (%) at Different Fire Intensity Classes

Moderate . Very high
Valued asset Low (FIL.) (FIL,-FILy) High (FILs=FIL7)  (prp L)
FL<0.5m 0.5m<FL<2m 2m<FL<3.5m FL>3.5m

Residential house —10 —45 —75 —-95
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2.4. Residential House Economic Value

We used the official cadaster method described in the Navarra Foral Decree 334/2001 of November
26 to assess the economic value (V) of the individual housing structures in the study area. This Foral
Decree approves the procedure for the economic assessment of immovable property in the Foral
Community of Navarra throughout the implementation of the Comparison Method of the average
market prices, with reference to Inheritance and Gift taxes, and over Property Transfer and Certified
Legal Documents (text published in the Boletin Oficial de Navarra No. 155 of 21 December 2001, and
the Boletin Oficial de Navarra No. 21 of 18 February 2002; lexnavarra.navarra.es). The method has
been updated several times since its first publication, with the Foral Decree 39/2015 of 17 June being
the last update. There are specific models to estimate the values for flats, single residential houses,
and parking or storage rooms. We used the model for single houses, since most dwellings in the study
area were well preserved rural houses or recently built constructions. The main parameters used by
the model are the year of the information, type of individual house, location, cadastral category and
conducted reforms, year of construction, constructed surface, and the ratio of constructed surface to
urban development polygon surface. The residential houses with more than one cadastral sub-division
(original building and dwelling expansion) were merged into a single unit. We used market prices
from 2015 to obtain the most up-to-date values (Table 5).

Table 5. Summary table of the cadaster economic value (V) for the residential houses in the Juslapefia
Valley. Council polygon cadaster codes No. 3 and No. 16 do not have residential houses (Figure 1A).
The cadaster value was estimated for the year 2015, considering the model published in the Foral
Decree 334/2001 of November 26 (lexnavarra.navarra.es).

Cadaster Council Residential Cadaster Economic Value (€)
(Polygon No.) Name Houses (No.) Average Median Maximum  Minimum
1 Beorburu 11 108,825 109,767 151,432 52,124
2 Osacar 8 145,249 133,338 223,641 100,226
4 Osinaga 16 130,053 123,993 213,505 50,040
5 Aristregui 23 162,244 191,847 423,310 48,396
6 Larrayoz 17 156,733 138,493 269,403 77,480
7 Nuin 26 142,338 109,033 261,787 52,254
8 Marcalain 31 163,710 141,553 315,990 91,589
9 Iruzkun 1 132,192 132,192 132,192 132,192
10 Garciriain 12 139,194 143,079 199,405 74,682
11 Belzunce 48 168,233 135,984 483,043 64,657
12 Navaz 21 131,148 114,763 223,539 68,061
13 Ollacarizqueta 55 135,030 127,351 319,046 67,402
14 Unzu 16 154,063 174,413 218,129 88,067
15 Usi 21 111,784 108,407 167,685 71,229

2.5. Analysis

Wildfire simulation outputs were used to assess large fire initiation, transmission, exposure and
risk to residential houses of rural communities within the study area (Figure 2). We combined five sets
of fire simulation outputs (BP, FLP, FS, burned area perimeters and major flow paths), one for each
scenario by weighting the relative scenario probability (Table 2).
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2.5.1. Large Fire Initiation and Incoming Major Pathways

We estimated fire potential index (FPI) [31], and MTT major flow-paths to spatially analyze where
large fires likely initiate and from which surrounding neighboring municipalities do these fires spread
to reach the target residential houses. We calculated fire potential index (FPI) as:

FPI=FS x IP )

where the FS is the spatially smoothed fire size grid, and IP is the historical-based ignition probability
grid generated with the ANN fire occurrence model (Figure 4) used to generate the fire ignition
input file. We used a kriging geostatistical analysis method to generate a continuous distribution
grid of FS from fire size data contained in the ignition location output point file. MTT flow-paths
within surrounding municipality polygons (Figure 1A) were then overlaid and classified in three
frequency classes (<33%, 33%—66% and >66%), considering the simulation scenario probability (Table 2),
to identify preferential pathways entering to the Juslapefia Valley.

