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Abstract:

 Forecasts of prices can help industries in their risk management. This is especially true for Japanese logs, which experience sharp fluctuations in price. In this research, the authors used an exponential smoothing method (ETS) and autoregressive integrated moving average (ARIMA) models to forecast the monthly prices of domestic logs of three of the most important species in Japan: sugi (Japanese cedar, Cryptomeria japonica D. Don), hinoki (Japanese cypress, Chamaecyparis obtusa (Sieb. et Zucc.) Endl.), and karamatsu (Japanese larch, Larix kaempferi (Lamb.) Carr.). For the 12-month forecasting periods, forecasting intervals of 80% and 95% were given. By measuring the accuracy of forecasts of 12- and 6-month forecasting periods, it was found that ARIMA gave better results than did the ETS in the majority of cases. However, the combined method of averaging ETS and ARIMA forecasts gave the best results for hinoki in several cases.
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1. Introduction


Fluctuations and low levels of log prices in Japan are a challenge for forest owners in managing forests. As a result, processing mills experience difficulties in ensuring a stable supply of suitable logs. Additionally, the mismatch between the supply of and demand for logs leads to sharp fluctuations in log prices, such as that observed in the former half of 2012 [1]. In other words, log prices not only affect the profitability of forest owners, logging companies and sawmills, but might also affect the daily operations in sawmills. Therefore, having information on future log prices can be useful for the aforementioned parties in their risk management. For example, information about potential price fluctuations will perhaps allow suppliers and users of logs to adjust their supply and demand. When private suppliers of logs feel it is difficult to adjust their supplies due to small size of their operations and the need to cover daily maintenance costs, state-owned forests managers might play an important role by adjusting their supplies of logs. However, forecasts of log prices in Japan have rarely been provided, though analyses on fluctuations in the prices of Japanese logs started long ago.



The impacts of various supply and demand factors on log prices have been studied and the existence of seasonal fluctuations confirmed as early as in the late 1920s [2]. Log prices are found to be at their lowest in June and July and to reach their peak in October and November due to the seasonal nature of construction (spring and autumn were peak times), but, in 1910–1920’s, seasonal fluctuations have become less pronounced, about 1% of the annual average prices [2]. Recently, a monthly seasonal price index for logs of different origins (e.g., Mainland Japan, North America, Hokkaido, South Asia, and Taiwan) in Tokyo and Osaka markets has been calculated [3], but, in response to this research, it was noted that the seasonal increase in autumn is rather limited and should not be expected, because the general commodity market is thought to be more important [4]. Since the 1960s, not only the seasonal fluctuations, but the trend movement in log prices with the changes in supply and demand has also been analyzed [5,6,7,8]. The cyclical fluctuations and their relationship with the diffusion index, apart from demand and supply, have also attracted the attention of researchers [9]. The number of months from one valley to the next valley were calculated to show the cycles of timber prices [9]. In the 1980s, a decomposition method, which was developed by Economic Planning Agency, Japan, originating from the Census Method II approach (US Census Bureau), was used in analyzing the trend, cycle, and seasonal movements for log price time series along with their influencing factors [10]. In the 2000s, the X-12-ARIMA approach, developed by U.S. Census Bureau and mainly used for seasonal adjustment, was adopted to decompose the price time series into trend components, seasonal components, and irregular components for nine forest products in two private auction markets in the Kyushu region [11]. A recent study in the field analyzed the relationship between monthly prices and log inventory in sawmills and stated that pest damage is the reason for low prices from June to August [12]. Although the aforementioned research studies paid attention to price fluctuations, few forecasts could be found among them. In the 1970s, a two-step foresting approach was once adopted in which the price time series was decomposed into the following components: secular trend variation, which is determined by stock supply; seasonal variation, which is caused by the seasonal change in activities in construction; cyclical fluctuation, which is largely caused by business cycle; and random variation, which is fitted into an AR mode. These components were then combined together using the models established in the above stages for forecasting. As for the forecasting period, two years of monthly forecasts were provided, as were the lower and upper limits of forecasts at the 70% level, but the methods used to calculate these lower and upper limits were not explained [7]. Moving average (MA), autoregressive moving average (ARMA), and seasonal autoregressive integrated moving average (ARIMA) models were once used for fitting price time series of some sawnwood and logs, and it was concluded that the most reasonable forecast results were obtained by using the seasonal ARIMA [11], even though only a simple form of the ARIMA model was considered.



Short-term forecasting of a time series is possible because each time series has its own pattern of movements. To do a forecast well, a good grasp of the situation is important, and forecasters need to make subjective judgments at times. Therefore, statistical forecasting can be described as “the blend of art and science” [13], and the objective of time series forecasting is “to discover the pattern in the historical data series and extrapolate that pattern into the future” [14]. More complicated models are not considered in this research because model simplicity is preferred, though exponential smoothing method (ETS) and ARIMA have evolved into complicated forms already.



ETS and ARIMA have made great progress since the 1990s [14,15]. The free software R [16] and the package forecast [17] make specifying parameters and comparing models much easier. ETS’s model framework has made progress by introducing the state space model as well as other developments, such as stochastic models, likelihood calculation, prediction intervals, and procedures for model selection [15].



In this research, by applying the latest model specification and selection instruments and the algorithm in software R (R Core Team, Vienna, Austria), we analyze the movements in prices of domestic Japanese sawlogs—sugi, hinoki, and karamatsu. We then forecast log prices 12 months ahead by using ETS and ARIMA. In addition to point forecasts, we give forecast intervals at the 80% and 95% levels. Additionally, we apply valuations for forecast accuracy to forecast results given by ETS and ARIMA and concluded that, in most cases, ARIMA obtains better forecasts than ETS does.




2. Materials and Methods


2.1. Study Objects and Their Data


Forests in Japan cover about 67% of the total area and, due to aggressive planting since 1950s, the area of planted forests in Japan extends to over 10 million ha, which is 40% of the total forest area. Due to the low level of harvest volume compared to the growth level, the total forest stock keeps increasing, and the average growing stock per hectare comes to over 190 m3 [18]. In Japan, most forest owners and sawmills are small in scale. It is difficult for small owners to provide a steady supply of logs, and it is difficult for small mills to produce kiln-dried sawnwood to compete against foreign sawnwood. Increasing costs, which are partly driven by increasing wages, are another factor for the low competitiveness of domestic logs and sawnwood. The production of logs declined to 15 million m3 by 2002 from 51 million m3 in 1967, when Japan opened the door to foreign timber products. After the efforts of the Japanese government and wood industry to promote domestic wood, the self-sufficiency rate of wood recovered from its lowest point of 18.2% in 2002 to 31.2% in 2014 [19].



