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Abstract: Above-ground biomass (AGB) is affected by numerous factors, including topography,
climate, land use, or tree/forest attributes. Investigating the distribution and driving factors of
AGB within the managed forests in Nepal is crucial for developing effective strategies for climate
change mitigation, and sustainable forest management and conservation. A total of 110 field plots
(circular 0.02 ha plots with a 9 m radius), and airborne laser scanning (ALS)-light detection and
ranging (LiDAR) data were collected in 2021. The random forest (RF) model was employed to predict
the AGB at a 30 m × 30 m resolution based on 32 LiDAR metrics derived from ALS returns. The
study assessed the relationships between the AGB distribution and nine independent variables using
statistical techniques like the random forest model and partial dependence plots. Results showed
that the mean value of the estimated AGB was 120 tons/ha, ranging from 0 to 446.42 tons/ha. AGB
showed higher values in the northeast and southeast regions, gradually decreasing towards the
northwest. Land use land cover, mean annual temperature, and mean annual precipitation were
identified as the primary factors influencing the variability in AGB distribution, accounting for 64%
of the variability. Elevation, slope, and distance from rivers were positively correlated with AGB,
while proximity to roads had a negative correlation. The increase in precipitation and temperature
contributed to the initial rise in AGB, but beyond a certain lag, these variables led to a decline in
AGB. This study showed the efficiency of the random forest model and partial dependence plots in
examining the relationship between the AGB and its driving factors within managed forests. The
study highlights the importance of understanding the AGB driving factors and utilizing LiDAR data
for informed decisions regarding the region’s sustainable forest management and climate change
mitigation efforts.

Keywords: LiDAR; forest biomass; pattern; random forest; mean annual temperature; national forest;
carbon; Nepal

1. Introduction

Forests play a crucial role in absorbing atmospheric carbon dioxide, acting as a reser-
voir that helps counterbalance human-caused greenhouse gas emissions to mitigate climate
change impacts [1–3]. Carbon storage in forests represents the largest portion, account-
ing for 82.5% of the total carbon stored in terrestrial vegetation. This significant carbon
reservoir plays a vital role in acting as the primary component of the vegetation carbon
sink [4,5]. Tropical forests store about 55% of the total carbon in forests and contribute to
70% of the global forest carbon sink [3,6]. Deforestation and forest degradation can lead
to carbon emissions entering the atmosphere, affecting global climate and environmental
change [7–10]. Despite the critical role of forests in mitigating climate change through
carbon sequestration, there is a significant challenge in accurately estimating the forest
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biomass and understanding the factors influencing its dynamics. The current concerns
about global change and the functioning of ecosystems require accurate forest biomass
estimates and an examination of its dynamics [11].

In terrestrial forest ecosystems, the above-ground biomass (AGB) of trees serves as
the most crucial and prominent carbon reserve [12,13]. Though field measurements offer
precise data on AGB estimation, the sampling process can be constrained by challenging
terrain or limited resources. In recent years, remote sensing (RS) technology has emerged as
the most preferred method, enabling researchers to obtain a broad-scale, real-time overview
of vegetation conditions. This advancement has provided a valuable tool for studying
and monitoring vegetation on a large scale [14,15]. Integrating remote sensing data with
forest inventory data has evolved into a potent technique for accurately estimating AGB in
forest stands [16,17]. Based on remote sensors’ information and allometric equations, the
predicted AGB has been calibrated and validated with ground truth to develop biomass
estimation models [18]. Remote sensing data, such as light detection and ranging (LiDAR)
data, proves advantageous in assessing forest characteristics like tree height, which directly
correlates with forest biomass [17,19]. Over the past few years, airborne laser scanning
(ALS), alternatively referred to as light detection and ranging (LiDAR), has emerged as
the prevailing technology for acquiring precise topographic information, and it has been
extensively applied in vegetation mapping and forest inventory, respectively [17,20,21].
ALS data captures the horizontal and vertical distribution of the forest canopies and does
not saturate the spectral response of dense canopies, in contrast to multispectral imagery
or aerial photography [22]. This advancement of RS technology, integrated with intensive
site-based inventory methods, has also played a crucial role in monitoring and managing
forests, particularly in initiatives like REDD+ (reducing emissions from deforestation and
forest degradation) [23].