2.5.2. Transmission Analysis

We analyzed how incoming fires are shared among surrounding municipalities (Figure 1A)
and mapped the potential impact of each independent fire on dwellings with transmission analysis.
We only considered large fires (>100 ha) because small fires do not substantially contribute to total
burned area. In the study area observed, large fires (>100 ha) burned about 95% of the total area (1985
to 2012 historic fire records). We quantified (i) the number and (i7) the economic value of residential
houses within fire perimeters. Fire transmission in terms of the number of structures was quantified as:

TFS; =Y @)

where TFS measures the number of individual S affected structures in the jth municipality (study area)
given a large fire (>100 ha) ignited in the ith surrounding municipality (Figure 1A) spreading under
97th percentile fire weather conditions for 6 hours. Correspondingly, the cadastral value of all affected
structures contained inside the burned area from transmitted fires was quantified as:

TEV; =LV, ®

where TFV measures the cadaster structure value sum of all houses affected and located in j, given
a fire arriving from the ith polygon, and V is the individual structure cadaster value (€). TFV is not
the expected economic loss of affected structures, but the value of all affected structures within the
burned area polygons. We considered j as the municipality polygon corresponding to the study area
(i.e., Juslapefia Valley) containing all the target residential houses, and i as the surrounding municipality
polygons (Figure 1A). In total, we analyzed the transmission of 12,515 fires larger than 100 ha ignited
from the six different municipality polygons surrounding the study area. Since we focused our analysis
only on fires incoming from surrounding polygons, self-burning was not considered (i.e., i # j).

The TFS transmission results (i.e., the 10,000-fire ignition point file attributed with the number of
structures intersected in the fire perimeter polygons) for the five different fire modeling simulation
scenarios (Table 2) were separately spatialized into fireshed continuous grids using a 1000-m fixed
radius and spherical semivariogram model kriging analysis statistical method. The area estimated
within a fireshed is conditional on assumed fire weather and hence we estimated firesheds for each
of the scenarios. We also developed contour plots using six different transmission levels to map the
internal transmission gradient (0-50, 50-100, 100-150, 150-200, 200-250 and >250 structures).
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2.5.3. Exposure Analysis

We analyzed individual residential house wildfire exposure in the home ignition zone (HIZ)
(Figure 1C). The HIZ is the 60-m buffer immediately surrounding residential houses that determines
structure ignition potential during extreme wildfire events [10]. Fire likelihood and intensity modeling
outputs were considered as key causative wildfire risk factors for this analysis. Structure exposure
assessment does not account for the fire effects. The geospatial location (polygons) for the individual
residential house structures (n = 306) was obtained from cadaster shapefiles (1:5000 scale) of the
Regional Government (catastro.navarra.es; Figure 1C).

Wildfire likelihood was estimated as conditional burn probability, and fire intensity as the
conditional flame length. We used the pixel-level FIL distribution to calculate the conditional flame
length (CFL) as:

0
FLP1 X FLI (6)
1

2
CFL =
i=
where FLP; is the flame length probability of a fire at the ith flame length category, and FL; is the flame
length (m) midpoint of the ith category FIL. The CFL is the probability-weighted FL assigned to a fire,
and is a measure of wildfire hazard [35]. We assessed exposure at individual residential houses from

the average values (BP and CFL) within the HIZ.

2.5.4. Risk Analysis

We quantified the expected losses to individual residential houses combining wildfire likelihood
and intensity modeling outcomes with expert judgement elicitation response functions [28]. RFs were
used to approximate fire effects (losses) to different fire intensity classes. Then, fire effects and respective
burning probabilities were considered to estimate the expected net value change [36]. Expected net
value change is a risk-neutral measure in terms of gain or loss expressed on a percentage basis, and
allows quantitative wildfire risk assessment for multiple valued resources and human assets [33].
In order to consider the variations between economic values of different houses and quantify economic
losses at the individual structure level, we used the latest cadaster reference of economic values (V).

The probabilistic expectation of loss (eNVC) was estimated by combining the customized response
function with fire intensity and conditional burning probabilities [28] at the pixel-level on the HIZ:

20
eNVC =) BP x FLP; x RF; )
i=1

where eNVC is the expected net value change neutral base measure in terms of gain or loss (%) [36],
BP is the conditional burn probability, FLP; is the flame length probability of the ith category FIL,
and RF; is the response function at the ith FIL (Table 4). We assigned the average value within the HIZ
to the individual dwellings.

