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Abstract: Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to 
low optimal temperatures, are vulnerable to the warming effects of global climate change. 
The accurate prediction of these species’ distributions in response to climate change is 
critical for effective planning and management. The goal of this research is to predict climate 
change effects on the distribution of red spruce (Picea rubens Sarg.) in the Great Smoky 
Mountains National Park (GSMNP), eastern USA. Climate change is, however, conflated 
with other environmental factors, making its assessment a complex systems problem in 
which indirect effects are significant in causality. Predictions were made by linking a tree 
growth simulation model, red spruce growth model (ARIM.SIM), to a GIS spatial model, 
red spruce habitat model (ARIM.HAB). ARIM.SIM quantifies direct and indirect interactions 
between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB 
spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects 
higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red 
spruce based on growth predictions of ARIM.SIM under climate change and three air 
pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable 
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habitats shrink most when air pollution increases. Higher temperatures cause losses of most 
low-elevation habitats. Increased precipitation and air pollution produce acid rain, which 
causes loss of both low- and high-elevation habitats. The general prediction is that climate 
change will cause contraction of red spruce habitats at both lower and higher elevations in 
GSMNP, and the effects will be exacerbated by increased air pollution. These predictions 
provide valuable information for understanding potential impacts of global climate change 
on the spatiotemporal distribution of red spruce habitats in GSMNP. 

Keywords: climate change; physiological mechanisms; red spruce (Picea rubens Sarg.); 
habitat model (ARIM.HAB); simulation model (ARIM.SIM) 

 

1. Introduction 

With increasing evidence of global climate change during recent decades, changing distributions of 
important forest tree species have become of concern [1,2]. Long-term records indicate that earlier 
phenological development [3,4], range shifts [5,6] and shrinking habitats [7] are all in progress now. 

Red spruce (Picea rubens Sarg.) is a commercially important boreal species in the eastern United 
States and Canada. This species has sustained widespread growth decline and high mortality for a half 
century [8,9]. Alpine, subalpine and boreal trees are generally more susceptible to climate change than 
other species due to low genetic diversity and migration limitations [10,11]. Red-spruce in the Great 
Smoky Mountains National Park (GSMNP), its southern distribution limit, is threatened with losses  
of suitable habitat. Impacts on this and other species in this park have not to date been fully assessed. 
Responding to the need, this study makes a modeling-based assessment for red spruce by coupling a 
non-spatial growth simulation model (ARIM.SIM) to a spatial habitat model (ARIM.HAB). These 
models are described in Koo et al. [12–14]. 

Species distribution models (SDMs) have been used to map plant distributions and predict 
spatiotemporal variations and range shifts under climate change [15–17]. Correlative SDMs depend on 
direct correlations between environmental factors and the presence/absence of species. Mechanistic 
SDMs count on knowledge of biophysical processes [18–21], species’ fitness relationships with the  
environment [22–25] and estimates of many phenotypic parameters [21,26]. In both model types, 
ecosystem complexity has not been adequately taken into account. This limits predictive power, 
particularly at local scales, where relationships are fine-tuned. Ecosystems are complex, and this 
complexity is manifested more by indirect than direct effects [27]. For example, indirect factors 
influence habitat development [27] when interactions between substrate, precipitation and soil biota 
produce a nitrogen-enriched patch favoring certain species in a grassland ecosystem [28].  

Indirect effects contribute to both within- and across-scale complex ecosystem functioning [29]. 
Interactions across scales frequently explain nonlinearity, heterogeneity and emergent properties of 
ecological processes that cannot be predicted based on lumping and extrapolating data and simple up- and 
down-scaling of observations to a single scale [30]. Failing to explain interactions across scales results 
in misunderstanding of controlling factors, which can lead to ineffective or erroneous management 



Forests 2015, 6 1210 
 
decisions [31]. Hierarchical models, such as Bayesian statistical models, have been used to quantify 
interactions across scales [31–33], but still, only a few studies have quantified such interactions [34].  

ARIM.HAB, with ARIM.SIM its pixel basis, accounts for a full range of ecological processes defining 
within- and across-scale red spruce habitat suitability in GSMNP [12]. The dual approach of a non-spatial 
simulation model providing the basis for a GIS spatial model represents a true complex systems framework 
for better depicting and predicting spatiotemporal distributions of tree species across landscapes.  