The top three species for log production in Japan—sugi, hinoki, and karamatsu—are mainly harvested from the planted forests. In 2014, the production volumes for these three species are 11.19 million m3 (56% of the total log production), 2.40 million m3 (12%), and 2.37 million m3 (12%), respectively [20]. The main prefectures for sugi production are Miyazaki, Akita, Oita, and Kumamoto; the top producers for hinoki are Okayama, Kochi, Ehime, and Kumamoto; and for karamatsu, they are Hokkaido, Iwate, and Nagano (see Figure 1). Sugi and hinoki sawnwood are mainly used in housing construction, and karamatsu sawnwood is mainly used as packaging materials for the storage and transportation of commodities.


Figure 1. Top production regions of sugi, hinoki, and karamatsu logs. The darkest color shows the production regions for karamatsu; the brightest color for production regions of sugi; while others for hinoki.
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Logs of different diameters and lengths might have different usages, which translates into different prices. In this research, we analyze sugi, hinoki, and karamatsu logs in their most common diameters and lengths for sawnwood processing. For sugi and hinoki, the diameter is 14–22 cm, for karamatsu, it is 14–28 cm; the length considered for the logs of the three species is 3.65–4.00 m [20]. The prices are monthly volume-weighted average prices for all grades of logs that are used in processing sawnwood under the above-stated diameters and lengths. Our objective is to provide short-term forecasts; thus, considering the data availability, we think that monthly data are suitable.



Given that 2002 was the year when domestic log production decreased to its lowest point since 1960 and subsequently increased, monthly data from January 2002 to September 2015 are used in this research. The current value for monthly prices for logs was sourced from the Ministry of Agriculture, Forestry and Fisheries (MAFF) [20]. Japan experienced deflation after the mid-1990s. However, the situation has changed since 2012, when Abenomics policies began to be implemented. Considering the possible impacts of general price level changes on the movements in log prices, we introduced the Corporate Goods Price Index (CGP) to adjust the monthly log prices to a constant value as that in 2010.




2.2. Methods


In the short-term forecasting of monthly prices of logs, we applied ETS and ARIMA, two typical forecasting approaches, though many methods have been proposed and applied in the field [14,21,22,23,24,25,26,27], and there are “as many forecasting methods as there are forecasters” [28]. Further, the naïve (or seasonal naïve, shortened as Snaïve) method was also introduced as a reference for measuring the accuracy of forecasting. Because we only used the time series data of monthly log prices and no other variables were included (e.g., housing starts on the demand side, forest resources on the supply side), our research is a univariate time series analysis. Root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are calculated in measuring the accuracy of forecasting results.



2.2.1. Naïve Method and Snaïve Method


Company managers or business people occasionally use simple methods to forecast, and these methods can be useful. Using the average value (the mean) of historical data might be useful for time series that fluctuate around some constant value. For a random walk time series, without any trend and seasonality, a naïve method might be useful in which the most recent observation is taken as a forecast for the next period or periods. For a seasonal time series, a Snaïve method might be useful; by which the actual value in the same period of the previous year is taken as a forecast for that period in this year. In measuring the accuracy of forecasting, the naïve or seasonal Snaïve method was used as a reference for that of ETS and ARIMA, because we think that ETS and ARIMA at least should make forecasts with errors as small as naïve or Snaïve method.




2.2.2. ETS


The ETS forecasting approach was proposed in the 1950s and used in inventory control [29,30,31]. The simple ETS has the following form:


[image: there is no content]



(1)




where [image: there is no content] is a time series, [image: there is no content] is the forecast value for [image: there is no content] by taking account of all previous values, [image: there is no content], [image: there is no content],…, [image: there is no content], and [image: there is no content] is a smoothing parameter between 0 and 1. For longer-range forecasting by the simple ETS, the forecast formula could be written as [image: there is no content], h = 2, 3,…, where h means h periods ahead [15,32].



The most suitable method for a specific time series varies with trend and seasonality. The trend component includes five possibilities: None (N), Additive (A), Additive damped (Ad), Multiplicative (M), and Multiplicative damped (Md). The seasonal component includes three possibilities: None (N), Additive (A), and Multiplicative (M). By combining the trend and seasonal components, in total, this results in 15 methods. If considering additive and multiplicative error terms, there will be 30 methods. The formulae for recursive calculations and point forecasts have been well summarized and can be accessed openly [32]. The package forest in R was used in applying exponential smoothing to the three time series, and AIC (Akaike’s Information Criterion) corrected, AICc, which is appropriate for small sample bias, was adopted for model selection [32,33]. Finally, the best method was chosen by the lowest AICc value.




2.2.3. ARIMA


A time series is weakly stationary if neither the mean nor the autocovariances depend on the time t [34]. Economic time series, such as log price, are usually not stationary because the mean and autocovariances sometimes vary with time t. When differencing the time series, the resulting time series, which represents the changes in the series, is usually stationary. The original time series is called a unit root process in this case. ARIMA can be used to describe these types of time series. By adding the seasonality, a general form for ARIMA can be described as ARIMA (p, d, q) (P, D, Q)m, where (p, d, q) is the non-seasonal part of the model; (P, D, Q) is the seasonal part; p and P are orders of AR (autoregressive part); d and D are the degrees of first differencing; q and Q are orders of MA (moving average part); and m is the number of periods in a year. For monthly prices, m is 12 [14,32].



In this research, we first confirmed the situations of autocorrelation and partial autocorrelation in the time series, which was helpful in choosing the order of AR and MA. Then, we tested stationarity and determined the meaningful degrees of first differencing. We tried the possible orders of AR and MA and degree of integration. The best ARIMA models were selected according to their AICc statistics. However, we stopped at one degree of differencing the time series. Differencing twice makes it difficult to explain the economic meaning of the time series and leads to wider forecasting intervals. The unit root test was implemented to examine the stationarity of both the original time series and the differenced time series. Finally, a diagnostic check of the residuals in ARIMA models was conducted to justify model estimations.




2.2.4. Forecasting Intervals


In addition to point forecasts, we need to present forecasting or prediction intervals to show the range of values within which we believe the actual values to fall with some level of probability. Forecasting intervals show the extent of variability and uncertainty, which can be calculated from variances. Under the Gaussian model assumption, the errors are Gaussian and 100 × (1 − α)% forecasting intervals can be calculated by:
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(2)




where [image: there is no content] is the forecast mean or point forecast at h periods ahead; [image: there is no content] is the [image: there is no content] significant point in a Gaussian distribution; and var is variance [15]. As shown in statistics textbooks, when the probability level is 0.95, z would be 1.960; when the probability level is 0.80, z would be 1.282.



Forecasting intervals become wider when the forecast periods increase because uncertainty increases with time. Error term will not affect the point forecasts because its expectation value is zero, but it plays an important role in calculating variances and forecasting intervals.