Losses at the individual structure level were monetized using the cadaster value as:

eELy = eNVCy x Vy (8)

where eEL is the expected economic loss in the xth residential house (€) given that a fire ignites within
the wildfire modeling domain and spreads under extreme fire weather conditions, eNVCy is the average
expected net value change in the xth residential house HIZ, and V, is the latest cadastral reference
value of the xth residential house (€; catastro.navarra.es). Previously, eNVC negative values (fires
always produced losses) were transformed into a positive fraction of unity value (e.g., —5% to —0.05).
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3. Results

3.1. Large Fire Initiation and Major Pathways

The source location of large fires as quantified by FPI was concentrated around the southwestern
and central part of the northern councils (Figure 5). Fires ignited in the south of the study area
resulted in larger fire size, and therefore higher FPI values than in the northern and eastern areas.
In the northwestern and eastern forested remote areas, the fire ignition probabilities were very low
and consequently FPI values were the lowest compared to other areas. Incoming fires exhibited two
main paths, either from the northern central part or the southeastern open valleys (Figures 3 and 5).
These results highlighted the effect of topography and fuel models in the major flow-paths, especially
in the mountainous northern areas of the study area. Fires in the even-aged mature beech forests
were largely impenetrable on the northern border within the municipality 126, and most incoming
flow-paths were routed through municipality 40, where heading fire spread from the different scenarios’
pathways coincided frequently (>66%). On the other hand, in the more fire-prone unmanaged oak and
black pine stands, fires arrived from south facing slopes in some cases (e.g., 180° flow-paths). Overall,
herbaceous type fuel models located in lowland valley bottom flat areas facilitated the spread of fire
and were the preferential fire spread pathways into the study area.

Flowpath
frequency

—0-33

—33-66

— 66

Incoming
major flowpaths

—2

45°
67"
— 180°

337°
~— 45" and 67°
w—22°,45°, 67", and 337"
—— 22" and 337"
———22°,45% and 67" Il Urban center  [_| Municipality boundaries

Fire potential
index

- 5103

Figure 5. Fire potential index (FPI) and incoming major flow-paths from the surrounding municipalities.
FPI was calculated by combining the fire size and ignition probability output grids, and was used to
identify the areas where the ignition of a large fire is more likely [31]. Major flow-paths were obtained
with the minimum travel time algorithm (MTT) [62] considering the five most recurrent fire weather
scenarios (Table 2). The flow-path thickness indicates frequency and color indicates fire scenarios.
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3.2. Transmission Analysis

Fires threatening the highest number of residential houses initiated in the southeast 101 and
northern 40 municipalities, affecting on average 71 and 80 structures respectively (Figure 6A).
The maximum number of structures affected was 188 from a fire ignited in municipality 40. Fires from
municipalities 126 and 131 showed limited transmission capability with six or fewer structures burning
on average. Although fires in eastern municipality 186 burned on average 15 structures, a few fires
(2%) burned more than 100 structures. Due to the limited variability in cadaster economic values of
structures within the study area (Table 5), both transmission boxplots depicted similar distributions
(Figure 6A,B). Thus, both transmission metrics (TFS and TFV) provide equivalent results in the study
area. Given the same response function for all structures (Table 4), economic losses of residential
structures from large fires (>100 ha) ignited in surrounding municipalities are highly dependent on
HIZ fire intensity and number of structures.
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Figure 6. Box plots of average wildfire transmission into the study area from independent ignitions in
surrounding municipalities (Figure 1A), in terms of (A) number of residential houses and (B) cadaster
economic value of residential houses affected. For every fire ignition, the number of affected structures
and the sum of their economic value was calculated combining the results obtained in the five modeling
scenarios (Table 2). Boxes indicate the first/third quartiles, the whiskers indicate 10th/90th percentiles,
the black line within the box is the median, and the dots indicate values below the 10th percentile or
above the 90th percentile. The municipalities are identified with the cadaster code (Figure 5).