2. Materials and Methods 

2.1. Study System 

GSMNP includes approximately 2070 km2 of forest ecosystems located in the southern Appalachian 
Mountains of the southeastern USA (Figure 1). The red spruce-Fraser fir forest complex follows an elevation 
gradient [35]. Red spruce dominates lower down (1370–1675 m) and Fraser fir (Abies fraseri (Pursh) Poir) 
higher up (>1890 m). Both species co-dominate at mid elevations (1675–1890 m). GSMNP has a temperate 
rainforest climate; its mean annual temperature and precipitation are 8.5 °C and 222 cm [36,37]. The cool 
climatic conditions cause short growing seasons, 100–150 days, and frequent cloud immersion [38]. Relief 
ranges from about 250 m in the valleys to 2025 m at the highest peak, Clingman’s Dome [39]. Soils are 
Inceptisols with abundant surface organic matter [36,40]. Diverse habitats support more than 1570 species 
of flowering plants and over 4000 nonflowering species [41].  

2.2. Environmental Data and Model Scenarios 

Regional temperature and precipitation from the years 1939 to 1999 were measured at the airport 
meteorological recording station in Knoxville, Tennessee. Air pollution (nitrogen oxides (NOx),  
sulfur oxides (SOx) and ozone (O3)) was estimated from data obtained from the U.S. Environmental 
Protection Agency [42]. Annual mean temperature was determined by averaging daily temperatures and 
total annual precipitation by summing daily precipitations for each year. Extreme winter cold 
temperatures were estimated by averaging the lowest daily temperatures from November to February. 
Air pollution data for 1998 were used for both 1998 and 1999 due to a lack of 1999 data.  

Future regional projections of temperature and precipitation for 2080 through 2099 were extrapolated 
from the 1980 to 1999 period based on the Intergovernmental Panel on Climate Change (IPCC) regional 
projections for the eastern USA [43]. IPCC predicted a 3.6 °C increase in annual mean temperature, a 
3.8 °C increase in winter temperature and a 7% increase of annual precipitation for the 2080–2099 period 
compared to values for 1980 through 1999. These projections were median values taken from a set of 
21 global models in the multi-model data for IPCC’s A1B scenario [43]. Climate change effects on red 
spruce distribution were also investigated in interactions with three different air pollution emission 
scenarios for 2080 through 2099: 10% increase, 0% change and 10% decrease.  
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Figure 1. Location of Great Smoky Mountains National Park (GSMNP) in the southeastern 
United States. Source: Koo et al. [12]. 

2.3. Red Spruce Habitat Model: ARIM.HAB 

A spatially-distributed red spruce habitat model (ARIM.HAB) was formulated for GSMNP [12]  
based on a previously developed non-spatial, dynamic, tree-growth simulation model, ARIM.SIM [13]. 
ARIM.HAB estimates habitat suitability as the percentage of the presence generated from ARIM.SIM 
growth predictions [12]. Assuming greater growth reflects higher probabilities of presence, ARIM.SIM 
simulates red spruce growth for each cell (pixel) in ARIM.HAB to predict spatial climate change impacts 
on habitat suitability. ARIM.HAB has been described in detail by Koo et al. [12].  

ARIM.SIM computes annual radial growth as mean standardized ring widths of trees. Red spruce growth 
differs at high- vs. low-elevation sites [37,44]; therefore, separate models were developed for elevations 
≥1700 m (ARIM.SIMhigh) and <1700 m (ARIM.SIMlow). The simulated period for ARIM.SIM runs was 
1940–1998. Annual growth in these models is mediated by many environmental factors [13,14]; therefore, 
interannual biomass changes generated by corresponding ARIM.SIMhigh and ARIM.SIMlow models are 
controlled by multiple environmental factors.  
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ARIM.SIMhigh simulates air pollution (AP) directly affecting biomass changes of red spruce at  
high elevations. Air pollution values were not collected in the field, but estimated from simulations with 
the air pollution submodel (Table 1). ARIM.SIMlow is a function of radiation (RA), water availability 
(WA) and air pollution, which directly influence biomass change at low elevations. The variables RA, 
WA and AP (Table 1) were obtained from simulations of their corresponding submodels applied to the 
following equations:  

ARIM.SIMhigh = − 0.68AP + 1.56 (1) 

ARIM.SIMlow = 5.34RA + 11.32WA − 0.27AP − 11.40 (2) 

Annual values of temperature, precipitation and air pollution were divided by the corresponding  
long-term mean of the values in order to estimate non-dimensional indices (NDI) [13]. The long-term 
averages were estimated using data from the 1940 to 2099 period. These non-dimensional index values 
were then applied to corresponding parameters in the submodels of ARIM.SIMhigh and ARIM.SIMlow to 
simulate red spruce growth for the periods of 1940 to 1998 and 2080 to 2099. 

