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Abstract: Prediction of projected tree leaf area using allometric relationships with sapwood 
cross-sectional area is common in tree- and stand-level production studies. Measuring sapwood 
is difficult and often requires destructive sampling. This study tested multiple leaf area 
prediction models across seven diverse conifer species in the Sierra Nevada of California. The 
best-fit whole tree leaf area prediction model for overall simplicity, accuracy, and utility for 
all seven species was a nonlinear model with basal area as the primary covariate. A new  
non-destructive procedure was introduced to extend the branch summation approach to leaf 
area data collection on trees that cannot be destructively sampled. There were no significant 
differences between fixed effects assigned to sampling procedures, indicating that data from 
the tested sampling procedures can be combined for whole tree leaf area modeling purposes. 
These results indicate that, for the species sampled, accurate leaf area estimates can be 
obtained through partially-destructive sampling and using common forest inventory data. 
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1. Introduction 

Leaf area index (LAI) is an important variable for understanding architecture and biological processes 
in trees [1], designing silvicultural treatments [2], for landscape-level ecosystem process models [3], or 
global forest functions [4]. LAI has been defined as the sum of projected (one-sided), or all-sided leaf 
areas, for all trees in a given area divided by the land surface area the trees cover [5]. Hence, in equal units, 
LAI becomes a unitless measure of leaf surface area per unit of land surface area covered. 

LAI has great utility as a tool for both science and management; however, it is difficult to quantify 
because of the structural complexity and temporal variation of leaf display in forests [6]. Additionally, 
there is enormous variation in leaf morphology and physiology among vascular plant species [7,8]. A unit 
of leaf area in one species may therefore not equate to similar levels of, for example, light interception, 
photosynthesis, or water usage in a different species. Hence, procedures that integrate species composition 
into LAI estimates will provide better estimates of physiological functions at all scales of forest cover. 

Several methods of LAI estimation have been developed [9–13]. Direct methods include destructive 
sampling to measure actual leaf area or collection and measurement of leaf litter. Leaf litter can be sorted 
and leaf area determined for each species. Indirect methods include optical techniques that measure light 
extinction through the canopy, or hemispherical photography that estimates LAI based on geometry of 
canopy openings. Measures of light extinction or hemispherical photography do not differentiate LAI 
by species, but instead can estimate total LAI inclusive of all species. Another indirect method relies on 
the allometric relationship between tree leaf area and tree dimensions to estimate tree leaf area, which is 
summed by tree and divided by land surface area to get LAI. LAI can also be estimated through remote 
sensing, such as with aerial or ground-based LIDAR, which has the potential to estimate leaf area by 
tree or species [14,15]. 

Of these methods, estimating LAI using individual tree allometries is the only method, at present, that 
can be used to easily estimate LAI by individual trees, species, age classes, or canopy strata. 
Understanding the distribution of LAI by these stand components provides advantages for describing 
stand structure, and modeling changes in structure through silvicultural interventions [16]. 

Allometries in plants are generally assumed to follow fundamental metabolic scaling rules related to 
annual growth rates [17]. For trees, the pipe model theory, generally credited to Shinozaki and  
others [18–24], forms the theoretical basis for allometric proportionalities between tree leaf area, or 
foliage mass, above a point in the crown and the cross-sectional area of conducting tissues at that point 
on the stem. In small trees, where all xylem may be functional conducting tissue, the pipe model indicates 
a relationship between tree cross-sectional area, or basal area, and leaf area. However, in larger trees 
with non-conducting xylem, or heartwood, the relationship is theoretically strongest when sapwood 
cross-sectional area at the base of live crown is used to predict leaf area due to sapwood  
taper [24–26]. Hence, leaf area prediction models have often been based on sapwood cross-sectional 
area at the base of the live crown or with a variable to represent crown height [24,25,27]. 

Development of leaf area prediction relationships requires laborious foliage sampling to estimate leaf 
surface area. Whereas most previous studies used a single procedure, fewer studies have compared 
alternative procedures [9,11–13,28–31]. Our analysis used a variety of conifer species from the  
mixed-conifer forests of the Sierra Nevada in California, including shade intolerant and tolerant species, 
to compare procedures for tree leaf area prediction, and to develop a partially destructive sampling approach. 
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Leaf area relationships are typically developed by scaling leaf area from branch to tree using either a 
crown section [31,32], or a branch summation approach [33,34], on cut trees. The crown section 
approach estimates leaf area by crown section, usually crown thirds, whereas the branch summation 
estimates leaf area from individual tree branch allometries developed from a subsample of branches. We 
compared results from these two procedures and a partially-destructive extension of the branch 
summation approach where trees were climbed and cored instead of cut down. 

Several previous studies have explored alternative methods to predict tree leaf area from DBH, or 
other external tree features that require no destructive sampling or coring [32,33,35]. We tested several 
model forms to predict one-sided leaf area of branches, crown portions and whole trees using several 
external tree features as covariates. We also tested model forms that predict one-sided whole tree leaf 
area from measured sapwood cross-sectional area at 1.37 m height. We used nonlinear mixed effects 
(NLME) modeling techniques described in Pinheiro and Bates [36] to account for random effects for 
site and tree as well as to assess impacts of additional covariates on model parameter estimates. 

The goal of this study was to compare alternative sampling procedures and models for estimating 
one-sided tree leaf area in temperate conifers using the advantages of mixed effects modeling to compare 
alternate model forms. Specifically, our objectives were to: 

1. Develop leaf area prediction models for tree branches for several coniferous species across a wide 
range of environmental conditions; 

2. Develop leaf area prediction models for a portion of the live crown; 
3. Compare the performance of several whole tree leaf area prediction model forms and  

primary covariates; 
4. Determine the impact of sampling procedures on whole tree leaf area prediction models; and 
5. Determine the impact of additional covariates on the leaf area prediction models developed in 

objectives 1–3 using NLME techniques. 