We found a wide variation in predicted community fireshed area for the different scenarios used in
the fire simulation (Figure 7A-E). The southern wind direction scenario presented the largest firesheds
and smooth gradients, expanding southwards more than 5 km from the study area boundary for the
highest >250 structure transmission class. Fires arriving from the south burned through dryland cereal
crops and represented the most extreme threat fire scenario to the residential houses in the study area
(180°). Firesheds for northwestern to northeastern component wind directions presented the sharpest
transitions gradients between transmission classes (337° and 67°). North facing timber litter fuel
model beech stands on wind direction perpendicular orientations delineate the fireshed boundaries in
northeastern and northwestern wind directions (Figures 3 and 7A,D,E). Highest TES and TFV values
were obtained for fires ignited inside the study area in the majority of cases. Fireshed extension in the
north was limited to valley bottom herbaceous fuels on the central part for the scenarios that present
similar wind direction and mountain ridge orientation (22° to 67°). Fireshed delineation results agree
with the major flow-path results, and overall on larger areas over flow-path influence areas.
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Figure 7. Community fireshed maps corresponding to the number of residential houses burned for the
five wildfire scenarios. The letters from A to E indicate respectively the fire modeling wind direction
scenarios of 337°, 180°, 67°, 45° and 22° (Table 2). Fireshed values were generated using a 1-km
constant width radius spherical semivariogram model kriging analysis from the transmission values
(TES) assigned to fire ignition locations. Values indicate the number of structures affected by ignitions
in a given pixel. Fires were simulated for 97th percentile fire weather conditions and 6-hour duration.
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3.3. Exposure Analysis

The burn probability and conditional flame length wildfire modeling outputs showed complex
spatial patterns in the study area (Figure 8A,B). As expected, the results highlighted important
differences between the fire occurrence IP grid (Figure 4) and conditional burn probability in structure
HIZ, since fire occurrence is closely associated with anthropic ignition sources but not necessarily burn
probability (Figure 9). While the average IP is usually high on the HIZ (IP >0.8), the BP presents a wide
range of values between 0.001 and 0.120 (Figure 8). Southern councils presented the highest ignition
probability and burn probability values (e.g., councils No. 13 and No. 14; Figure 1A). Burn probability
was higher than 0.1 in most southern areas, ten times higher than values in the northern part of the
study area (BP < 0.001; Figure 8A). Highest values were associated in most cases to fast spreading
surface fires in herbaceous type fuel models, such as rangelands and cereal crops (the Pamplona
Basin northern rim extensive dryland agricultural landscape continuum) that dominate the valley
bottom in the southern plain of the study area. On the other hand, the lowest values of the northern
mountainous areas corresponded to beech and pine forests on north aspects, both characterized by
low biomass understories. The smooth spatial gradients in burn probability were in contrast to the
conditional flame length (CFL) (Figure 8B), where CFL highest values did not correspond with high
burn probability (Figures 8B and 10A). Low CFL values (<1 m) were obtained in northern areas where
the burn probability was the lowest, especially in the low fuel load, timber litter and closed canopy
mature forest stands. Mosaics of fuel types, together with wind direction and slope, were the main
drivers of fire intensity. High shrubs and dense forests on slopes aligned with the dominant winds
(68° and 338° azimuth) showed the highest intensities (CFL > 6 m).

Burn probability Conditional flame length (m)

0.1278 o 869
<0.001 0.02
0 125 2.5 ‘? km D Study area [ ] Council boundaries [l Urban center

Figure 8. Conditional burn probability (A) and conditional flame length (B) output maps for the study
area. Fires were modeled at 20-m resolution under 97th percentile fire weather conditions. The urban
centers containing the bulk of residential structures are indicated with black polygons.