As explained below, these equations give the annual radial growth of red spruce at high and low elevations 
expressed in terms of tree-ring index values (mean standardized ring widths, range 0–2). The tree-ring 
index value is defined by an annual tree-ring width divided by the expected growth predicted by a 
negative exponential growth function [45]. 

Table 1. Model equations used for the submodels: air pollution (a), radiation (b) and  
water (c). This table is from Koo et al. [12]. Detailed explanations for the equations are 
provided in Koo et al. [12].  

(a) Air pollution submodel. 
AP (air pollution) = (NOx + SOx) × (0.083 + 0.25CI + 0.17P ) + O3 × (0.17 + 0.33AC) 
P (precipitation) 
If elevation < 1700 m, then P = 0.33 precipitation (measured at the station) 
If elevation ≥ 1700 m, then P = 0.67 precipitation (measured at the station) 
CI (cloud immersion) 
If elevation < 1400 m, then CI = 0 
If 1400 ≤ elevation < 1800 m, then CI = 0.5 
If elevation ≥ 1800 m, then CI = 1 
AC (acidic rains and cloud) 
AC = (NOx + SOx) × (0.083 + 0.25CIAC + 0.17PAC) 
PAC (precipitation for acidic rains and cloud) 
If elevation < 1700 m, then PAC = 0.33 precipitation (measured at the station) 

If elevation ≥ 1700 m then PAC = 0.67 precipitation (measured at the station) 

CI (cloud immersion for acidic rains and cloud) 
If elevation < 1400 m, then CI AC = 0 
If 1400 ≤ elevation < 1800 m, then CI AC = 0.5 

If elevation ≥ 1800 m, then CIAC = 1 
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Table 1. Cont. 

(b) Radiation submodel. 
RA (radiation) = 0.167A + 0.167S + 0.167FM − 0.167 CI − 0.167P + 0.167T × (1.317 − T) 
A (aspect) 
If aspect = north (315°–45°), then A = 1; if aspect = east (45°–135°), then A = 2;  
if aspect = south (135°–225°), then A = 3; if aspect = west (225°–315°), then A = 2.5  
S (slope) 
If slope = 33.2°–62.3°, then S = 1; if slope = 26.6°–33.1°, then S = 2;  
if slope = 19.6°–26.5°, then S = 3; if slope = 11.7°–19.5°, then S = 4;  

if slope = 0°–11.6°, then S = 5 

FM (fir mortality) 
If elevation < 1700, then FM = 0.33 × mean winter cold temperature (measured at the station) 
If elevation ≥ 1700, then FM = 0.67 × mean winter cold temperature (measured at the station) 
CI (cloud immersion) 
If elevation <1,400, then CI = 0 
If 400 ≤ elevation < 1800, then CI = 0.5 
If elevation ≥ 1800, then CI = 1 
P (precipitation) 
If elevation < 1700 then P = 0.33 precipitation (measured at the station) 
If elevation ≥ 1700 then P = 0.67 precipitation (measured at the station) 

T (temperature) 
T = AT × (0.4 + 0.2AT + 0.2 ET + 0.2ST) 
AT is annual mean temperature measured at the station 
AT (aspect for temperature parameter) 
If aspect = north (315°–45°), then AT = 0.3; if aspect = east (45°–135°), then AT = 0.5;  
If aspect = south (135°–225°), then AT = 1; if aspect = west (225°–315°), then AT = 0.65  

ST (slope for temperature parameter) 

If slope = 33.2°–62.3°, then ST = 0.2; if slope = 26.6°–33.1°, then ST = 0.4;  
If slope = 19.6°–26.5°, then ST = 0.6;  
If slope = 11.7°–19.5°, then ST = 0.8; if slope = 0°–11.6°, then ST = 1 

ET (elevation for temperature parameter) 

If elevation = 1000 m, then ET = 1; if elevation = 1100 m, then ET = 0.9;  
if elevation = 1200 m, then ET = 0.8; if elevation = 1300 m, then ET = 0.7;  
if elevation = 1400 m, then ET = 0.6; if elevation = 1500 m, then ET = 0.5;  
if elevation = 1600 m, then ET = 0.4; if elevation = 1700 m, then ET = 0.3;  
if elevation = 1800 m, then ET = 0.2; if elevation > 1800, then ET = 0.1 
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Table 1. Cont. 