2.2.5. Measures of Forecasting Accuracy


Forecast error is generally defined as [image: there is no content], or the difference between the observation and the forecast at time t. This definition is good for one-step forecast. In the case of h-periods-ahead forecasts, [image: there is no content], [image: there is no content], …, [image: there is no content], it is meaningless if [image: there is no content] is summed because positive and negative errors cancel each other out. Thus, a proper summation of the errors is needed. In our research, three accuracy measures were calculated: RMSE, MAE, and MAPE. The former two are scale-dependent measures, and the last is a percentage point error. Of course, smaller measurement values show more accurate forecasts.



The formulae of these measures are as follows:
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(3)










3. Results


3.1. Seasonal Characteristics


Seasonality in a time series reflects a pattern of ups and downs over a fixed period of time. In Japan, different regions have different climate characteristics, and each region could have its own pattern. The pattern would also affect logging, sawmilling, and the demand for sawnwood, such as demand due to seasonal wood house construction. In the summer season in southern Japan, it is hot and heavy rain can make logging difficult, can damage the road for transportation, and affect the harvest volume. In Northern Japan, rain can be a problem in summer, but in winter, heavy snow leads to lower logging productivity. This pattern of impacts stemming from changes in weather conditions might lead to a seasonal movement in prices for logs. According to industry experts, however, seasonal price fluctuations are most affected by the presence of pests, which damage the quality of logs. Therefore, sawmills try to adjust their log stock and control their acquisition of new logs in spring and summer to avoid or lessen pest damage. Therefore, log prices are low in summer but increase starting from autumn. In contrast, abnormal weather conditions such as extremely heavy snow or rainfall or typhoons affect supply and, thus, prices. When abnormal weather conditions occur, prices will also change due to the related changes impacting supply and demand. These types of price changes should be considered as irregular movements.



Now, we discuss the actual seasonal changes in price for the three species of logs. According to the annual changes against individual months shown in Figure 2a and Figure 3a, a pattern of decreasing prices in spring to summer and increasing prices from autumn to winter was found for sugi and hinoki across the majority of years examined. For both species, the prices usually reach their lowest point in June and July and start to increase in August. In Figure 2b, Figure 3b and Figure 4b, the changes in mean price values were shown by averaging the subseries of the same month for the years 2002–2015. This figure does not show their magnitude in terms of seasonality because irregular movements were also included, but a general overview can be obtained by their changing mean levels. The means of the prices for sugi and hinoki decreased from February to July and increased from August to October or November; therefore, the prices for both sugi and hinoki are seasonal. As for karamatsu, as shown in Figure 4a,b, no obvious pattern of price fluctuations can be found, though August witnessed the lowest level of mean price, in contrast to the findings for sugi and hinoki. This difference among the three species may be caused by the differences in usage and production areas. As aforementioned, hinoki and sugi sawnwood are mainly used in wood house constructions, but karamatsu sawnwood is mainly used in packaging materials for the transportation of commodities. Wood house construction is seasonal, but other industrial production experiences far less seasonality. Another reason might be the different degree of pest damage. The majority of karamatsu logs are harvested in Hokkaido, which is located in Northern Japan, where summer is short and not intensely hot, and, as such, pest damage is not a serious problem for karamatsu logs.


Figure 2. Annual and monthly sugi log prices: (a) Annual changes of sugi log prices against months; (b) monthly subseries of sugi log prices. In Figure 2b, the horizontal bars show the mean prices for the monthly subseries, and polygonal lines show the changes over the years from 2002 to 2015.
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Figure 3. Annual and monthly hinoki log prices: (a) Annual changes of hinoki log prices against months; (b) Monthly subseries of hinoki log prices. In Figure 3b, the horizontal bars show the mean prices for the monthly subseries, and polygonal lines show the changes over the years from 2002 to 2015.
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Figure 4. Annual and monthly karamatsu log prices: (a) Annual changes of karamatsu log prices against months; (b) monthly subseries of karamatsu log prices. The horizontal bars show the mean price for the monthly subseries, and polygonal lines show the changes over the years from 2002 to 2015.
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3.2. Trend and Cycles


The movements for a time series are usually said to be made up of four components—i.e., trend, cyclical, seasonal, and irregular components—but for convenience in short-term forecasting, trend and cycle are usually combined to make trend. Trend is usually defined as a long-term movement (e.g., [35]). As shown in Figure 5, Figure 6 and Figure 7, sugi, hinoki, and karamatsu each display a different trend. The price for sugi logs experienced a decrease and reached its lowest level during the world financial crisis of 2008–2009. However, its prices started to recover after 2010. In October 2013, the national plan to raise consumption tax from 5% to 8% in April 2014 was communicated to the public. Together with the impacts of the devalued yen, which started several months earlier, a rush demand for domestic wood occurred. Thereafter, sugi prices spiked temporarily and then sat at a higher level than those in the years since 2008. In comparison, the price for hinoki logs is still experiencing pressure to decrease. There is a decreasing demand for homes having the esthetic appearance of traditional Japanese-style houses in which hinoki wood is required. An increasing amount of laminated wood made of other species is now used in housing construction: this has impacted the price of hinoki logs. In the 1960s, the gap between hinoki and sugi prices grew due to the increasing demand for hinoki. Since 1990, the gap has shrunk. Figure 6 shows a decreasing trend in hinoki log prices. Similar to that of sugi, the hinoki log price rose sharply during the period from October 2013 to January 2014. However, the high prices did not last long. Therefore, the spikes during this time should be considered as an irregular movement. The time series as in Figure 7 showed the karamatsu log price fluctuating with a different pattern. The karamatsu log price also declined after 2002, but it fell to its lowest point in 2006. After 2006, it experienced sharp fluctuations but a recovery could be seen. By September 2015, it had recovered to its price of 2000.


Figure 5. Forecasts of the sugi log prices: (a) Point forecasts and forecast intervals at 80% and 95% levels by exponential smoothing method (ETS); (b) point forecasts and forecast intervals at 80% and 95% levels by autoregressive integrated moving average (ARIMA).
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Figure 6. Forecasts of the hinoki log prices: (a) Point forecasts and forecast intervals at 80% and 95% levels by ETS; (b) point forecasts and forecast intervals at 80% and 95% levels by ARIMA.
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Figure 7. Forecasts of the karamatsu log prices: (a) Point forecasts and forecast intervals at 80% and 95% levels by ETS; (b) point forecasts and forecast intervals at 80% and 95% levels by ARIMA.
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Overall, in the long term, hinoki appears to show a decreasing trend, but it is difficult to say that sugi or karamatsu is experiencing a declining, increasing, or converging trend to some constant value. However, if we shorten the period to only recent years, we may find that the mean price is increasing for karamatsu since 2006 and that the mean price in the period since October 2013 is higher than that from 2008 to 2012, implying a recovering trend for sugi. These findings can be obtained by loess-smoothing the trend obtained from decomposing the time series.