Average burn probability and conditional flame length for pixels within the 60-m circular
buffer around individual residential houses varied widely among and within the different councils
(Figure 10A,B). Overall, the bulk of houses had average conditional flame length values between 1.5
and 3 m, while the burn probability varied more widely, and was mostly concentrated between 0.4
and 0.11. Around some residential houses located in the central parts of the urban centers, where fuels
consisted of managed gardens and orchards, the conditional flame length was the lowest (<0.25 m).
Burn probability results showed much wider variations, especially between houses of different councils
(Figure 10B). For instance, the residential houses in council No. 15 (located in the northeast, Figure 1A)
presented on average four to five times lower burn probability (BP~0.02) compared to the most
meridional council No. 13 (BP~0.10). Within the same urban center, residential houses exhibited
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variations among southern and northern locations, especially in the central parts of the study area
(e.g., councils No. 5, No. 6 and No. 8), mainly because upslope spreading fires over cereal crops on
the southern sides of urban centers present the fastest spread rates. Therefore, housing aggregation
into compact urban centers and the relative structure position in the urban center had a strong effect
on HIZ wildfire likelihood. In other words, wildfires were more likely to arrive and impact the
southern side, and structures located there were exposed to higher BP. The highest overall exposure
was experienced by residential houses nestled within forested and shrubby unmanaged areas with
high fuel accumulation.
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Figure 9. Scatter plot of ignition probability (IP) versus conditional burn probability (BP) for individual
residential houses (1 = 306 structures). Each dot is related to a different residential house, and values
correspond to the mean value in the HIZ [11]. The bubble color indicates the council cadaster polygon
(Figure 1A). While BP values showed a wide distribution, most IP values were concentrated above 0.85.
Overall, results tended to present clustered aggregations with respect to the council.

(A) el (B
8 b2
o4 F
E 7 I T 6
5 6 O© . . s .
&D | 4 gO . .
g 6 | & R .
g ! 8 34 % % % %
% ! 9 :%" 2 é 0 ? ﬁ %@ é
& 5 « 1 -1 ’
'g _______________ Z_:_.___._ ____________ :___ « 11 0 * e o = . - .
) 4 . % . o c12 p 02
§ 3. L R~ Y 4 ".I“.o.- ;‘{'- W £ o ? :
s - "'5‘.” . 15 & -
: Ly U = o i
= . L . | .
E v ol S o0m T : .
1 . I 2 on =
| g
i < 000 ’

0 - - - s
0.000 0.020 0.040 0.060 0.080 0.100
Average burn probability

1245678 9101112131415
Council

Figure 10. Individual residential house scatter (A) and box plots (B) for the different councils in the
study area. Each point in the scatterplot indicates the average value of burn probability (BP) and
conditional flame length (CFL) within the home ignition zone for a single structure. The bubble color
indicates the council (Figure 1A), and the dotted lines the 97th percentile values of 0.11 for BP and
4.16 m for CFL. In the box plots, the boxes indicate the first/third quartiles, the whiskers indicate
10th/90th percentiles, the horizontal line within the box is the median, and the black dots indicate
values below the 10th percentile or above the 90th percentile.
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3.4. Expected Economic Loss

Expected economic loss for individual dwellings (eEL) ranged from a low of 740 to a high of
28,725€ within the study area (mean = 7955¢), and also varied widely among the different councils
(Figure 11, Table 6). The highest average values were obtained for the southern council No. 14 with
13,323¢€, followed by councils No. 5 and No. 10 with 12,976€ and 9715€ respectively. On the other hand,
the lowest average eEL values were obtained in the low wildfire exposure northern councils No. 1 and
No. 15, with 1429€ and 2803€ respectively. Overall, results depicted higher expected economic loss
(eEL) for residential houses presenting lower expected net value change (eNVC), that ranged from
—1.04% to —11.04%, with an average value of —5.23%. Except for a few cases, most residential houses
have cadastral values between 110 and 180 thousand euros (Table 5), and therefore exposure metrics
required for risk assessment translated similar patterns into risk outcomes (i.e., higher losses for higher
overall exposure). Nonetheless, when the cadastral value varied substantially for the same eNVC (e.g.,
more than three times), wide differences were observed in terms of eEL. In those cases, the residential
house cadastral value influenced the eEL result more than the eNVC (Figure 11).
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Figure 11. Wildfire risk bubble plot of residential houses in the study area. The expected net value
change (eNVC) is the percentage variation with respect to the price of the residential houses. The bubble
size indicates the expected economic loss (eEL), which ranged from a low of 3622€ to a high of 28,086€.
The color indicates the council.

Table 6. Council level summary table with expected economic loss (eEL) results for the residential
houses in the Juslapena Valley (Figure 1A). Potential expected economic loss was obtained as a result
of the implementation of the framework presented in this study (Figure 2). Council polygon cadaster
codes No. 3 and No. 16 do not have residential houses (Figure 1A).