In tropical and subtropical forests, carbon stocks are declining at a rate of 1–2 bil-
lion tons per year [24] and are primarily affected by different drivers, such as the forest
management regime and natural disturbance [25–28], the species composition of forests
and forest type [29], and stand age structure [30,31]. The accumulation of AGB and its
distribution in forested ecosystems are also significantly influenced by climate [32,33], as
well as soil characteristics and topography [34,35]. Climatic data plays a significant role
in understanding how temperature and precipitation influence tree growth [36], resulting
in variation in AGB accumulation [37]. Moreover, the variation in AGB of forest stands is
triggered by changes in land use and land cover because of human-induced activities [38].
Variations in soil properties and nutrient availability to trees also offer valuable insights into
AGB dynamics [39]. AGB of trees is also influenced by variations in water availability, tree
cover [40], and altitude [41–43]. In a broader context, the ALS-generated AGB maps can be
combined with various geospatial data, including climate data, soil attributes, vegetation
types, and land use patterns, to investigate the relationships between these factors and the
AGB distribution. In the present research, we used the random forest (RF) model to analyze
and describe the spatial distribution of AGB in managed forests in Nepal. The RF model
is a machine learning algorithm capable of handling complex datasets and identifying
important predictors of AGB distribution [44].

The forest of Nepal is categorized based on its own protected compasses, “private
forest” and “national forest”, with the latter further classified into five types: government-
managed forest, community forest, leasehold forest, religious forest, and protection forest.
Managed forests, such as community, leasehold, and religious forests, are crucial in pro-
moting sustainable resource utilization and supporting local livelihoods. Protected forests
contribute significantly to biodiversity conservation and are crucial ecological habitats [45].
Nepal covers about 23.39% of its land area as protected areas, aiming to conserve biodiver-
sity and maintain terrestrial carbon stocks. Forests, which cover approximately 45.3% of
Nepal’s total land area [45], serve a significant amount of AGB and store about 1055 million
tons of atmospheric carbon [45]. Nepal has over 22,000 community forest groups (CFs), rep-
resenting 3 million households nationwide. These groups manage over 2.4 million hectares
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of forests, equivalent to about one-third of Nepal’s forest cover (https://mofe.gov.np/,
accessed on 9 September 2022). These forests play a crucial role in sequestering carbon and
mitigating potential greenhouse gas emissions in the region through their biomass.

While ALS has been increasingly used for estimating and mapping AGB in Nepal [46–48]
to support the REDD+ implementation, there is limited information about the spatial
distribution of AGB across different forest types and management regimes. The underlying
factors that influence AGB, particularly in managed forests, are not well understood. LiDAR
technology has the capability to capture detailed vegetation structure and topography at
high resolutions [49] to provide reliable estimates of AGB and forest carbon stock at the
landscape level [50–52]. Combined with ancillary data sources, LiDAR can offer valuable
insights into the spatial variation of AGB estimates and understand the factors that control
it [53]. Therefore, the study aimed to estimate aboveground biomass (AGB) and map its
spatial pattern in the managed forest of Nepal, specifically focusing on the Sagarnath Forest
Development Project. The study also sought to investigate the influence of climatic and
topographic variables on AGB spatial distribution and identify the main driving factors.
The study focuses on the following questions: (1) What are the distribution patterns of
forest AGB within the study area? (2) What are the determinants of forest AGB in the study
area? How do topography, climate, and soil factors influence AGB levels in the forests?
Understanding the determinants of forest AGB in study sites is crucial for improving forest
carbon management practices and accurately estimating carbon storage. By establishing
relationships between AGB and environmental factors, such as topography, climate, and
soil characteristics, the study enhances our understanding of how these factors impact AGB
dynamics in forest ecosystems.

2. Materials and Methods
2.1. Study Area

The study area is situated within the Sagarnath Forest Development Project (SFDP)
in the Central Terai region of Nepal (Figure 1), and it is located between 85◦67′49′′ east
longitude and 26◦99′74′′ north latitude [54]. The government of Nepal manages the SFDP,
established in 1985 on previously owned forest land. It covers a total area of 13,512 ha
across two districts, namely Sarlahi and Mahottarai districts, in the lowland (Terai region) of
Nepal. The total area consists of various land categories, including plantations (11,796 ha),
natural forests (395 ha), protected forests (707 ha), and water bodies (615 ha). A large
amount of Eucalyptus (Eucalyptus camaldulensis) and Teak (Tectona grandis) have been
planted in the project area since its inception. The native forest type is characterized
by mixed hardwood tropical forests, with Sal (Shorea robusta) being the dominant species,
accounting for approximately 90% of the forest composition. The altitude in the Terai region
ranges from 60 to 330 m above mean sea level. The climate in this region is characterized
by hot summers, with temperatures ranging from 35 ◦C to 45 ◦C in April and May, and dry
winters, with temperatures ranging from 10 ◦C to 15 ◦C in January. The region receives
annual precipitation ranging from 1130 mm to 2680 mm [55]. The region consists of a
piedmont plain formed by recent and post-Pleistocene alluvial deposits [45].