3.3. ETS Forecast Results


In using ets function in the package forecast under the R software environment, the results were shown in the form of (E, T, S), representing the error, trend and season components, respectively. The results for sugi, hinoki and karamatsu log prices are, respectively, (M, N, A), (M, Ad, A) and (M, N, N). All of these time series have multiplicative errors. Hinoki log price shows a damped trend, whereas sugi and karamatsu display no trend. As for the seasonality, the results show that sugi and hinoki experience additive seasonal movements in prices, but seasonal changes cannot be found in the karamatsu log price, which supports the aforementioned argument regarding seasonal characteristics. The smoothing parameters for sugi are α = 0.9999 and γ = 0.0001; for hinoki, they are α = 0.9999, β = 0.1412, γ = 0.0001, and ∅ = 0.8007; and for karamatsu, α = 0.9999. A high α value shows that time series values are highly affected by the previous value. A small γ value shows that the seasonal component does not change much over the years. Given that the expectation of error is zero, both the additive and multiplicative error methods gave the same forecasts but different forecast intervals.



The above estimated parameters can be substituted into the corresponding formulae in the component form [32] to obtain the final models; for sugi, its result for ETS (M, N, A) is as follows:
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For hinoki, ETS (M, Ad, A) is as follows:
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For karamatsu, ETS (M, N, N) is as follows:
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(6)







In the formulae, lt stands for the level or smoothed value of the time series at time t, b for slope, s for seasonal component, m for number of periods in a year (here, m = 12), α, β, γ and ∅ for smoothing parameters, st−m for the seasonal component for the same month of the previous year. Figure 5a, Figure 6a and Figure 7a show the results by ETS for sugi, hinoki and karamatsu, respectively, while Figure 5b, Figure 6b and Figure 7b show the results by ARIMA. The right parts in both sets of figures show the results for the forecasts and the forecast intervals at probability levels of 95% (wider and brighter shadow area) and 80% (narrower and darker shadow area), respectively, for the 12 months ahead (see Table 1 for 12-months-ahead forecast and forecast interval values).



Table 1. Point forecasts and forecast intervals at 80% and 95% level. Unit: Yen. ETS, exponential smoothing method; ARIMA, autoregressive integrated moving average.