2. Experimental Section 

2.1. Sample Sites 

Trees were sampled from six locations in the Sierra Nevada (Table 1), using two different primary 
sampling procedures. The two primary sampling procedures were the crown section approach (D1) 
described in [31,37,38], and the branch summation approach (D2) described in [33]. Sampled stands 
ranged from even-aged, to multiaged, stand structures and were typically on productive sites in the 
mixed-conifer forests of the Sierra Nevada. Species sampled were: sugar pine (Pinus lambertiana Dougl.), 
ponderosa pine (P. ponderosa Lawson & C. Lawson), Jeffrey pine (P. jeffreyi Balf.), coast Douglas-fir 
(Pseudotsuga menziesii (Mirb.) Franco var. menziesii), white fir (Abies concolor (Gord. & Glend.) Lindl. ex 
Hildebr.), red fir (A. magnifica A. Murray), and incense-cedar (Calocedrus decurrens (Torr.) Florin). Jeffrey 
pine was the only species sampled at the Bureau of Land Management site, and red fir was the only 
species sampled at the Teakettle Experimental Forest. Douglas-fir was not present in the Southern 
California Edison site. All other species occurred at every site and were sampled across a wide range of 
diameters at each location. Summary data for sampled trees can be found in Table 2. 
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Table 1. Summary information for study sites for each sampling category. 

Ownership/Location Name Latitude Longitude 
Elevation 
Range (m) 

Sampling 
Category 

Age Structure 

Baker Forest 39.91° −121.06° 1211–1347 D2 
Even-aged & 

multiaged 
Bureau of Land Management 39.67° −120.16° 1764–1768 D2 Multiaged 

Blodgett Forest Research Station 38.91° −120.66° 1250–1338 D1 & D2 
Even-aged & 

multiaged 
Southern California Edison 37.04° −119.21° 1584–1594 D2 Multiaged 

Sierra Pacific Industries 38.75° −120.75° 1309–1650 D1 Even-aged 
Teakettle Experimental Forest 36.96° −119.02° 2062–2074 D2 Multiaged 

Table 2. Summary tree statistics. 

Species Mean DBH (cm) Mean HT (m) Mean HLC (m) 
n  

D1 
n D2 

Douglas-fir 28.5 (19.5) 18.3 (11.2) 5.9 (5.5) 7 7 
Incense-cedar 34.4 (25.6) 16.3 (9.6) 5.6 (3.4) 7 14 
Jeffrey pine 20.4 (12.6) 8.9 (4.7) 1.4 (0.8) 0 5 

Ponderosa pine 29.2 (21.6) 17.4 (11.6) 6.6 (5.4) 9 12 
Red fir 19.4 (12.4) 12.5 (7.8) 1.9 (0.9) 0 5 

Sugar pine 37.5 (29.8) 19.5 (11.7) 6.7 (6.0) 7 11 
White fir 30.0 (25.2) 16.9 (10.8) 4.8 (4.3) 7 14 

Diameter at breast height (DBH), tree height (HT), height to base of live crown (HLC), and sample size (n) 
within dataset, are shown for each conifer species analyzed. Standard deviations shown in parenthesis. 

2.2. Sapwood Area Sampling Procedure 

Cross-sectional sapwood area was determined by destructive and nondestructive sampling. 
Destructive sampling consisted of cutting tree discs from stump height, 1.37 m (breast height), live 
crown base, and every 2 m within the live crown. Tree discs were photographed in the field with a metric 
ruler placed on their surface for scale. Digital calibration was used to measure total disc area, sapwood 
area, heartwood area, and bark area. The accuracy of digital calibration was checked along multiple 
points of the ruler and deviation was kept below 0.5% for all disc measurements. Nondestructive 
sampling utilized cores taken at 1.37 m, base of live crown, and every 4 m within the tree crown until 
climbing was no longer safe. Cores were taken outside bark crevices so as to include maximum bark 
thickness. Total inside bark area was determined by subtracting double bark thickness from the measured 
diameter at core extraction point. Heartwood radius was calculated by determining the inside bark radius 
minus sapwood thickness and then used to calculate heartwood area. Sapwood cross-sectional area was 
determined by subtracting heartwood area from total inside bark area. A linear regression of sapwood 
area against basal area was performed to determine the nature of the relationship between those  
two covariates. 
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2.3. Leaf Area Sampling Procedures 

Three alternative leaf area sampling procedures were used: crown section, branch summation, and a 
partially-destructive extension of the branch summation approach. The crown section approach divides 
the crown into sections (usually thirds) that are sampled as separate units [31,32]. We weighed the live 
branches and foliage from each section in the field. A representative branch, and associated foliage, from 
each crown third was removed from the stem for analysis in the lab. Subsamples of foliage from selected 
branches were scanned for one-sided leaf area and oven-dried in the lab to determine dry weight to field 
weight ratios, and specific leaf area (leaf area/foliar mass). Remaining branch material, and the rest of 
the branch foliage, were also oven-dried, and field weight to dry weight ratios calculated. The field 
weight of each section was converted to dry branch and foliage weight using ratios calculated in the lab, 
and the measured specific leaf area was used to estimate leaf area of the crown section based on foliar 
masses. Whole tree leaf area was calculated as the sum of crown section leaf areas. 

The branch summation approach develops a relationship between branch diameter and leaf area that 
is applied to each branch within a tree or section of tree crown [24,38]. The diameter of all branches was 
measured outside the branch collar on both the major and minor axes. Random branches were removed 
for lab analysis of wet and dry foliage weights and leaf area. Branch leaf area prediction equations were 
developed and applied to all measured branches using the models for branch leaf area found in Table 3. 
Branch leaf areas were summed for whole tree leaf area for destructively sampled trees. 