Cadaster Council Residential Expected Economic Loss (€)
(Polygon No.) Name Houses (No.) Average Median Maximum  Minimum
1 Beorburu 11 2803 2826 4248 1120
2 Osacar 8 6378 6263 10,004 3776
4 Osinaga 16 7343 7188 12,459 2870
5 Aristregui 23 12,976 12,480 28,086 3051
6 Larrayoz 17 8347 8152 16,049 1062
7 Nuin 26 5930 4855 11,757 2425
8 Marcalain 31 8167 7502 17,855 1334
9 Iruzkun 1 9592 9592 9707 9478
10 Garciriain 12 9715 9443 14,366 5169
11 Belzunce 48 8044 6232 28,725 2143
12 Navaz 21 6157 5341 9909 3150
13 Ollacarizqueta 55 9105 8219 21,046 3960
14 Unzu 16 13,323 13,419 24,757 6933

15 Usi 21 1429 1222 3131 740
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The map of eEL for dwellings in the study area showed how spatial location greatly influenced
the result (Figure 12A). Highest economic losses (>10,000€) were located in the southern councils
(i.e., No. 14, No. 5 and No. 13) and some individual houses in councils of the central part, while the
lowest values (<1000€) were concentrated in the northeastern and northern councils (i.e., No. 1 and
No. 15). The highest variation within residential houses of the same council were seen when the urban
center tended to present a more scattered linear orientation following the communication corridors
(e.g., council No. 11), and greater distances between the most distant houses (>1 km). Spatial patterns
in eEL were similar to the gradient observed for the burn probability (Figure 8A), since fire hazard
among residential houses (Figure 10A,B) within the study area did not show large differences. Thus,
according to the results at individual residential structure level, eEL treatment priorities in the HIZ
would be preferentially located in southern councils and structures occluded in hazardous forest fuels.
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Figure 12. Map (A) and box-plots (B) of expected economic losses (eEL) for residential houses given
that a fire occurs within the fire modeling domain under extreme fire weather conditions. Councils
No. 3 and No. 16 do not have residential houses. In the map, every dot corresponds to a single
residential house. In the boxplots, boxes indicate the first/third quartiles, the whiskers indicate
10th/90th percentiles, the black line within the box is the median, and the dots indicate values below
the 10th percentile or above the 90th percentile (€ structure™?).

4. Discussion

The integration of biophysical fire modeling with susceptibility relationships derived from expert
judgement provides a method to calculate expected financial loss to communities from potential
wildfire events. Our analysis also demonstrated the tracking of burned areas in the communities
to ignition locations, thus providing a linkage between wildland fuels and risk to communities.
The results provided useful insights that can inform ignition prevention fuel management programs
for reducing risk to communities [72]. Transmission analysis allows the identification of sources of
risk in terms of specific landowners within the study area [39,40]. The fireshed mapping defined the
scale of risk to rural communities [73] and delineated the area within which fuel treatments could be
prioritized to reduce large-fire impacts [37]. Coupling the fireshed with maps of exposure provides a
wealth of information to inform the prioritization of wildfire management within the study area [35].
Our fire risk quantitative assessment results showed a very strong structure-level spatial gradient in
economic loss within and among the 14 councils in the Juslapefia Valley study area, and provided
findings that are potentially useful for insurance companies and local landscape managers.
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We identified high probability paths of incoming fire in central north and south east valley bottom
flat areas [62,65], which were mainly located in neighboring municipalities 101 and 40. These two areas
accounted for the bulk of the transmission as measured by the highest number of residential structures
affected. Historically, fires frequently have impacted populated areas after spreading large distances
from their ignition location, well beyond community wildfire planning boundaries, underscoring the
importance of analyzing firesheds to minimize scale mismatches [41] between the landscape planning
and fire risk mitigation efforts [73]. In fact, 67% of large fires (>100 ha) ignited in the surrounding
municipalities reached target communities, and each of these fires affected 56 structures on average.
Also, we found that the 180° wind direction fire weather scenario in particular resulted in fires
spreading the longest distance from ignitions outside the study area administrative boundary (>8 km).
Thus, collaborative planning efforts need to involve neighboring administrations and landowners
(Figure 7), and the significance of current land management in areas outside of target councils needs
to be recognized for its potential to enhance wildfire risk. These practices include grazing, firewood
collection in coppice oak forests and thinning in dense conifer plantations.