	
Log

	
Month

	
ETS

	
ARIMA




	
Point Forecasts

	
Low 80%

	
High 80%

	
Low 95%

	
High 95%

	
Point Forecasts

	
Low 80%

	
High 80%

	
Low 95%

	
High 95%






	
Sugi

	
15 October

	
13,045

	
12,704

	
13,386

	
12,523

	
13,567

	
12,913

	
12,604

	
13,223

	
12,440

	
13,387




	
15 November

	
13,189

	
12,704

	
13,674

	
12,447

	
13,931

	
13,072

	
12,525

	
13,620

	
12,235

	
13,910




	
15 December

	
13,151

	
12,556

	
13,746

	
12,241

	
14,061

	
13,129

	
12,427

	
13,832

	
12,055

	
14,204




	
16 January

	
13,058

	
12,372

	
13,744

	
12,009

	
14,107

	
12,753

	
11,944

	
13,562

	
11,516

	
13,990




	
16 February

	
12,972

	
12,207

	
13,738

	
11,802

	
14,143

	
12,489

	
11,593

	
13,384

	
11,119

	
13,858




	
16 March

	
12,827

	
11,991

	
13,663

	
11,549

	
14,106

	
12,442

	
11,466

	
13,418

	
10,949

	
13,935




	
16 April

	
12,716

	
11,816

	
13,615

	
11,340

	
14,092

	
12,367

	
11,315

	
13,419

	
10,759

	
13,976




	
16 May

	
12,534

	
11,576

	
13,492

	
11,069

	
13,999

	
12,175

	
11,051

	
13,298

	
10,456

	
13,893




	
16 June

	
12,260

	
11,249

	
13,270

	
10,715

	
13,804

	
11,888

	
10,697

	
13,079

	
10,067

	
13,709




	
16 July

	
12,122

	
11,063

	
13,181

	
10,502

	
13,741

	
11,888

	
10,634

	
13,142

	
9970

	
13,806




	
16 August

	
12,368

	
11,261

	
13,476

	
10,675

	
14,062

	
12,213

	
10,899

	
13,527

	
10,203

	
14,222




	
16 September

	
12,720

	
11,563

	
13,877

	
10,951

	
14,489

	
12,628

	
11,256

	
13,999

	
10,530

	
14,725




	
Hinoki

	
15 October

	
17,909

	
17,409

	
18,408

	
17,145

	
18,672

	
18,366

	
17,711

	
19,022

	
17,364

	
19,368




	
15 November

	
17,989

	
17,207

	
18,772

	
16,792

	
19,187

	
18,804

	
17,691

	
19,917

	
17,102

	
20,507




	
15 December

	
18,039

	
17,027

	
19,051

	
16,492

	
19,587

	
19,322

	
17,853

	
20,791

	
17,076

	
21,568




	
16 January

	
18,113

	
16,897

	
19,328

	
16,254

	
19,971

	
19,256

	
17,514

	
20,998

	
16,591

	
21,920




	
16 February

	
17,952

	
16,553

	
19,351

	
15,812

	
20,092

	
18,848

	
16,894

	
20,803

	
15,859

	
21,838




	
16 March

	
17,346

	
15,781

	
18,910

	
14,953

	
19,739

	
17,886

	
15,763

	
20,009

	
14,639

	
21,132




	
16 April

	
16,801

	
15,088

	
18,515

	
14,180

	
19,423

	
17,046

	
14,787

	
19,305

	
13,591

	
20,501




	
16 May

	
16,336

	
14,486

	
18,186

	
13,507

	
19,166

	
16,261

	
13,889

	
18,633

	
12,633

	
19,889




	
16 June

	
15,966

	
13,990

	
17,942

	
12,944

	
18,988

	
15,614

	
13,146

	
18,081

	
11,839

	
19,388




	
16 July

	
16,131

	
14,036

	
18,226

	
12,927

	
19,335

	
15,606

	
13,055

	
18,157

	
11,705

	
19,508




	
16 August

	
16,758

	
14,545

	
18,971

	
13,374

	
20,142

	
16,041

	
13,416

	
18,665

	
12,027

	
20,054




	
16 September

	
17,320

	
14,991

	
19,650

	
13,757

	
20,883

	
16,389

	
13,699

	
19,079

	
12,275

	
20,503




	
Karamatsu

	
15 October

	
11,546

	
11,342

	
11,750

	
11,234

	
11,858

	
11,546

	
11,363

	
11,729

	
11,266

	
11,826




	
15 November

	
11,546

	
11,257

	
11,835

	
11,105

	
11,987

	
11,546

	
11,287

	
11,805

	
11,150

	
11,942




	
15 December

	
11,546

	
11,193

	
11,899

	
11,005

	
12,087

	
11,546

	
11,229

	
11,863

	
11,061

	
12,031




	
16 January

	
11,546

	
11,138

	
11,954

	
10,922

	
12,170

	
11,546

	
11,180

	
11,912

	
10,986

	
12,106




	
16 February

	
11,546

	
11,090

	
12,002

	
10,848

	
12,244

	
11,546

	
11,136

	
11,956

	
10,920

	
12,172




	
16 March

	
11,546

	
11,046

	
12,046

	
10,781

	
12,311

	
11,546

	
11,097

	
11,995

	
10,860

	
12,232




	
16 April

	
11,546

	
11,006

	
12,086

	
10,720

	
12,372

	
11,546

	
11,061

	
12,031

	
10,805

	
12,287




	
16 May

	
11,546

	
10,969

	
12,123

	
10,663

	
12,429

	
11,546

	
11,028

	
12,064

	
10,754

	
12,338




	
16 June

	
11,546

	
10,934

	
12,158

	
10,609

	
12,483

	
11,546

	
10,996

	
12,096

	
10,706

	
12,386




	
16 July

	
11,546

	
10,900

	
12,192

	
10,559

	
12,533

	
11,546

	
10,967

	
12,125

	
10,660

	
12,432




	
16 August

	
11,546

	
10,869

	
12,223

	
10,511

	
12,581

	
11,546

	
10,938

	
12,154

	
10,617

	
12,475




	
16 September

	
11,546

	
10,839

	
12,253

	
10,464

	
12,628

	
11,546

	
10,911

	
12,181

	
10,576

	
12,516











3.4. ARIMA Forecast Results


These three time series are not stationary, as shown by their actual values in their left parts in either both sets of figures; their levels changed and did not converge to some constant value. The Augmented Dickey-Fuller (ADF) test, a unit root test, was implemented [36,37]. Package tseries in R was used in which the null hypothesis is that the time series has a unit root and is not stationary, and an alternative hypothesis we adopted in this case study is that it is “stationary”. For sugi, Dickey-Fuller = −1.860 (p-value = 0.635); after differencing, Dickey-Fuller = −7.142 (p-value < 0.01). For hinoki, Dickey-Fuller = −2.655 (p-value = 0.303); after differencing, Dickey-Fuller =−6.918 (p-value < 0.01). For karamatsu, Dickey-Fuller = −3.252 (p-value = 0.082); after differencing, Dickey-Fuller = −6.307 (p-value < 0.01). p-values above 0.05 in the ADF tests for the original time series show that the null hypothesis that original time series is not stationary and cannot be rejected by a 5% significant level, i.e., providing no evidence against the need for differencing, but that after differencing, p-values become less than 0.01, showing that further integration of a 2nd order can be rejected, and the 1st differences become stationary at a 1% significance level. That is, a degree of one is suitable for the integrated part of the ARIMA models.



By implementing the Arima function in the package forecast, we obtained the following result for sugi as the best model due to its lowest AICc: ARIMA (2, 1, 0) (2, 1, 1), representing two non-seasonal autoregressive terms, two seasonal autoregressive terms, and one seasonal moving averages term. Their coefficients and standard errors are, respectively, 0.457 (0.079), −0.245 (0.085), −0.595 (0.145), −0.441 (0.118), and −0.367 (0.165). All of them are significant at a 1% significance level, though in forecasting, it is not important to pursue significance parameters. When summarizing this result, the following model can be obtained.


Yt = 1.457Yt−1 − 0.702Yt−2 + 0.245Yt−3 + 0.405Yt−12 − 0.590Yt−13 + 0.284Yt−14 − 0.099Yt−15 + 0.154Yt−24 − 0.224Yt−25 + 0.108Yt−26 − 0.038Yt−27 + 0.441Yt−36 − 0.643Yt−37 + 0.310Yt−38 − 0.108Yt−39 + et − 0.367et−12



(7)







By fitting it into the ARIMA model, we obtained the best hinoki log price model as ARIMA (2, 1, 1) (0, 1, 2), with two non-seasonal autoregressive terms, one non-seasonal moving average term, and two seasonal moving average terms. Their coefficients and standard errors are: 1.306 (0.087), −0.398 (0.076), −0.932 (0.057), −1.104 (0.092), and 0.352 (0.109). All of these parameters are also significant at a 1% significance level. The model is as follows:


Yt = 2.306Yt−1 − 1.704Yt−2 + 0.398Yt−3 + Yt−12 − 2.306Yt−13 + 1.704Yt−14 − 0.398Yt−15+ et − 0.932et−1 − 1.104et−12 + 1.029et−13 + 0.352et−24 – 0.328et−25



(8)







The best karamatsu log price model has the form as ARIMA (0, 1, 0), with no seasonal terms, autoregressive terms, or moving average terms. This type of time series is usually called a random walk [35]. The model can be written as:


Yt = Yt−1 + et



(9)








3.5. Diagnostic Check of Residuals in ARIMA Models


Finally, we need to verify the adequacy of our ARIMA models by checking their residuals. By fitting a model, we can obtain fitted values and residuals. For a forecasting model, we have observed values and forecasts based on previous observed values, and the differences are residuals: [image: there is no content] Residuals should have two properties: uncorrelated and zero mean [32]. Correlations between residuals mean that the model is not fitted well because patterns remained in the residuals and should be included in the model. In addition, if the mean of residuals is not zero, then the forecasts are biased. It would be better also to check two other properties for ideal residuals: constant variance and normal distribution [32].



For the three ARIMA models, we first checked residuals’ correlations. Figure 8 shows residuals and their autocorrelations and partial autocorrelations with lags of up to 36 for the sugi log price. No pattern can be found in Figure 8a, though some irregular residuals existed. Figure 8b,c show that no significant correlations were confirmed. The situations for hinoki were similar. Figure 9 showed the analysis of the prices for karamatsu logs. Similarly, some irregular residuals were found in Figure 9a, but no pattern was confirmed. Two significant autocorrelations and partial correlations, respectively, were found by checking Figure 9b,c but most of them with a lag over 20. This result can be ignored by considering it an accidental result. We then implemented an ADF test, and the Dickey-Fuller results were −5.992, −5.360, and −6.283, respectively, for sugi, hinoki, and karamatsu. For all of the cases, p-value <0.01, which shows that they are stationary. Finally, we implemented the Box-Ljung test [38]. The results for sugi, hinoki, and karamatsu are χ2 = 22.660 (p-value = 0.540), 15.874 (p-value = 0.893), and 32.014 (p-value = 0.127), which means that these residuals were not distinguishable from a white noise series.


Figure 8. Residuals and their autocorrelations in sugi ARIMA model: (a) Plot of residuals; (b) autocorrelations with lags of up to 36 for the sugi log prices; (c) partial autocorrelations with lags of up to 36 for the sugi log prices.