https://mofe.gov.np/
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2.2. Field Measurements and AGB Estimates

Field data were collected from 110 circular inventory plots randomly distributed in
the forest, each covering an area of 0.02 ha with a radius of 9 m. Tree attributes, including
diameter at breast height (DBH), and tree height (H), were measured for every individual
tree in each plot. Tree height was recorded using a Vertex III hypsometer, while diameters
were measured using diameter tapes. The data collection was conducted in January 2021,
and the GPS coordinates of the plot centers were also recorded. Out of the initial sampling
design, 7 plots were excluded because they were located either on roads or inside riverbeds,
and additionally, 13 plots visited in the field had no trees with a diameter of at least 5 cm
for considering measurements. In the remaining sample plots, a total of 1138 trees with a
DBH greater than or equal to 5 cm were measured. The total above-ground tree biomass
(DBH > 5 cm) was obtained by summing up the stem biomass, branch biomass, and foliage
biomass. Stem biomass was estimated by multiplying stem volume with the wood density
of the species. The stem volume is determined using the equation developed by Sharma
and Pukkala [56] for Nepalese tree species, which was used to compute stem volume. The
stem volume equation for calculating the volume of trees is:

ln(v) = a + b × ln(DBH) + c × ln(H) (1)

Here,

“v” is the volume per hectare (m3/ha);
“ln” is the natural logarithm with base 2.71828;
“DBH” is the diameter of trees at breast height (cm);
“H” is the height of trees (m).
Additionally, the coefficients a, b, and c are species-dependent.

The species wood density values for Nepalese tree species were obtained from Jack-
son [57]. Species-specific branch-to-stem biomass and foliage-to-stem biomass ratios were
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utilized to calculate branch and foliage biomasses from stem biomass [56]. Based on the
corresponding plot area, the total AGB for each plot was then scaled to a per hectare
(ton/ha) (Table 1).

Table 1. Summary of plot-level inventory plots.

Attributes Mean ± Standard Deviation Range (Minimum to Maximum)

Density (trees/ha) 462 ± 343 39–2122
DBH (cm) 24 ± 14 6–101
Height (m) 17 ± 7 2–28
Basal area (m2) 12 ± 10 0.2–47
Volume (m3/ha) 108 ± 112 0.6–519
AGB (ton/ha) 131 ± 137 1–640

2.3. LiDAR Data

The ALS LiDAR data were acquired by Geo3dModeling, a local vendor, using a
helicopter in January 2021. The recorded LiDAR data were provided by Nepal Ban Nigam
Limited, a governmental organization in Nepal. The LiDAR provided has a point density
of at least 15 points per square meter. Using the LiDAR package version 4.0.3 in R 4.3.0
software, the LiDAR data were processed [58]. LiDAR data were normalized with a digital
terrain model (DTM) of 1 m2 resolution to remove ground elevation from the height of
returns. Subsequently, the point cloud data were clipped to the size of the field inventory
sampling plots, ensuring that only relevant portions of the LiDAR data were retained for
further analysis. Canopy density, which represents the ratio of vegetation to ground as
observed from above, and canopy height, which measures the vertical distance between the
top of the canopy and the ground, were calculated using the normalized point cloud and
the clipped plots. These canopy height and canopy density metrics, along with the field
inventory data from the plots, were combined for modeling purposes. The LiDAR metrics
were computed at a resolution of 1 m2 and used as the predictor variables [54] (Table 2).

Table 2. Predictor variables extracted from ALS-LiDAR metrics (height, density, and canopy) for
modeling the AGB.

ALS- LiDAR Metrics Predictor Variables Characteristics

Height metrics Percentiles height (zq5 to zq95)

Percentiles of the ALS height distributions, where the
“z” typically stands for height and “q” stands for
quantile or percentile (including 5th, 10th, 15th, 20th,
25th, 30th, 35th, 40th, 45th, 50th, 55th, 60th, 65th, 70th,
75th, 80th, 85th, 90th, 95th) for all points above 2 m

Maximum heights (zmax) Maximum heights above 2 m for all points

Mean heights (zmean) Mean heights above 2 m for all points

Coefficient of variation of height (zcv) Coefficient of variation of heights for all points above
2 m

Standard deviation (zsd) Standard deviation of heights for all points above 2 m

Skewness (zskew) Skewness of heights for all points above 2 m

Kurtosis (zkurt) Kurtosis of the heights for all points above 2 m

Entropy (zentropy) Entropy of the height distribution
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Table 2. Cont.