Table 3. Summary of candidate leaf area prediction models sorted by associated tree feature. 
References given for existing leaf area models taken from the literature. 

Tree Feature Model Model Form Reference 

Tree Branch 

1 b1BRAe−(RDC/b2)b3  
2 b1BRAb2(b3/b4)(RDC/b4)(b3 − 1)e−(RDC/b4) b3  
3 b1BRA(RDC/b3)(b2 − 1)e−(RDC/b3)b2  

4 * b1BRAb2RDC(b3 − 1)e−RDCb3 + ϕi  
5 (b1BRA(1/3) + b2RDC(1/3))3 [33]  
6 b1BRAb2(HT − BHT) [39] 

Whole Tree 

7 b1X/(b2 + X) [40] 
8 b1Xb2  
9 b1/(1 − e((b2−X)/b3))  
10 b1X  
11 b1X + b2  

12 * b1X•BHCRb2 + ϕi [41] 
13 * b1Xb2BHCRb3 + ϕi  
14 b1X + b2(HLC − 1.37) [42] 
15 eb1•ln(X) [43] 
16 b1 + b2X + b3CL [44] 
17 e(b1•ln(X)+b2•ln(CL)) [35] 
18 e(b1Xb2CLb3) [35] 

19 * b1(X(1 − e−X))b2 + ϕi  
20 b1(X(1 − e−X/b2))b3  
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Table 3. Cont. 

Tree Feature Model Model Form Reference 

Whole Tree 

21 b1X(1 − e(−X/b2)b3))  
22 b1Xb2(1 − e−X/b3)  
23 b1Xb2(1 − e−Xb3)  
24 b1X(1 − e−X/b2)  
25 b1X(1 − e−Xb3))  
26 b1X(1 − e−X)  

Crown Portion 

27 b1SWPVb2(1 − e−b3eb4RDC)  
28 b1SWPVb2/(1 + e(b3−RDC)/b4)  
29 b1SWPV/(b2 + SWPV)  

30 * b1(SWPV(1 − e−RDCb2))b3 + ϕi  
31 * b1(SWPV(1 − e−(RDC/b4)b2))b3 + ϕi  
32 b1RDCb2SWPVb3  
33 b1SWPVb2(b3/b4)(RDC/b4)(b3−1) e(−RDC/b4)b3  
34 b1SWPVb2 + b3  

* denotes best-fit model form(s) for a given tree feature; ϕi represents random effects for site or tree within site 
applied to a given model. See table 4 for descriptions of covariate acronyms. 

Our new, partially destructive, sampling procedure extends the branch summation approach to larger 
trees that may be difficult to destructively sample. This new approach utilized the same methods as 
branch summation with two critical differences; sapwood was measured with cores not discs, and upper 
portions of the crown that could not be measured were estimated using species specific crown portion 
leaf area models. The crown portion leaf area model development is described below. 

Foliage subsamples from all procedures were scanned using a digital scanner and analyzed for  
one-sided leaf area using Regent Instruments WinFolia software package (Reg 2001a, Regent Instruments, 
Quebec, QC, Canada). The subsample foliage was then placed in small paper bags and oven dried to a 
constant mass, along with the remaining foliage. 

2.4. Leaf Area Data Categorization and Crown Portion Leaf Area Sampling Procedures 

Trees destructively sampled using the crown section approach were assigned a category label D1. 
Trees sampled using the branch summation approach were assigned a category label D2. Trees in the 
D2 category were subcategorized as destructive (D2D, sapwood measures from discs), or  
partially-destructive (D2C, sapwood measures from cores) samples. The D2C category contains all of 
the data for the new method developed in this study. Partially-destructive sampling required climbing 
trees and taking cores along the tree bole. The decision of whether a tree could be climbed was made on 
a tree-by-tree basis and primarily driven by concerns for climber safety. The cores extracted along the 
bole were used to estimate sapwood area instead of using discs, as was done for trees in the D2D 
category. Branch diameter measurements were collected while climbing up the tree up until it was no 
longer safe to climb. Because trees could not be climbed all the way to the top, a separate model was 
developed to predict the leaf area of the missing crown portion based on data from sampled trees in the 
D2D category. Therefore, whole tree leaf area data consisted of leaf area estimates from three different 
sampling procedures, D1, D2D, and D2C. 
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2.5. Leaf Area Prediction Modeling 

Leaf area prediction models were developed for three tree features, branch, crown portion, and whole 
tree. A list of candidate leaf area models for each tree feature (Table 3), was compiled from existing 
models in the literature and graphical analysis of the collected leaf area data. For the branch and crown 
portion candidate models, nonlinear least squares (NLS) approaches were used to fit each combination 
of tree species and tree feature to the candidate models associated with it (Table 3). The model AICs 
from the NLS fitting results were used as a screen for the best overall model fit to the leaf area data. For 
each unique combination of tree species and feature the model with the lowest AIC [45] from the NLS 
fits was chosen for further fitting using NLME modeling, following the methods described by Pinheiro 
and Bates [36]. 

Whole tree candidate models (Table 3) were fit to leaf area data using four primary covariates (Table 4). 
The primary covariates were: basal area (BA), diameter at breast height (DBH), parabolic volume (PV), 
and cross sectional sapwood area at breast height (SA). These covariates were chosen for either their 
biological significance or because they are commonly measured in forest inventories. For whole tree leaf 
area, the list of candidate models was fit using NLS for each unique combination of species and primary 
covariates noted in Table 4. The models with the lowest AIC from the NLS fit for each combination of 
species and primary covariate were chosen for further fitting using NLME methods. This modeling 
approach allowed for the best overall model form to be fit to the relationship between primary covariate 
and leaf area before further exploration of the impact on the leaf area relationships related to additional 
covariates (e.g., LCR, CI, etc.). 