[image: Forests 07 00094 g008 1024]





Figure 9. Residuals and their autocorrelations in karamatsu ARIMA model: (a) Plot of residuals; (b) autocorrelations with lags of up to 36 for the sugi log prices; (c) partial autocorrelations with lags of up to 36 for the sugi log prices.
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3.6. Measuring the Accuracy of Forecasts


To measure the forecast accuracy, we divided our data set into two parts: sample data and out-of-sample data. We dealt with two forecast periods here: 12 months and 6 months. We established the objective of the research as being to forecast monthly prices and acknowledged the forecasting as being short-term; therefore, being able to forecast one year ahead or some months (less than 12 months) ahead accurately is important. The errors for forecasting sugi, hinoki, and karamatsu log prices for 12 months ahead by ETS and ARIMA were shown in Table 2. As for other lengths, from one to five months, from seven to 11 months, the results for sugi and hinoki were shown in supplementary materials (Tables S1–S10).



Table 2. Forecast errors for 12-months-ahead forecasts. “Kara.” stands for karamatsu. The smallest error among the three methods is shown in bold letters. Snaïve method is applied to sugi and hinoki, while the naïve method to karamatsu. MAPE, mean absolute percentage error; MAE, mean absolute error; RMSE, root mean square error.



	
Valuations

	
MAPE (%)

	
MAE (Yen)

	
RMSE (Yen)




	
Snaïve/Naïve

	
ETS

	
ARIMA

	
Snaïve/Naïve

	
ETS

	
ARIMA

	
Snaïve/Naïve

	
ETS

	
ARIMA






	
1

	
Sugi

	
3.96

	
4.77

	
5.57

	
504

	
578

	
685

	
670

	
697

	
748




	
Hinoki

	
19.01

	
3.25

	
1.64

	
3273

	
545

	
282

	
4065

	
626

	
332




	
Kara.

	
2.20

	
2.20

	
2.20

	
252

	
252

	
252

	
285

	
285

	
285




	
2

	
Sugi

	
4.99

	
3.33

	
2.37

	
639

	
416

	
300

	
872

	
457

	
347




	
Hinoki

	
19.74

	
2.44

	
1.74

	
3401

	
418

	
301

	
4094

	
479

	
378




	
Kara.

	
1.93

	
1.93

	
1.93

	
220

	
220

	
220

	
261

	
261

	
261




	
3

	
Sugi

	
5.82

	
3.24

	
2.26

	
740

	
407

	
289

	
967

	
455

	
360




	
Hinoki

	
19.90

	
3.29

	
2.52

	
3432

	
571

	
436

	
4101

	
708

	
516




	
Kara.

	
1.26

	
1.26

	
1.26

	
142

	
142

	
142

	
151

	
151

	
151




	
4

	
Sugi

	
6.53

	
3.33

	
2.05

	
825

	
426

	
263

	
1045

	
498

	
342




	
Hinoki

	
19.60

	
5.45

	
8.84

	
3386

	
940

	
1523

	
4091

	
1035

	
1577




	
Kara.

	
1.42

	
1.42

	
1.42

	
158

	
158

	
158

	
208

	
208

	
208




	
5

	
Sugi

	
7.25

	
2.75

	
2.38

	
913

	
354

	
309

	
1126

	
429

	
395




	
Hinoki

	
18.92

	
14.06

	
6.07

	
3278

	
2429

	
1051

	
4069

	
2607

	
1139




	
Kara.

	
1.17

	
1.17

	
1.17

	
132

	
132

	
132

	
147

	
147

	
147




	
6

	
Sugi

	
7.98

	
2.32

	
1.74

	
1007

	
301

	
225

	
1218

	
373

	
284




	
Hinoki

	
18.23

	
15.43

	
7.50

	
3166

	
2678

	
1304

	
4043

	
2977

	
1442




	
Kara.

	
1.19

	
1.19

	
1.19

	
135

	
135

	
135

	
160

	
160

	
160




	
7

	
Sugi

	
8.92

	
2.64

	
1.60

	
1125

	
346

	
211

	
1323

	
445

	
319




	
Hinoki

	
17.46

	
15.54

	
8.20

	
3046

	
2720

	
1432

	
3990

	
2854

	
1592




	
Kara.

	
1.95

	
1.96

	
1.95

	
220

	
221

	
220

	
257

	
258

	
257




	
8

	
Sugi

	
10.04

	
3.17

	
3.43

	
1266

	
400

	
444

	
1418

	
456

	
512




	
Hinoki

	
16.51

	
34.81

	
22.13

	
2922

	
6161

	
3926

	
3890

	
6397

	
4029




	
Kara.

	
3.39

	
3.39

	
3.39

	
380

	
380

	
380

	
402

	
402

	
402




	
9

	
Sugi

	
11.51

	
12.42

	
5.86

	
1457

	
1571

	
738

	
1571

	
1588

	
782




	
Hinoki

	
15.37

	
40.29

	
24.09

	
2841

	
7177

	
4305

	
3767

	
7642

	
4520




	
Kara.

	
3.11

	
3.10

	
3.11

	
348

	
346

	
348

	
377

	
375

	
377




	
10

	
Sugi

	
13.05

	
16.79

	
12.67

	
1675

	
2125

	
1602

	
1830

	
2204

	
1653




	
Hinoki

	
14.08

	
65.79

	
30.81

	
2759

	
11,862

	
5573

	
3622

	
12,709

	
5931




	
Kara.

	
1.16

	
1.16

	
1.16

	
129

	
129

	
129

	
170

	
170

	
170










Table 2 shows 10 valuations of forecast errors of 12-months-ahead forecasts. Firstly, data from October 2014 to September 2015 were taken as out-of-sample data, while the data from January 2002 to September 2014 were taken as sample data. In the next nine valuations, by keeping 12 months as the forecast period and deleting the last datum in the series every time and moving backward, we obtained nine sets of sample data and out-of-sample data. Thus, the second sample data were from January 2002 to August 2014, and out-of-sample data were from September 2014 to August 2015. Snaïve was used for sugi and hinoki accuracy valuations, but a naïve method was used for karamatsu because the karamatsu log price did not show obvious seasonality.



As shown in Table 2, MAPE, MAE, and RMSE have similar results in comparing the accuracy of forecasts among ETS, ARIMA, and Snaïve method to sugi and hinoki or naïve method to karamatsu; i.e., when MAPE value is the smallest for a method among the three methods, MAE and RMSE values are also smallest for this method. Valuation 1 was the case in which the most recent sample data and out-of-sample data were used. For the sugi log price, ETS had a smaller error than ARIMA, but both ETS and ARIMA had larger errors than the Snaïve method. The results showed the error ranged from 3.96% to 5.57% by MAPE, from 504 Yen to 685 Yen by MAE, and from 670 Yen to 748 Yen by RMSE. For the hinoki log price in Valuation 1, its forecast accuracy was much better. The smallest forecast errors were from ARIMA, which were 1.64% by MAPE, 282 Yen by MAE, and 332 Yen by RMSE. The ETS results were not as good as those of ARIMA but were better than those of the Snaïve method. As for the karamatsu log price in Valuation 1, ETS and ARIMA resulted in the same errors as the naïve method.