(c) Water submodel. 
WA (water) = 0.3P + 0.1DS + 0.1A + 0.1S + 0.1*(1.317-T)T + 0.1RA − 0.1T − 0.1FM 
P (precipitation) 
If elevation < 1700 m, then P = 0.22CP + 0.11PP 
If elevation ≥ 1700 m, then P = 0.44CP + 0.22PP 

where CP is current year precipitation and PP the previous year precipitation  
(measured at the station) 

DS (distance from stream) 
If distance from stream = 0 −149.3 m, then DS = 3;  
If distance from stream = 149.4−482.3 m, then DS = 2;  
if distance from stream = 482.4−980 m, then DS = 1 

A (aspect) 
If aspect = north (315°–45°), then A = 3;  
if aspect = east (45°–135°), then A = 2.5;  
if aspect = south (135°–225°), then A = 1;  
if aspect= west (225°–315°), then A = 2  

S (slope) 
If slope = 33.2°–62.3°, then S = 5; if slope = 26.6°–33.1°, then S = 4;  
if slope = 19.6°–26.5°, then S = 3; if slope = 11.7°–19.5°, then S = 2;  
if slope = 0°–11.6°, then S = 1 
T (temperature) 
T = AT × (0.4 + 0.2AT + 0.2 ET + 0.2ST) 
AT is annual mean temperature measured at the station 
AT (aspect for temperature parameter) 
If aspect = north (315°–45°), then AT = 0.3; if aspect = east (45°–135°), then AT = 0.5;  
if aspect = south (135°–225°), then AT = 1; if aspect= west (225°–315°), then AT = 0.65  
ST (slope for temperature parameter) 

RA (radiation) 

Values calculated in the radiation submodel were applied for the RA parameter here 

FM (Fir mortality) 
If elevation < 1700, then FM = 0.33 × mean winter cold temperature (measured at the station) 

If elevation ≥ 1700, then FM = 0.67 × mean winter cold temperature (measured at the station) 

For two-dimensional GIS projections, growth was simulated during a 59-year period (1940–1998) 
and averaged for each 30-m grid cell in ArcGIS 9.3 (Environmental Systems Research Institute (ESRI), 
Inc., Redlands, California, USA) using Equation (3) and the submodels in Table 1: 

ARIM.HABi;  
if elevation > 1800 m, then ARIM.HABi = ARIM.SIMhigh  
if elevation ≤ 1600 m, then ARIM.HABi = ARIM.SIMlow  
if 1600 m < elevation ≤ 1800 m, then: ARIM.HABi = (ARIM.SIMhigh(1800) + 
ARIM.SIMhigh(1700) + ARIM.SIMlow(1700))/3 

(3) 
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The ARIM.SIMhigh and ARIM.SIMlow models as used in this study represent elevations above and 
below 1700 m and reflect two distinct mechanisms controlling growth at high (1800 to 2025 m) vs. low 
(1400 to 1600 m) elevations. These mechanisms are inherent in submodel simulations fitted to published 
tree-ring data [37] representing two different elevation ranges: high (1800 to 2025 m) and low (1400 to 
1600 m). The intermediate range 1600–1800 m was determined by averaging the growth obtained by 
ARIM.SIMhigh and ARIM.SIMlow (Equation (3)). For spatial projection, ARIM.HAB computes the habitat 
suitability distribution of red spruce as growth indices that range 0–2, the scale generated in ARIM.SIM 
simulation runs. The 59 years of growth indices were rescaled to 0–1 to give probabilities of occurrence 
and then converted to 0–100 percentage scales for presentation. Finally, habitat suitability  
(0%–100% scale) was classified into five 20% classes, indexed by the upper number in each class  
(for example, 40%–60% suitability has the index value of 60). 