Table 4. List of covariates tested in NLME (nonlinear mixed effects) modeling. 

Covariate Description Covariate Acronym 
Cross sectional area of tree at breast height in cm2 BA * 
Ratio of live crown length to length of tree above breast height BHCR 
Height of branch from the ground BHT 
Leaf area of branch in m2 BLA 
Cross sectional area of branches above branch collar in cm2 BRA 
Canopy class proxy calculated using this equation: (1-LCR)/(DHR2) CI 
Length of live crown CL 
Diameter of tree at breast height in cm DBH * 
Dominant and codominate canopy classes category label DC 
DBH in cm divided by height of tree in m DHR 
Height of tree in m divided by DBH in cm HDR 
Total height of tree in m HT 
Height from the ground to the lowest green branch in a tree HLC 
Intermediate canopy class category label I 
Inverse of BHCR IBHCR 
Inverse of CI ICI 
Inverse of tree height at 2/3 live crown from base of live crown divided by total 
tree height 

ICP 

Inverse of live crown ratio ILCR 
Inverse of tree height at 1/2 live crown divided by total tree height ILP 
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Table 4. Cont. 

Covariate Description Covariate Acronym 
Distance from top of tree to point in crown divided by sapwood area at point in crown ITP 
Live crown length divided by height to live crown LCHLCR 
Live crown length divided by total tree height LCR 
Crown length divided by tree height above live crown LCRM 
Parabolic volume of tree in m3 PV * 
Relative depth within live crown (0 = tree top, 1 = base of live crown) RDC 
Core or disc height divided by total tree height RHFB 
Distance from top of tree to core or disc height divided by tree height RHFT 
Suppressed canopy class category label S 
Cross sectional area of bole sapwood at breast height in cm2 SA * 
SA in cm2 measured at a point in the live crown multiplied by distance from tree top 
to that point in m divided by 3 

SWPV 

Diameter of tree at base of live crown divided by diameter of tree at 1.37 m T 
* denotes primary covariates used in place of X in the candidate models for whole tree leaf area in Table 3. 

NLME modeling was used to account for random effects associated with site and tree, as well as to 
test the improvement in model performance from the addition of covariates to model parameters. For 
example, consider a linear model LA = b1SA, where LA is leaf area, SA is sapwood area, and b1 is a 
parameter to be estimated. If we were interested in how live crown ratio (LCR) affected this relationship, 
we could add LCR as a covariate to the b1 parameter and refit the model. The resulting model would be 
of this form: LA = (b1,1 + b1,2LCR) SA, where b1,1 and b1,2 are new parameter estimates related to the 
linear relationship between b1 and LCR, with b1,1 acting as an intercept and b1,2 acting as the slope. 

Covariates were added to model parameters, as described above, to assess their impact on the modeled 
leaf area relationships. A list of tested covariates can be found in Table 4. A tested covariate was kept 
when (1) it significantly improved the model fit, determined using maximum log-likelihood ratio tests, 
and (2) its parameter estimate was significantly different from zero. This process continued until AIC 
was reduced as much as possible at which point the model was rechecked to ensure that it met the primary 
assumptions of NLME modeling (e.g., independent and normally distributed within-group errors, random 
effects that are normally distributed with a mean of zero, a variance-covariance matrix, and independent 
between group errors). Graphical analyses were used to test these assumptions as suggested in [36]. All 
final models met the NLME modeling assumptions. 

The potential effect of sampling category (D1, D2, D2D, D2C) on the modeled relationship, was 
tested by assigning a fixed effect for sampling category to each of the parameters in the final best-fit 
model. Using model 19 as an example the new model form becomes (b1 + Di)(X(1 − e−X))(b2 + Di) + ϕi, 
with Di representing fixed effects for the different sampling categories, ϕi representing random effects 
for site/tree, and X representing one of four primary covariates from Table 4. Comparisons of fixed 
effect parameter estimates were then made to determine if significant differences between sampling 
categories existed. Differences between parameter estimates for D1 vs. the parameter estimates for any 
other sampling category were determined to be significant using a z-test and an alpha of 0.05. ll of the 
final NLME models were compared and ranked by AIC, and the overall best-fit models for each species 
were further analyzed to determine if there were any significant random effects related to sampling sites. 
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For branch leaf area and crown portion leaf area modeling, additional random effects for individual trees 
were nested within the sites. The inclusion of random effects for sites or trees within the sites led to 
either one-level, or two-level models depending on the structure of the underlying data. Significances of 
random effects were determined by maximum likelihood ratio tests between models with random effects 
included and models with some or all of the random effects removed. NLME methods were chosen for 
this process because they are well-suited for unbalanced datasets, and allow for testing of additional 
covariates as well as comparisons between fixed effects. For all model fits, a generalized R2 value was 
calculated using this equation: 1 − (SSR/SSD) [46], where SSR is equal to the sum of squared residuals 
from the prediction and SSD is the sum of squared deviations of measured tree feature leaf area from 
mean tree feature leaf area. 

3. Results 

The best-fit prediction model for branch leaf area for all species was model 4 from Table 3. Parameter 
estimates, including additional covariates, can be found in Table 5. Figure 1 shows predicted branch leaf 
area versus measured branch leaf area and generalized R2 values for each species. Inclusion of a random 
effects parameter for site did not result in any significant improvements in model fit for any of the 
species. For red fir and Jeffrey pine, where only one site was sampled, the random effects tested were 
for individual trees, which also showed no significant impact on the branch leaf area model fit. 

Table 5. Summary of model parameter estimates for branch leaf area by species. 