By comparing the errors for sugi and hinoki over 10 valuations, Valuations 9 and 10 gave the largest errors due to the impact of the irregular level of prices at the end of 2013. Among the 10 valuations, it can be found that for sugi, ETS had smaller errors twice (i.e., for Valuations 1 and 8); for hinoki, ETS had a better error only once (i.e., for Valuation 4); and in all other cases ARIMA showed smaller errors for sugi and hinoki. As for karamatsu, ETS and ARIMA had the same errors as those by naïve method, except in the two valuations due to the rounding errors (i.e., Valuations 7 and 9).



MAPE, MAE, and RMSE are metrics that are used to summarize the errors for the whole forecast periods. When changing the length of forecast periods, the results expressed by these metrics might also change. Forecasters occasionally need to know the forecast for the next 6 months rather than the next 12 ones. Hence, we also measured the accuracy of forecasts in 6-months-ahead forecasts 10 times. Similarly, we kept the length of 6 months for out-of-sample data and, for each time, deleted the last datum and moved the dataset backward to obtain a new dataset. Similarly to the results in Table 2, in the majority of cases of 6-months-ahead forecasts for sugi and hinoki log prices, ARIMA had smaller errors than ETS and, as for the karamatsu log prices, ETS and ARIMA had the same errors as those obtained when using the naïve method (Table 3). Similarly, the errors from the earliest sample data for hinoki by ARIMA, as shown in Valuation 10, were also high compared with other valuations for hinoki by ARIMA: 9.18% by MAPE, 1602 Yen by MAE, and 1680 Yen by RMSE.



Table 3. Forecast errors for 6-months-ahead forecasts. “Kara.” stands for karamatsu. The smallest error among the three methods are shown in bold letters. Snaïve method is applied to sugi and hinoki, while naïve method to karamatsu.



	
Valuations

	
MAPE (%)

	
MAE (Yen)

	
RMSE (Yen)




	
Snaïve/Naïve

	
ETS

	
ARIMA

	
Snaïve/Naïve

	
ETS

	
ARIMA

	
Snaïve/Naïve

	
ETS

	
ARIMA






	
1

	
Sugi

	
3.47

	
2.87

	
2.25

	
414

	
345

	
273

	
427

	
362

	
299




	
Hinoki

	
7.63

	
2.34

	
2.99

	
1264

	
388

	
496

	
1460

	
409

	
521




	
Kara.

	
0.44

	
0.44

	
0.44

	
50

	
50

	
50

	
71

	
71

	
71




	
2

	
Sugi

	
3.13

	
4.09

	
2.63

	
370

	
483

	
312

	
404

	
519

	
330




	
Hinoki

	
11.29

	
4.54

	
1.46

	
1889

	
751

	
240

	
2162

	
776

	
284




	
Kara.

	
0.39

	
0.39

	
0.39

	
44

	
44

	
44

	
44

	
46

	
46




	
3

	
Sugi

	
2.85

	
6.33

	
6.70

	
336

	
752

	
798

	
391

	
791

	
821




	
Hinoki

	
16.58

	
5.92

	
1.12

	
2817

	
980

	
187

	
3345

	
1057

	
221




	
Kara.

	
1.49

	
1.49

	
1.49

	
170

	
170

	
170

	
171

	
171

	
171




	
4

	
Sugi

	
3.17

	
4.12

	
2.83

	
388

	
493

	
344

	
460

	
567

	
372




	
Hinoki

	
22.13

	
7.12

	
2.09

	
3806

	
1194

	
350

	
4387

	
1294

	
404




	
Kara.

	
2.54

	
2.54

	
2.54

	
290

	
290

	
290

	
297

	
297

	
297




	
5

	
Sugi

	
3.78

	
3.99

	
2.16

	
480

	
487

	
268

	
590

	
599

	
311




	
Hinoki

	
27.70

	
4.72

	
1.91

	
4779

	
798

	
325

	
5274

	
958

	
356




	
Kara.

	
2.55

	
2.55

	
2.55

	
290

	
290

	
290

	
315

	
315

	
315




	
6

	
Sugi

	
2.98

	
5.06

	
3.70

	
387

	
641

	
472

	
538

	
705

	
513




	
Hinoki

	
30.42

	
2.54

	
2.08

	
5268

	
434

	
359

	
5553

	
563

	
395




	
Kara.

	
1.44

	
1.44

	
1.44

	
163

	
163

	
163

	
177

	
177

	
177




	
7

	
Sugi

	
4.45

	
2.59

	
4.08

	
594

	
333

	
531

	
847

	
398

	
579




	
Hinoki

	
30.38

	
1.59

	
2.25

	
5282

	
275

	
392

	
5560

	
332

	
422




	
Kara.

	
1.42

	
1.42

	
1.42

	
161

	
161

	
161

	
203

	
203

	
203




	
8

	
Sugi

	
6.84

	
2.86

	
2.58

	
907

	
381

	
342

	
1166

	
434

	
402




	
Hinoki

	
28.19

	
3.27

	
2.41

	
4914

	
570

	
421

	
5371

	
610

	
478




	
Kara.

	
0.99

	
0.99

	
0.99

	
112

	
112

	
112

	
164

	
164

	
164




	
9

	
Sugi

	
8.78

	
3.28

	
2.82

	
1143

	
436

	
374

	
1310

	
491

	
455




	
Hinoki

	
23.22

	
4.97

	
3.23

	
4046

	
867

	
564

	
4737

	
928

	
634




	
Kara.

	
1.28

	
1.28

	
1.28

	
142

	
142

	
142

	
158

	
158

	
158




	
10

	
Sugi

	
9.88

	
3.81

	
2.06

	
1262

	
502

	
274

	
1405

	
577

	
393




	
Hinoki

	
17.07

	
4.54

	
9.18

	
2967

	
793

	
1602

	
3772

	
909

	
1680




	
Kara.