ALS- LiDAR Metrics Predictor Variables Characteristics

Density metrics pzabove2 Percentages of first returns above 2 m

pzabovezmean Percentage of returns greater than the mean
returns height

zpcum1 Cumulative percentage of first returns in the lower 10%
of maximum elevation

zpcum2 Cumulative percentage of first returns in the lower 20%
of maximum elevation

zpcum3 Cumulative percentage of first returns in the lower 30%
of maximum elevation

Relative shape of the canopy Canopy relief ratio (CRR)
Calculated as (height mean-height min)/(height
max-height min), which represents the relative shape of
the canopy

2.4. Above-Ground Biomass Mapping

Statistical techniques, such as random forest (RF) were used to establish a correlation
between LiDAR point cloud data metrics and the above-ground biomass (AGB). The
LiDAR metrics were considered independent variables, while AGB (ton/ha), which was
determined at the plot level using field data, was the dependent variable.

RF is a powerful non-parametric machine learning algorithm that can be applied for
both regression and classification [59]. The RF regression yields an arbitrary number of
simple trees, which are a subset of independent variables–point cloud-derived metrics
when estimating the dependent variable (AGB). The RF regression models are powerful for
capturing complex, non-linear relationships between predictor variables (such as LiDAR
metrics) and response variables (such as forest AGB). Unlike traditional linear regression
models, the assumption of normality in the data is not necessary for RF regression [44].

We fitted the RF model using the ModelMap package in R [60]. This package utilizes
the RF (random forest) function, a machine learning tool, to accurately capture the intricate
and non-linear connections between LiDAR metrics and the AGB. This approach also
allows for the determination of variable importance. RF utilizes bootstrap aggregation to
create models that exhibit enhanced predictive abilities for estimation [61]. The estimation
of AGB using the RF algorithm was carried out by considering two parameters: Mtry, which
represents the number of predictor variables, and Ntree, which represents the number of
decision trees. The function automatically optimizes Mtry parameter, denoting the number
of randomly chosen variables at each node. For this specific case, the Ntree parameter was
set to 500, indicating the quantity of trees grown in the model. The RF method was applied
to estimate AGB using 32 point-derived metrics extracted from ALS LiDAR.

To assess the accuracy of AGB estimations, we split the inventory plots into two sets:
a training dataset and a validation dataset. The data were randomly split at a ratio of 70:30,
employing the createDataPartion function of the “caret” package [62]. The RF method
was used in the R studio for modeling and accuracy evaluation [63]. The coefficient of
determination (R2), root mean square error (RMSE), and MAE were applied to compare the
performance of the RF algorithm [64,65]. The equation is as follows:

R2 = 1 − ∑
(
Yobs,i − Ŷmod,i

)2

∑
(
Yobs,i − Yobs

)2 (2)

RMSE =

√
1
n∑n

i=1

(
Yobs,i − Ŷmod,i

)2 (3)

MAE =
1
N ∑N

i=1

∣∣Yobs,i − Ŷmod,i
∣∣ (4)
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Here,

R2 denotes the coefficient of determination;
Yobs,i denotes the measured value;
Ŷmod,i denotes the model predicted value;
Yobs denotes the average value;
n denotes the total number of samples;
RMSE denotes the root mean square error;
and MAE denotes the mean absolute error.

The “raster” package [66] in R was used to predict the spatial AGB in the study site.
The “predict ()” function was employed, taking the raster dataset and the final model as
inputs. The resulting AGB raster was utilized for the subsequent analysis process. Spatial
grids of ALS metrics were generated for the study site at a resolution of 30 × 30 m. Using
R 4.3.0 software, an AGB map was created with a spatial resolution of 30 × 30 m, utilizing
LiDAR-derived variables obtained from ALS returns.