2.4. Prediction of Red Spruce Habitat Suitability under Climate Change 

ARIM.SIM simulated red spruce growth from 2080 to 2099 for each cell in ARIM.HAB under climate 
change and the three previously indicated air pollution scenarios: 10% increase, 0% change and 10% 
decrease [46]. Then, the 20-year simulated growth was averaged for spatial projection. Of the five  
20% classes, the index of 20 (0%–20%) was not used, because it applied to low elevation areas in 
GSMNP (<1400 m) where red spruce showed zero growth due to its absence and unfavorable habitat 
conditions for reoccupation (high temperature and water stress due to low precipitation and high 
evapotranspiration [9]). ARIM.SIM simulates growth above 1400 m based on previous studies [37] and 
observations [40]. The simulations showed that variations in suitable habitat were related to climate 
change in interaction with air pollution. The total area of suitable habitats was quantified by multiplying 
the number of pixels by 900 m2, the area of a pixel with 30-m spatial resolution. 

3. Results 

Figure 2a shows the current projection by ARIM.HAB of red spruce habitat suitability in GSMNP [12]. 
This serves as the nominal reference for results generated by ARIM.HAB simulations of air pollution 
perturbation scenarios and climate change. 

ARIM.HAB projected low habitat suitability (index of 40) at higher elevations (1800–2028 m) and also 
at lower elevations down to 1400 m. As stated above, very low index values of 20 signify unsuitable habitat 
conditions for red spruce due to zero growth of red spruce in areas <1400 m estimated from the absence of 
red spruce. ARIM.SIM predicted growth only for elevations ≥1400 m based on growth estimations. 
Medium suitability, with indices of 60 and 80, occurred at 1400–1600 m and on south-facing and gentle 
slopes at intermediate elevations (1600–1800 m). The highest suitability index of 100 was exhibited at 
intermediate elevations (1600–1800 m). The predicted range at the threshold value of the habitat suitability 
(34) was verified by an existing geospatial database and showed excellent consistency with the current 
distribution (Area Under the Curve (AUC) = 0.99, kappa = 0.87, True Skill Statistic (TSS) = 0.88). 

ARIM.HAB simulations (Figure 2b–d vs. 2a) predicted that increased temperature and precipitation 
with increased air pollution would cause degradation of habitat suitability at all elevation ranges in 
GSMNP (Figure 2b, Figure 3a,b). Increased air pollution with increased precipitation, causing acidic 
rains and clouds, will cause serious loss of suitable habitats. This is shown by more red and less green 
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areas in Figure 2b compared to Figure 2a. Figure 3b quantifies how much low suitability areas would 
increase and high suitability areas decrease. Simulated low suitability indices of 40 and 60 increased  
189% and 34%, respectively, while the high indices of 80 and 100 decreased 40% and 86%. Climate 
change without air pollution change alter habitat suitability less compared to increased pollution, but 
both cause habitat degradation (Figure 2c and Figure 3a,b). The simulated low suitability indices of 40 
and 60 increased 154% and 15%, respectively, mostly at low elevations (1400–1600 m) (Figure 2c). The 
high indices of 80 and 100 decreased 34% and 40%.  

 
(a) 

 
(b) 

Figure 2. Cont. 
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(c) 

 
(d) 

Figure 2. Changes in red spruce habitat suitability (zero to 100 scale) in the Great Smoky 
Mountains National Park under climate change and three air pollution changes: (a) current 
habitat suitability distribution (source: Koo et al. [12]); (b) habitat suitability under climate 
change with 10% increased air pollution; (c) habitat suitability under climate change with no 
increase of air pollution; and (d) habitat suitability under climate change with 10% decreased 
air pollution.  
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(a) 

 
(b) 

Figure 3. Changes in each habitat suitability of red spruce under climate change and three 
air pollution scenarios: (a) areal changes in habitat suitability; and (b) percent changes in 
habitat suitability. The habitat suitability of 20 showed the absence of red spruce in red 
spruce habitat model (ARIM.HAB) in Great Smoky Mountains National Park (GSMNP), 
because red spruce growth model (ARIM.SIM) predicted red spruce growth for the elevations 
above 1400 m. Abbreviations: CC = climate change, AP = air pollution. 
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Climate change with decreased air pollution reduced habitat degradation in most areas and increased 
habitat suitability at high elevations. This is shown by yellow colors at the high elevations (1800 to 2028 m) 
in Figure 2d. Figure 3a,b shows reduced increases of the suitability indices of 40 (92%) and  
60 (9%). The greatest increase in the index of 40 was found at low elevations (Figure 2d). The area of 
the index of 100 increased, but that of 80 did not (Figure 3a).  