Species b1 b2 b3 ΔAIC n 

Douglas-fir 
LCR(1.17(0.27)) − 

RHFT·HDR(0.95(0.32)) 
DHR(0.62(0.05)) 1.74(0.14) 1.52 44 

Incense-cedar HDR·LCR(1.05(0.16)) 
1.53(0.10) − 

RHFT·LCR(1.38(0.24)) 

−0.44(0.033) − 

RHFT(3.40 (0.36)) 
−2.19 75 

Jeffrey pine 
0.53(0.06) −  

RDC(0.50(0.06)) 

LCRM(0.44(0.06)) + 

RDC(0.97(0.11)) 
1.62(0.06) −2.00 28 

Ponderosa pine 
DC(0.20(0.08)) +  

I(0.15(0.04)) + S(0.08(0.02)) 

1.45(0.22) −  

LCR(0.83(0.33)) 
1.06(0.15) −2.00 65 

Red fir LCR(0.25(0.04)) 1.22(0.083) 1.57(0.08) 0.90 27 

Sugar pine HDR(0.49(0.08)) 
0.66(0.16) +  

LCR(0.56(0.27)) 
LCR(2.13(0.16)) −1.99 62 

White fir HDR(0.33(0.04)) 
1.49(0.11) − 

RHFT·DHR(0.21(0.11)) 
DHR(0.88(0.06)) −2.00 77 

Parameter estimates (b1, b2, b3) are shown with standard errors in parenthesis. The difference in Aikaike 
information criterion (ΔAIC) values for models without random effects compared to models with random 
effects added at the tree within site level are also shown. Positive AIC differences indicate a lower AIC value 
for models with random effects included. All species were modeled using model 4 from Table 3. 
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The best-fit model for leaf area of crown portion was model 30 for all species except white fir where 
model 31 was a better fit. Parameter estimates including additional covariates can be found in Table 6. 
Figure 2 shows predicted leaf area of crown portion versus measured leaf area and a generalized R2 value 
for the final model for each species. There were no significant random effects related to the site for any 
of the species. Incense-cedar, ponderosa pine, and red fir all showed significant improvements in model 
fit using random effects at the tree level nested within site. 

Table 6. Summary of model parameter estimates for crown portion leaf area by species. 

Species b1 b2 b3 b4 ΔAIC n 

Douglas-fir 2.29(0.30) 1.10 (0.19) 

0.17(0.03) +  

LCR(0.83 (0.06)) – 

RHFT(0.29 (0.04)) 

NA −3.00 24 

Incense-cedar 1.00(0.17) −2.70 (0.98) 
1.12(0.04) –  

LCR(0.60(0.06)) 
NA 11.40 * 38 

Jeffrey pine RHFT·DHR(1.36 (0.40)) −2.27 (2.80) RHFB(0.15(0.07)) NA −3.00 25 

Ponderosa pine LCR·HDR(1.37 (0.21)) −1.64 (0.79) 

0.55(0.05) +  

DHR(0.31(0.02)) – 

LCRM(0.52(0.04)) 

NA 22.82 * 38 

Red fir LCR(1.94 (0.28)) T (1.38 (0.19) 
−0.60(0.22) +  

LCR(1.36(0.25)) 
NA 11.14 * 31 

Sugar pine ILCR(0.32(0.05)) −7.05 (3.48) 
0.67(0.05) +  

DHR(0.07(0.02)) 
NA −4.26 35 

White fir ILCR (0.52(0.10)) DHR (0.55(0.04)) −DHR·T (1.81(0.38)) 

0.56(0.04) +  

LCR(0.32 (0.04)) −  

ITP(0.54(0.36)) 

−3.00 62 

Parameter estimates (b1, b2, b3, b4) are shown with standard errors in parenthesis. The difference in Aikaike information 

criterion (ΔAIC) values for models without random effects compared to models with random effects added at the tree within 

site level are also shown. Positive AIC differences indicate a lower AIC value for models with random effects included. 

The number of sapwood samples (n) with crown portion leaf area data. Multiple samples existed for each tree. White fir 

was modeled with model 31 and all other species used model 30. 
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Figure 1. Measured branch leaf area as a function of predicted branch leaf area for seven 
conifer species. Generalized R2 are shown as well as one-to-one lines to indicate scatter 
around theoretical line of perfect fit. 
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Figure 2. Measured leaf area for a crown portion as a function of predicted leaf area above 
a point in the crown for seven conifer species. Generalized R2 are shown as well as one-to-one 
lines to indicate scatter around the theoretical line of perfect fit. 
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Figure 3. Whole tree leaf area as a function of predicted leaf area from two best-fit functions 
for seven conifer species. Generalized R2 model fits for top two primary covariates are shown 
as well one-to-one lines to indicate scatter around theroetical line of perfect fit. 

The best-fit prediction model for whole tree leaf area was model 19 with basal area as the primary 
covariate for Douglas-fir, incense-cedar, Jeffrey pine, and red fir. White fir and ponderosa pine had the 
lowest AIC fits with model 12 and cross-sectional sapwood area as the primary covariate. The best-fit 
model for sugar pine was model 13 with the parabolic volume as the primary covariate. Parameter 
estimates for all species and best-fit models including additional covariates can be found in Table 7. 
Model 19 fits are also included for each species in Table 7 as this model had the best overall performance. 
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Figure 3 shows data points for predicted whole tree leaf area for model 19 with basal area as primary 
covariate along with either the lowest, or second lowest model by AIC. Generalized R2 values for each 
species model and primary covariate are included in Figure 3. For all models tested, there was no 
significant improvement in model fit when random effects for site were included. Testing for differences 
in fixed effect parameter estimates related to sampling procedure categorical variables showed a 
significant difference between the two destructive sampling categories for ponderosa pine (D2D vs. D1) 
for both parameters in the model (Table 8). Testing for differences between fixed effects for D1 and D2 
resulted in no significant differences for any of the species tested (Table 8). A linear regression of 
sapwood area versus basal area and the residuals from that regression are shown in Figure 4. A LOESS 
(locally weighted scatterplot smoothing) regression was performed on the residuals against basal area 
using the R “stats” package version 3.3.0 [47], to determine if a pattern existed within the residuals of 
the linear regression (Figure 4). 