We contribute several new methods for exposure assessments within the Mediterranean region [47,72].
In particular, we used an ANN fire occurrence model to generate fire ignition input locations, and
included an expert-defined response function for structure-scale assessment of potential economic
losses. Although wildfire loss or benefit quantification is not possible for many socioeconomic values,
a number of important services derived from forests can be represented with market pricing [48].
Specifically, 72% of structures have estimated values ranging from 100 to 250 thousand euros, with
relatively few (6%) having values >250 thousand euros. Rather than economic value, we found that
spatial patterns of wildfire likelihood were the major causative risk factor, and thus fire occurrence
spatiotemporal patterns in Mediterranean environments are especially important for fire prevention.
ANN performed well and facilitated the generation of a high-resolution ignition probability grid.
Understanding how fire weather and geospatial variables associated with anthropic activities can
explain fire occurrence has been conducted in previous works [74,75].

This study highlighted the importance of fire spread modeling for risk assessment in
Mediterranean environments where large fires spread through mosaics of fuel type and administrative
jurisdiction [32,76,77]. Urban interface classification based on housing density has been considered
a key factor in structure loss and risk mitigation in some previous studies [19,78]. Indeed, scattered
and occluded houses within wildlands usually present higher exposure levels from catastrophic fire
events than densely populated urban development areas [79]. However, structures at the periphery
of communities usually incur higher losses since they intercept heading fires and associated embers
showers (Figure 13). Although most houses in the study area are built with fire-resistant designs and
materials, and have cultivated orchards in the surroundings, exposure to ember showers makes them
vulnerable to fire. Isolated dwellings in remote areas are hampered by poor access for ground-based
suppression crews, a primary factor contributing to structure loss probability and human fatalities [34].
Urban areas with fire-resistant structures and managed fuels in the HIZ can facilitate fire suppression
opportunity, and help relocate residents to save zones during catastrophic fires events. The more
typical situation is where developed areas become a resource sink for most of the firefighting resources,
creating the potential for entrapment and accidents during mass evacuation during extreme fire
events [80].
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Figure 13. Close-up view of a residential house level wildfire risk map (eEL) for Marcalain
(council cadaster polygon No. 8) expanded from Figure 12, over the June-2015 aerial photograph
(idena.navarra.es). Other structures such as farm stores, churches and water deposits were excluded
from the analysis. Overall, structures located in the periphery were more exposed to wildfires and
presented higher potential losses. On the north side of rural communities, closer to shrublands and
forest areas, higher wildfire hazard can enhance potential losses.

Multiple management implications result from this study. First, the results provided useful
insights to identify preferential areas for future urban development (e.g., high overall exposure area
exclusion criteria) and to inform fire-resistant building design and material requirements. Integrating
exposure from other natural hazards such as floods in river basin plains and rock falls or avalanches
in mountainous areas is widely accepted as criteria for potential urban development, but fire risk is
not accounted in most fire prone areas where catastrophic fires are frequent events (<30 years). In this
regard, many southern EU governments concerned with WUI problems are now dictating specific
public policies and municipal ordinances to promote community and homeowner involvement in
hazardous fuel management. We present structure level risk assessment results that can contribute
to risk reduction efforts by identifying where fuel treatment provides the highest benefits at the
individual house level. Urban planning and fire managers have limited budgets to cover risk mitigation
over thousands of scattered housing communities dispersed throughout fire prone landscapes, and
quantitative risk assessment frameworks [28,33,66] can help prioritize planning and investments as
well help design specific spatial strategies [81,82].