Overall, the ARIM.HAB results indicate that climate change by itself will result in range contraction 
of red spruce in GSMNP, and its effects will be increased by interaction with air pollution, causing 
habitats to shrink in both directions: upslope from low to high elevations and downslope from high to 
low elevations. 

4. Discussion and Conclusions 

Three issues of complex systems modeling at landscape scales are: (1) multifactorial interrelationships; 
(2) within- and across-scale interactions; and (3) mediation of both of these by indirect effects. In this 
and our other studies of red spruce in GSMNP [12–14,46], GIS treatment of many within- and  
across-scale interactions in ARIM.HAB, through ARIM.SIM operating at the pixel level, has served to 
clarify the many mechanisms involved in translating global-scale climate change effects into local-scale 
habitat suitability. ARIM.HAB consists of spatially-distributed GIS cells implemented by a non-spatial 
simulation model, ARIM.SIM. The latter incorporates multiple biotic and abiotic factors (Figure 4) in 
its treatment of red spruce growth in GSMNP. Its simulations provide insights into the multiple 
mechanisms and indirect effects involved in defining habitat suitability across elevation zones.  

For example, in the air pollution submodel (Table 1a), effects are mediated by several indirect  
factors acting together: reduced air pollution coupled with increased stress from elevated temperatures 
accompanying lowered precipitation cause habitat suitability to rise to medium levels from low values 
at lower elevations. Air pollution and precipitation are general variables expressed at large (national  
and regional) scales, but at local scales, they must be formulated as functions of specific local parameters, 
such as (in Table 1a and Figure 4) elevation.  

Although much prior research has focused on interactions within multiple independent  
scales [47–50]—local, regional, continental, etc.—a need exists for studies that incorporate scale 
interdependency. This has not yet been well achieved in previous studies [51–55]. Across-scale interactions 
may explain features of ecological patterns and processes, such as non-linearity, heterogeneity, scale 
dependency and emergent properties [30,51,55,56]. Failure to elaborate across-scale interactions limits 
the ability to account for local environmental issues based on regional and global studies [52,53,57,58]. 
Therefore, understanding of within- and across-scale relationships is necessary to predict global climate 
change effects on habitat suitability of local species [30,53,55,58].  
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Figure 4. Overview of variables and how they interact, directly and indirectly, within and 
across scales, in the eight submodels that make up red spruce growth model (ARIM.SIM) 
(Source: Koo et al. [13]). 

ARIM.HAB, with its pixel basis in the growth simulation model ARIM.SIM, takes account of 
multiple indirect interactions expressed within- and across-scales by complicated habitat conditions.  
For example, at low elevations, radiation in ARIM.SIMlow (Equation (2)) was indirectly estimated from 
the output of a quite complex radiation submodel (Table 1b, Figure 4). The radiation variable represents 
insolation absorbed by red spruce after being acted upon by many intermediary variables (Table 1b, 
Figure 4)—topographic, climatic, meteorological and biotic. These factors, expressed over multiple 
indirect pathways, exert influence on actual radiation conditions in the field. Taking them into account 
enables more refined and accurate description and understanding of the contributing habitat conditions 
than even empirically measuring insolation directly in the field, without any consideration of its complex 
array of causes [13].  

Multiple indirect interactions modeled at local to continental scales in ARIM.HAB reflect both 
within- and across-scale relationships. As examples, at local scales, interspecific interactions (biotic 
variables) between red spruce and Fraser fir may be the most important determinants of growth and 
distribution (Table 1b). At regional scales, where Fraser fir may not always co-dominate with red spruce, 
significant variables in growth and distribution are elevation and cloud immersion (topographic and 
meteorological variables) (Table 1a). At the continental scale, biotic and topographic/climatic variables  
still operate, but the more important determinants of growth and range over longer time scales are 
precipitation and air pollution (climatic and anthropogenic variables) (Table 1a). The latter also operate and 
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provide ecological context at lesser scales, but they are overridden in the shorter time frames of these by the 
more important topographic/meteorological (regional) and biotic (local) variables. Between scales, clouds, 
air pollution and acidic rain, which are climatic/anthropogenic factors expressed at continental scales, interact 
with elevation and precipitation, which are topographic/meteorological variables expressed at regional scales. 
These and many other within- and across-scale relationships pose challenges for modeling and also for 
understanding the full range of influences that operate in determining the growth and distribution of any 
species in interactions with others and also a multitude of abiotic ecological factors.  