 

Figure 4. Linear regressions of cross sectional sapwood area (m2) at breast height against 
basal area are shown in the top row for each species. Standardized residuals from the linear 
regressions are plotted against predicted sapwood area (m2) in the bottom row. LOESS 
regressions of the standardized residuals against predicted sapwood area are also shown in 
the bottom row.  
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Table 7. Summary of parameter estimates for whole tree leaf area prediction models by species. 

Primary 

Covariate 
Species Model b1 b2 b3 AIC n 

AIC 

Rank 

BA Douglas-fir 19 DHR(0.6823(0.0054)) 0.7194(0.0085) + ICI(0.0040(0.0002)) NA 118.9 14 1 

SA Douglas-fir 12 DHR(0.3059(0.0306)) 1.7298 (0.1087) NA 137.9 14 3 

BA Incense-cedar 19 BHCR(0.1703(0.0488)) 
0.8147(0.0466) + HDR (0.2590(0.1273)) + 

CI(0.7668 (0.2365)) 
NA 188.3 21 1 

SA Incense-cedar 21 0.2803(0.0288) 2790.0910(1155.5231) −0.9359 (0.7185) 206.2 21 6 

BA Jeffrey pine* 19 0.2397(0.1203) 0.9111(0.0806) – CI(0.4480 (0.1055)) NA 186.7 26 1 

SA Jeffrey pine* 12 0.2485(0.0213) – CI(0.1652 (0.0424)) 0.1166(0.1246) NA 192.5 26 3 

SA Ponderosa pine 12 DHR(0.0641 (0.0045)) 
0.3367(0.1232) –  

LCHLCR(0.4174(0.1247)) 
NA 142.1 21 1 

BA Ponderosa pine 19 0.0658(0.0151) – CI(0.0548 (0.0186)) 1.0178(0.0346) + ICI(0.0034 (0.0012)) NA 145.8 21 2 

BA Red fir* 19 0.1410(0.0307) 
0.8093(0.0383) +  

BHCR(0.1931 (0.0447)) 
NA 225.3 26 1 

SA Red fir* 26 
0.1949(0.0433) +  

DHR·BHCR(0.0544(0.0196)) 
NA NA 231.8 26 4 

PV Sugar pine 13 169.3656(5.7259) 0.7033(0.0084) LCR (1.3863 (0.0722)) 132.5 18 1 

BA Sugar pine 19 0.0832(0.0034) + ICP(0.0344(0.0008)) 0.9801(0.0095) NA 136.7 18 2 

SA Sugar pine 12 0.2165(0.0170) + CI(0.4969(0.1541)) LCR(0.5871 (0.1892)) NA 141.2 18 4 

SA White fir 12 LCR(0.3460(0.0122)) −ILCR(0.4986 (0.0495)) NA 192.6 21 1 

BA White fir 19 ILP(0.1158(0.0280)) 
0.8792(0.0494) +  

LCR(0.1885 (0.0639)) 
NA 193.8 21 2 

Species with an * were modeled by combining data with closely related species in order to create a larger dataset. JP was combined with PP and RF was combined with WF. 
Models were then fit using species as a fixed effect. Only the fixed effects for JP or WF are shown in the final prediction models. Standard errors of each parameter estimate 
(b1, b2, b3) are given in parenthesis next to the parameter estimate. Aikaike information criterion (AIC) from final model fits were used to rank each model across primary 
covariates. Only some of the tested models are shown. Number of trees used for modeling (n) are shown. 
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Table 8. Comparisons between fixed effect parameter estimates for D1 versus all other dataset categories (D2, D2C, and D2D). 

Species Fixed Effect Compared Difference from D1 Standard Error Degrees of Freedom t-Value p-Value 
Douglas-fir D2-b1 0.0558 0.0954 9 0.585 0.573 
Douglas-fir D2-b2 0.0066 0.0183 9 0.358 0.729 
Douglas-fir D2C-b1 0.0530 0.8383 5 0.063 0.952 
Douglas-fir D2C-b2 0.0410 0.0241 9 1.702 0.123 
Douglas-fir D2D-b1 −0.3012 0.1619 5 −1.860 0.122 
Douglas-fir D2D-b2 0.0063 0.0140 9 0.452 0.662 

Incense-cedar D2-b1 −0.0023 0.0160 15 −0.144 0.887 
Incense-cedar D2-b2 −0.0048 0.0190 16 −0.251 0.805 
Incense-cedar D2C-b1 −0.0020 0.0209 9 −0.095 0.926 
Incense-cedar D2C-b2 0.0013 0.0247 15 0.052 0.959 
Incense-cedar D2D-b1 −0.0034 0.0194 9 −0.178 0.863 
Incense-cedar D2D-b2 0.0077 0.0254 15 0.302 0.767 

Ponderosa pine D2-b1 0.0060 0.0068 12 0.894 0.389 
Ponderosa pine D2-b2 0.0068 0.0166 12 0.412 0.688 
Ponderosa pine D2C-b1 0.0133 0.0097 11 1.365 0.199 
Ponderosa pine D2C-b2 0.0218 0.0138 11 1.583 0.142 
Ponderosa pine D2D-b1 −0.0185 0.0055 11 −3.349 0.006 * 
Ponderosa pine D2D-b2 −0.0444 0.0160 11 −2.773 0.018 * 