	
2.47

	
2.47

	
2.47

	
274

	
274

	
274

	
285

	
285

	
285










ETS and ARIMA occasionally give rather different forecast results as shown in Table 1. It is difficult to say which method is definitively better than the other, even though ARIMA makes forecasts with smaller errors in most cases in this research. Therefore, in order to find a method by which we can forecast prices with smaller errors, we attempted another method in which we combined the forecasts from ETS and ARIMA to obtain average point forecasts for sugi and hinoki. Karamatsu is not dealt with because it is a random walk, and ETS and ARIMA gave the same point forecasts with the naïve method. The forecast errors by using this combined method are shown in Table 4. For 12-months-ahead forecasts, in Valuations 4, 5, and 6 for hinoki log prices and Valuation 8 for sugi log prices, the errors by the combined method were the smallest among Snaïve, ETS, ARIMA, which are shown in Table 2, and this combined method is based on all three error metrics. For 6-months-ahead forecasting, in Valuations 10 for the hinoki log price, the results from the combined method were the best based on all three error metrics. For most cases, errors from the combined method were found to fall between those observed for ETS and ARIMA models. In other words, the forecasts using the combined method were not the worst forecasts and were occasionally better than both the ETS and ARIMA forecasts.



Table 4. Forecast errors using average method for 12- and 6-months ahead forecasts.



	
Valuations

	
12-Months-Ahead

	
6-Months-Ahead




	
MAPE

	
MAE

	
RMSE

	
MAPE

	
MAE

	
RMSE






	
1

	
Sugi

	
5.09

	
620

	
714

	
2.56

	
309

	
329




	
Hinoki

	
2.18

	
369

	
414

	
2.66

	
442

	
456




	
2

	
Sugi

	
2.85

	
357

	
394

	
3.36

	
398

	
421




	
Hinoki

	
1.96

	
337

	
409

	
2.85

	
469

	
509




	
3

	
Sugi

	
2.72

	
344

	
398

	
6.52

	
775

	
805




	
Hinoki

	
2.91

	
503

	
604

	
2.88

	
475

	
552




	
4

	
Sugi

	
2.66

	
342

	
415

	
3.32

	
399

	
461




	
Hinoki

	
1.70

	
293

	
323

	
4.61

	
772

	
836




	
5

	
Sugi

	
2.42

	
314

	
400

	
2.76

	
337

	
422




	
Hinoki

	
4.16

	
718

	
768

	
3.23

	
548

	
640




	
6

	
Sugi

	
1.99

	
258

	
320

	
4.38

	
556

	
605




	
Hinoki

	
4.02

	
698

	
797

	
2.02

	
346

	
431




	
7

	
Sugi

	
2.07

	
273

	
374

	
3.17

	
410

	
471




	
Hinoki

	
11.87

	
2076

	
2216

	
1.57

	
274

	
337




	
8

	
Sugi

	
1.26

	
163

	
213

	
2.71

	
360

	
413




	
Hinoki

	
28.47

	
5043

	
5211

	
2.84

	
496

	
537




	
9

	
Sugi

	
9.14

	
1155

	
1176

	
3.05

	
405

	
471




	
Hinoki

	
32.19

	
5741

	
6077

	
4.10

	
715

	
775




	
10

	
Sugi

	
14.73

	
1863

	
1922

	
2.91

	
385

	
477




	
Hinoki

	
48.30

	
8717

	
9317

	
2.34

	
408

	
410












4. Discussion


As the saying goes, all forecasts are wrong, but some might be useful. In this research, we used the national average log price data of sugi, hinoki, and karamatsu; ETS and ARIMA methods; and the package forecast in software R [16]. We checked the seasonality, the trend, and obtained 12-months-ahead forecasts for sugi, hinoki, and karamatsu. The fact that Japanese sugi and hinoki log prices are seasonal but karamatsu prices are not is well reflected in the ETS and ARIMA models. In most cases, ARIMA gave better results than ETS for sugi and hinoki. These findings are useful for the short-term forecasting of Japanese domestic log prices. Actually, though ETS and ARIMA adopt different modeling and estimation strategies and algorithms, additive error ETS models are all special cases of ARIMA models, while the non-linear ETS models cannot find equivalents in ARIMA [32]. Our ETS models all have multiplicative errors; therefore, the best models by ETS and ARIMA in this case do not have equivalents to each other. For karamatsu log prices, the forecasts by ETS and ARIMA are the same as the ones by the naïve method, but their forecasting intervals are different.



Because forecasting deals with stochastic issues, no one can be sure about their forecasts. Showing forecasting intervals is a good way to reflect the extent of possible variations. If actual prices are approaching the upper or lower limits, this should raise a high alert in terms of risk management. Providing such data would be useful to avoid the mismatch between supply and demand and, thus, the sharp fall or rise of log prices.



This research used univariate time series analysis for forecasting. Sometimes, structural time series models are useful for forecasting, as they incorporate terms of interest into the model, though one has to forecast or assume those terms first. In the case of forecasting price, however, it becomes complicated. According to economics theory, the price of a commodity is an endogenous variable that is determined by the relationship between supply and demand in the market. Price shifts with the changes in income, consumers’ preferences, cost of production elements, technological changes, prices of other related commodities, among other factors. Prices can be forecasted by taking these factors into account. For example, Organization of the Petroleum Exporting Countries (OPEC) quota, OPEC production, and industrial stock level of oil can be used to forecast short-term oil price [39]. However, there are not many empirical studies on price forecasting by using structural time series models, perhaps due to the difficulties in quantifying the related factors and those factors must be forecasted prior to forecasting prices. With univariate forecasting approaches, the only variable is log price in this research, which makes forecasting simple and sometimes useful. Of course, the ETS method simply decomposes a time series into trend, seasonal, and error components without taking other elements into account, such as cyclical movements. As for ARIMA models, it might be a good idea to add exogenous variables to the model [40,41]. Furthermore, it is also worthwhile to apply equilibrium, structural, and reduced form models in forecasting the prices of Japanese logs.



Abenomics, a policy that went into effect in Japan in December 2012, ensured that corrections to the excessive yen appreciation were made. In addition, when the plan to raise consumption tax from 5% to 8% in April 2014 was communicated to the public in October 2013, a spike in demand for wood house construction led to sharp increases in sugi and hinoki log prices from October 2013 to January 2014. After this period, hinoki log prices dropped to their earlier level, whereas sugi log prices dropped and fluctuated at a higher level than previously. These contextual changes made short-term forecasts from this specific period uncertain. Fortunately, concerns that increased tax would case an economic recession have not become a reality. These price fluctuations in sugi and hinoki can be taken as irregular movements. That is, the structural changes in the logs market in Japan have not occurred.



However, any factors that affect demand and supply, including any changes in the international and domestic economic environment, might affect prices. The impact of the increase in consumption tax (from 8% to 10%) in the near future and fluctuations in exchange rates were not discussed in the research. Another important issue is the impact of the general price level. Constant price data were used in the research. Given the low inflation value, it did not make a difference in comparison to using current value log prices. Using a constant value mitigated the impact of general price changes. However, it will be necessary to recalculate the forecasts during periods of higher inflation. In addition, impacts of changes in the international market and policy are also not dealt with in the research. Incorporating influencing factors into forecasts of log prices should also be a focus of further research.
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