In this and our other studies of red spruce in GSMNP [12–14,46], GIS treatment of many within- and 
across-scale interactions in ARIM.HAB, through non-spatial ARIM.SIM simulations at the pixel level, 
has clarified many mechanisms involved in translating global-scale climate change effects into local-scale 
habitat suitability. For example, consideration of air pollution shows how one environmental factor can 
cut across many others. Key elements in increased acid rain production at higher elevations are the following: 
(1) increased precipitation × air pollution, regional factors [38]; (2) increased precipitation and air pollution, 
regional factors, × elevation, a local factor [57]; (3) interaction between increased air pollution,  
regional factor, × elevation, a local factor, causing more acidic clouds [59–61]; and (4) interaction 
between acidic rain × clouds × ozone at the local scale [62] (Table 1). The first and fourth interactions 
are within-scale, and the second and third are expressed across scales.  

Mechanisms are more complicated at low elevations, because there are more factors, and they are  
less decisive in their effects. These include interactions between: (1) temperature × precipitation, which 
are regional climatic factors, × elevation × slope and aspect, local topographic factors [63]; (2) regional 
climatic factors and local topographic factors × Fraser fir mortality, a local biotic factor [64,65]  
(Table 1b,c); and (3) increased winter temperature × the balsam woolly adelgid insect pest, the first a 
regional climatic factor and the second a local biotic factor in Fraser fir mortality [66] (Table 1b). With 
many variations on their direct and indirect expression, these factors operate within, and their interaction 
sets both within and across, spatiotemporal scales.  

The ability of ARIM.HAB to account for indirect effects allows climate change on a global scale to 
be translated into spatial and temporal changes in red spruce habitat suitability at the regional and local 
scales of GSMNP. The projections of ARIM.HAB in Figure 2 show spatial differences in global climate 
change effects in relation to topographic factors and air pollution levels. Especially at high elevations, 
red spruce ecosystems are very vulnerable to air pollution × climate change. Reduced air pollution leads 
to increased habitat suitability at all elevations, shown in Figure 2d as increases in dark green areas  
(high suitability) and decreases in red areas (low suitability). At the highest elevations (1800 to 2028 m), 
no red areas remain. However, Figure 2d shows that many areas are still red at low elevations, as they 
are also in Figure 2b under increased air pollution. This indicates that low elevation red spruce habitat 
suitability is less impacted by air pollution change than by climate change. ARIM.HAB clearly predicts 
that climate change will degrade habitat suitability of red spruce in GSMNP (Figure 2b–d, Figure 3) and 
could result in range reduction. However, its specific effects will vary with air pollution. Climate change 
with increased air pollution will cause red spruce to lose more high suitability habitats (indices of 80  
and 100; Figure 2b, Figure 3). The most suitable habitats (index of 100) can be expected to expand at 
higher elevations with decreased air pollution, but shrink at lower elevations (Figure 2d and Figure 3). 
These highly nuanced relationships are manifestations of a complex assortment of factors inherent in the 
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concepts of both “global change” and “air pollution”, and ARIM.HAB and ARIM.SIM both make it 
clear that it is the indirect relationships that are the most telling in the final determination of causalities. 

Other factors also figure into the habitat suitability equation. These include dispersal limitation [67,68], 
interactions with coexisting species and the ability of plants to adapt and acclimate [1]. Theoretical and field 
studies have supported dispersal-limited distribution patterns of plant populations [69,70]. Numerous 
population genetics studies have revealed genetic differentiation along environmental gradients and 
concluded that extant populations are adapted to the climatic conditions of their present habitats [1,71,72]. 
In particular, tree species with various dispersal mechanisms might contain adequate genetic diversity 
through high gene flow among populations to respond to changed climatic conditions [1]. However, 
boreal species, such as red spruce, geographically isolated from other populations, may have low genetic 
diversity and, thus, lower acclimation and adaptation potentials to respond to climate warming [9,10]. 
High mortality and growth decline of red spruce in GSMNP strongly support the conclusion that this 
species at its range limits cannot fully adapt and tolerate environmental stresses related to air pollution 
and climatic change. In spite of the limitations, predictions from ARIM.HAB represent a step forward 
in providing information to help understand the complexities involved in the expression of climate 
change effects on the spatiotemporal distribution of habitats and populations of red spruce in GSMNP. 
Furthermore, the complex systems modeling principles and methods embodied in ARIM.SIM and 
ARIM.HAB carry over to interests in other species and geographic areas.  
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