Reducing structure susceptibility to fire [34] in combination with fuel treatments, both in HIZ [83]
and strategically located areas on the landscape [10,35], are the key to mitigating wildfire risk to
communities. Fuel treatments reduce potential fire intensity and spread rates by reducing surface and
canopy fuel loadings and include a wide range of activities (prescribed burns, low pruning and low
fuel load hedges, disrupting tree crown continuity and removing combustible material adjacent to
structures) [12,84,85]. Other measures such as the implementation of structure self-protection plans
can alleviate extreme fire environments and improve suppression capabilities (e.g., water sprinklers
and cannons). Apart from typical treatments in forest fuels and reducing structure susceptibility, other
strategies that focus on reducing fire spread over herbaceous land cover could reduce the impacts of
long-distance spreading fire events. For instance, we observed long-distance fire events originating
in dryland croplands in the southern portion of the study area. By managing herbaceous fuels with
extensive grazing in fenced pasture common lands [86,87], and using grass species with patchy growth
habit on dryland hay meadows, wildfire spread and intensity could be reduced in these areas. However,
implementation of supervised grazing after cereal harvesting that is needed to break fuel beds on the
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edges between mosaics of cultivated lands is nowadays complicated to implement [88]. Currently, the
major risk mitigation effort in agricultural areas is the prevention of ignitions during cereal harvesting
operations from equipment, and increasing capabilities for more rapid response to ignitions if they do
happen [89].

We assume various sources of error in the models and input data, and results should be viewed
as a local approximation of wildfire risk to residential houses in Juslapefia Valley given a large fire
event in the study area. Modeling outcomes are conditioned to a specific configuration of extreme fire
weather conditions, fuels, topography and the rural-urban interface spatial distribution of the study
area. Although fuel models around structures did not differ much from the dominant types in the
study area, elsewhere complex interface areas with trimming hedges among structures (e.g., cypress
Cupressus sempervirens L. hedges) might require a more detailed fuel characterization or various
different response functions depending on secondary variables in addition to fire intensity. Community
firesheds should be interpreted as a dynamic boundary that changes with assumptions about fire
weather, and with existing spatial patterns of fuels as influenced by land management practices.
The latter includes forest management practices, grazing practices and agricultural production.
Moreover, structure loss is a complex process [12], and is difficult to model at the landscape scale [35].
As in other previous studies, we adopted an expert-defined response function to approximate fire
effects at different fire intensities while acknowledging the margin of error [36]. We also did not
consider the potential effects of fire suppression that could affect our estimates of structure ignition,
especially for low intensity fires with flame lengths <1.2 m [90]. We also understand that structure
economic value (conditioned to market changes) might not always be the best way to quantify real
risk, due to the lack of correlation among the economic value and the social impact of structure loss
on inhabitants. Focusing exclusively on economic criteria when setting treatment priorities might
bias results to favor protection of the wealthy neighborhoods at the expense of lower priced homes,
although in our study the value of homes did not substantially influence the results.

Further research is needed to better understand not only large fire transmission into the study area,
but also the dominant transmission patterns at wider scales (e.g., regional and national), to understand
how the study area is integrated into larger scale fire transmission patterns [40]. Understanding major
large fire movements would provide a wider perspective to identify the nodes or high priority areas
in the landscape requiring investments in treatments. Identification of treatment polygons or stands
in priority areas (or firesheds) can be facilitated with optimization models and trade-off analysis to
maximize the reduction in risk to multiple values of interest, including structure loss, game species
habitat improvement or conifer timber production [91]. The risk assessment in this study should be
considered as a preliminary step for mitigation and it does not necessarily reveal the optimal treatment
allocation, especially considering that treating fuels at locations far from the urban interface can
substantially slow large fire arrival [35]. Analyzing multi-objective treatment strategies in rural-urban
intermix fire-prone Mediterranean EU landscapes is challenging, although newer landscape planning
tools that allow for integration of fire transmission have opened a wide range of new analytical
approaches to analyze trade-offs between local hazard versus large-scale transmitted fire [81].

5. Conclusions

We implemented a fine scale wildfire risk assessment and transmission framework in rural
communities of central Navarra (Northern Spain). Potential economic losses were quantified on
individual residential houses considering exposure results [42], local expert-defined susceptibility
functions, and dwellings cadaster economic values. With the transmission analysis we traced the origin
and quantified the potential impacts of large wildfires [40]. Using major flow-paths [62] we identified
preferential fire spreading path-ways entering to the study area. We demonstrate that wildfires
ignited in neighboring municipalities far beyond human communities can cause substantial economic
losses. This work increases the awareness and knowledge on wildfire risk assessment in Southern
European fire-prone areas, and highlights the need of a collaborative planning and management
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among neighboring communities, different landowners and landscape managers to mitigate losses
from wildfires.
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