Sugar pine D2-b1 0.0128 0.0113 9 1.132 0.287 
Sugar pine D2-b2 0.0135 0.0116 9 1.161 0.276 
Sugar pine D2C-b1 0.0051 0.0393 8 0.130 0.900 
Sugar pine D2C-b2 0.0015 0.0322 8 0.047 0.964 
Sugar pine D2D-b1 −0.0149 0.0131 8 −1.139 0.288 
Sugar pine D2D-b2 −0.0149 0.0125 8 −1.195 0.266 
White fir D2-b1 0.0385 0.0362 11 1.064 0.310 
White fir D2-b2 0.0147 0.0187 12 0.788 0.446 
White fir D2C-b1 0.1471 0.2464 15 0.597 0.560 

 

 



Forests 2015, 6 2647 
 

Table 8. Cont. 

Species Fixed Effect Compared Difference from D1 Standard Error Degrees of Freedom t-Value p-Value 
White fir D2C-b2 −0.0033 0.0262 16 −0.127 0.901 
White fir D2D-b1 −0.1594 0.1172 15 −1.361 0.194 
White fir D2D-b2 −0.0137 0.0214 16 −0.641 0.531 

* indicates that the difference between fixed effects for the given sampling categorical variable and the D1 categorical variable are significantly different from 0 at 
the alpha = 0.05 level. All tests performed with model 19 for species indicated. 
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4. Discussion 

The overall performance of model 19 with basal area as the primary covariate was impressive given 
that there is a weaker biological connection between basal area and leaf area as compared to sapwood 
cross-sectional area and leaf area of larger trees. This result does not refute the pipe model theory; 
instead, it demonstrates that alternate models can be more effective at predicting leaf area without the 
functional basis of the pipe model theory. These alternative model forms also avoid the need for 
variables, such as sapwood cross-sectional areas, that are both difficult and expensive to obtain. 
However, models with sapwood cross-sectional area also performed well (Table 7). Model 12 is the only 
model taken from existing literature [41] to have outperformed model 19 but the difference in model fits 
was only significant for ponderosa pine. The strong performance of model 19 across all species 
recommends it for whole tree leaf area prediction within the modeled Sierra Nevada conifers. 

The relationship between sapwood cross-sectional area and basal area of individual trees is nonlinear 
as shown by the pattern of the standardized residuals in Figure 4. However, this relationship could be 
modeled efficiently with nonlinear functions of basal area. Model 19 creates a sigmoid fit at very small 
basal areas and transitions to a power fit as diameter increases. The curvature of this model likely tracks 
the nonlinear relationship between sapwood area and basal area. A nonlinear relationship is consistent 
with the development of heartwood within tree stems over time. At small diameters, sapwood makes up 
all, or nearly all, of the inside bark basal area. However, as trees grow sapwood area as a proportion of 
inside bark basal area gradually declines as sapwood is converted into heartwood. This reduction in 
sapwood proportion with increasing diameters precludes a consistent linear relationship between 
sapwood area and basal area. It is possible that model 19 is tracking the relationship between functional 
sapwood area and basal area, which could explain how basal area performs better than sapwood area in 
predicting leaf area despite basal areas weaker biological connection to leaf area. It is also possible that 
sapwood area measurements were simply less accurate than basal area measurements and that inaccuracy 
introduced additional noise in the sapwood area leaf area relationship. 

Red fir and Jeffrey pine demonstrate apparently different patterns in their residuals from the other 
species. This difference in residual patterns is most easily attributed to the smaller range of tree sizes 
represented in the data for those two species. Across all species, however, very similar residual patterns 
are apparent within similar size ranges. For example, the average of the residuals is negative or zero at 
basal area values below 0.04 m2, positive around 0.15 m2, and negative again around 0.4 m2. Residuals 
from a linear regression should be evenly distributed around 0 across predicted values. The curvature of 
the LOESS regression demonstrates that the sapwood and basal area relationship is nonlinear, and 
demonstrates the similarity in the general residual pattern between species. The appearance of a potentially 
linear fit to the data displayed in the upper row of Figure 4 is attributable to the large range in basal area 
values that occur between sampled trees, thereby visually stretching the data points out far enough that, 
on cursory inspection, a linear fit appears to be suitable. A quick review of standardized residuals plotted 
against the fitted values is suggested to check for linearity [48], and in this case the residuals show 
departures from a linear relationship. 

The components of model 19 have somewhat intuitive interpretations where parameter b1 is a 
proportion of the functional form; parameter b2 is the power law rate parameter; and the exponential 
term (1 − e−X) provides a brake on the rate (power) of increase at small basal areas. Indicators of 
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competition experienced by the sampled trees, specifically LCR, BHCR, ICI, HDR and CI have 
significant influence on the b2 and to a lesser extent the b1 parameter for most of the species analyzed 
(see Table 4 for descriptions of covariates). The influence of these covariates on the b1 and b2 parameters 
vary from the original pipe model theory [20] which assumed a linear relationship between leaf area and 
sapwood area, and supports more recent research demonstrating that the leaf area—sapwood area 
relationship is not necessarily linear [49,50]. The influence of these covariates on the leaf  
area—sapwood area relationship is most directly interpreted in the models with sapwood area as the 
primary covariate. For most of the sapwood area models there were significant effects on parameter 
estimates from covariates that represent competition such as LCR, DHR and CI (Table 7). 

Improvement in the relationship between sapwood area and leaf area due to the addition of competition 
related covariates indicates the potential for competition to influence the sapwood area to leaf area ratio 
(Table 7). The improved model fit from the addition of competition related covariates could reflect the 
effect of shade on the evaporative stress on understory foliage and shaded foliage within codominant 
and intermediate trees. Evaporative stress has been shown to significantly influence the sapwood area to 
leaf area relationship [24,51,52], as does stand density [53,54]. To make this inference stronger, the 
analysis would have to be rerun with competition indexes developed from measurements of the trees 
surrounding the study trees. This study did not measure all trees around the selected study trees making 
this analysis impossible. Alternatively, segmenting the study trees by canopy class would have resulted 
in too few individuals in each class to develop meaningful models. 

The lack of significant site level random effects on any of the leaf area prediction model fits suggests 
that the underlying models are accounting for most of the variation due to growing environment and 
growth history. This is likely due to the covariates related to growing conditions of the study trees. For 
instance, the inclusion of height: diameter ratios may account for some stand density influence as this 
metric is affected by competition. This inference does not hold for Jeffrey pine or Red fir as those species 
only had one site sampled and therefore had no site level random effects. No relationship between species 
shade tolerance and the modeled leaf area relationships were detected. 

The lack of significant fixed effects for the sampling categories (D1 and D2) using model 19 with 
basal area as the primary covariate indicated that the leaf area data gathered by these procedures can be 
combined for the purposes of model fitting (Table 8). As both sampling procedures are designed to 
estimate leaf area and both procedures use weight of foliage as one of the predictors of total leaf area it 
was not surprising that there was no significant influence of sampling category on the model parameter 
estimates, however, this lack of difference was important in justifying the combination of leaf area data 
from both categories in the final model fits for whole tree leaf area. The significant differences in 
parameter estimates between the two destructive sampling procedures (D1 and D2D) in ponderosa pine 
shown in Table 8 are likely due to the fact that destructively sampled trees in D1 were larger on average 
than trees in the D2D subcategory. Overall the lack of significant differences in parameter estimates 
related to sampling category and the lack of significant random effects associated with site suggests that 
these models are accurately estimating the underlying relationship between whole tree leaf area and basal 
area for each species. 

The strong potential to predict leaf area of a portion of the crown is demonstrated by the strong 
coincidence of the data to the one to one line, a reference line indicating “perfect” predictive power for 
the given leaf area model relative to the measured data (Figures 1–3). Interestingly, the best-fit models 
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for leaf area of crown portion had parabolic sapwood volume (model 30 and 31) as the primary covariate, 
although this was not a significant covariate for whole tree leaf area. This suggests that sapwood area is 
a stronger predictive covariate for measurements below the live crown while parabolic sapwood volume, 
an estimate of total sapwood volume, appears to be a stronger predictor of leaf area above a point in the 
live crown. This may be related to the fact that sapwood volume below live crown is not directly related 
to total leaf area while sapwood volume in the live crown is related to the leaf area above it. It may be 
that sapwood volume is better able to account for changes in vapor pressure related to changing canopy 
position of foliage within the tree. Parameter b3 was most consistently affected by the addition of 
covariates (Table 6). Each species showed an improved model fit by the addition of covariates to this 
parameter while none of the other parameters showed as consistent a response. Parameter b3 in these 
models acts as a rate parameter on the relationship between parabolic sapwood volume and leaf area. 
This parameter is similar to the rate parameter in the whole tree models as it is influenced by LCR, DHR 
and other covariates related to competition. Parameter b1 is similar in effect to b1 from the whole tree 
models in that it represents a proportion of the functional form. As in the case of the whole tree models 
this parameter is also significantly influenced by competition related covariates. 

Predicting leaf area above a point in the live crown through non-destructive procedures is useful for 
research of leaf area allometries across a range of diameters as many large trees cannot be felled due to 
the importance of large trees as wildlife habitat, lost timber value, cost of hiring professional fellers, etc. 
It was due, in part, to these restrictions on cutting trees above a certain size that we explored  
non-destructive sampling procedures. Similar approaches have been used to estimate foliar mass for 
endangered trees that cannot be cut down for legal reasons [55]; however, our utilization of destructively 
sampled trees for calibration likely added to the strong performance of the final model. 

The models with the lowest generalized R2 were the branch leaf area prediction models. This was 
expected as every branch on sampled trees, including internode branches, was a potential sample branch. 
Internode branches are more likely to be in the shade of other branches, which likely alters the branch 
cross-sectional area to leaf area relationship as shading would reduce evaporation rates while leaf stomata 
are open, thereby reducing the size of “pipe” necessary to support a given amount of leaf area. There is 
also the potential for increased variation due to the inclusion of branches shaded by canopy competitors, 
or branches facing north versus south. Despite these sources of error, the modeling procedures produced 
reasonable model fits for each of the seven species. Given the high degree of variation in live crown 
length, branch sizes, site competition and site quality, it was surprising that this variation in branch leaf 
area estimates did not lead to greater variation in the leaf area prediction models for whole tree and 
crown portion. This is even more surprising given that the primary covariates—parabolic sapwood 
volume and basal area—are not directly linked to branch size or distribution. 
5. Conclusions 

Comparisons of different models and potential covariates indicated the superiority of a broadly 
applicable model to predict whole tree leaf area in seven diverse conifer species in the Sierra Nevada 
ecosystem using commonly measured tree basal area as the primary covariate. For most species, these 
models were shown to outperform models with sapwood cross-sectional area as the primary covariate. 
Our modeling approach showed that alternative sampling procedures resulted in similar model parameter 
estimates and therefore can be combined for modeling purposes. These alternative sampling approaches 
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include different foliage sampling techniques or climbing trees for a non-destructive approach. Our 
individual tree models can easily be applied to existing tree datasets to predict  
stand-level LAI in mixed-species stands as well as multi-aged stands. The methodologies and modeling 
framework used in this study can be used as a guide for future studies of leaf area in  
mixed-species stands with complex structures. 
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