2.5. Climatic and Topographic Data

To assess the influence of environmental factors on AGB variability, climatic, topo-
graphic, soil, and land use land cover data were randomly collected for the 600 samples
within the study area. Explanatory variables, including elevation, slope, aspect, land use
land cover, and climate data such as mean annual temperature (MAT), and mean annual
precipitation (MAP), were derived from geospatial datasets. Airborne LiDAR data were
utilized to obtain high-resolution terrain information for the Earth’s surface with a resolu-
tion of 10 m (Table 3). For this process, a digital elevation model (DEM) was developed
to obtain a digital representation of ground surface topography or terrain. Terrain vari-
ables were extracted from LiDAR ground points with a resolution of 10 m, as indicated
in Table 3. The climatic variables, namely MAT (deg C) and MAP (mm) were obtained
for the study sites from the Department of Hydrology and Meteorology (DHM) of Nepal
(https://www.dhm.gov.np/, accessed on 5 September 2023), respectively. We created a
10 m resolution grid of mean annual precipitation (MAP) and mean annual temperature
(MAT) data, monthly rainfall records, and temperature records of 11 ground stations in the
study sites from 1981 to 2019 and interpolated using the ArcGIS 10.1 package. The land
use land cover (LULC) types for the study area, with a resolution of 10 m, were acquired
from ArcGIS online (https://livingatlas.arcgis.com/landcover/, accessed on 5 September,
2023). The soil type was extracted from the ICIMOD (International Centre for Integrated
Mountain Development) in Nepal (https://rds.icimod.org/, accessed on 5 September 2023).
Finally, both the AGB map and the explanatory variables were prepared into a 30 m × 30 m
grid cell.

Table 3. Description of explanatory variables related to environmental factors.

Variable Type Description Spatial Resolution Data Source

Climatic variables Mean annual temperature (deg C) from
1981 to 2021 10 m × 10 m

DHM
(http://www.dhm.gov.np/,
accessed on 5 September 2023)

Mean annual precipitation (mm)
from 1981 to 2021 10 m × 10 m

Topographic and soil variables Elevation (m a.s.l.) based on DEM 10 m × 10 m DEM-LiDAR

Slope (deg) based on DEM 10 m × 10 m DEM-LiDAR

Aspect (deg) based on DEM 10 m × 10 m DEM-LiDAR

https://www.dhm.gov.np/
https://livingatlas.arcgis.com/landcover/
https://rds.icimod.org/
http://www.dhm.gov.np/
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Table 3. Cont.

Variable Type Description Spatial Resolution Data Source

Soil type 10 m × 10 m

ICIMOD (https:
//rds.icimod.org/home/
datadetail?metadataid=1889,
accessed on 5 September 2023)

Road distance 10 m × 10 m

ICIMOD (https:
//rds.icimod.org/home/
datadetail?metadataid=1889,
accessed on 5 September 2023)

River distance 10 m × 10 m

ICIMOD (https:
//rds.icimod.org/home/
datadetail?metadataid=1889,
accessed on 5 September 2023)

Land use land cover Sentinel-2: Land Use/Land Cover 2021 10 m × 10 m

ArcGIS online
(https://livingatlas.arcgis.
com/landcover/, accessed on
5 September 2023)

2.6. Statistical Model and Analysis

We used AGB as the dependent variable, while climatic, topographic, and soil vari-
ables were treated as independent variables for the statistical modeling. We employed the
RF model to examine the relationship between AGB and the explanatory variables. We
employed the random forest model (RF) in the R 4.3.0 software. The RF model, which
utilizes machine learning algorithms based on decision trees, was utilized to assess the
impact of various anthropogenic and environmental factors on AGB variability in man-
aged forests [67]. The RF model is suitable for analyzing large datasets with numerous
variables, accommodating both continuous and categorical variables, and demonstrating
robustness against the multicollinearity problem [18]. We calculated the relative impor-
tance of potential predictor variables on AGB, calculating variable importance values using
the RF algorithm [68,69]. The higher the percentage increase in mean square error (%In-
cMSE) and increase in nodePurity (IncNodePurity), the stronger the importance of these
predictor variables.

In addition, the relative importance of variables was estimated using the mean decrease
accuracy (MDA) metric used in the RF model. The MDA metric calculates the change in
model accuracy on a test set by randomly shuffling the values of a feature, where a greater
decrease in accuracy indicates a higher feature importance. We used the generated partial
dependence plots to visualize the marginal effects of predictor variables on the response
variable within the model. The partial plot function under the :randomForest” package
version 4.7.1.1 in the R 4.3.0 software was used, following the methodology proposed
by [70] Friedman (2001). Partial dependence plots are commonly employed to examine the
linearity, non-linearity, or other intricate relationships between predictors and response
variables [71].

These plots aid our analysis to assess the relationship between individual predictors
and the response variable. To calculate the partial dependence function, we utilized
the “pdp” R package version 0.8.1. The utilization of the partial dependence analysis
results contributes to ascertaining the impact of individual variables on the response, while
excluding the influence of other variables.

3. Results
3.1. Aboveground Biomass—ALS Based Map

Independent variables in the RF model were derived from a total of 32 LiDAR-based
metrics, which included zmax, zmean, zsd, zcv, zskew, zkurt, zentropy, pzabovemean,
pzabove2, zq5, zq10, zq15, zq20, zq25, zq30, zq35, zq40, zq45, zq50, zq55, zq60, zq65, zq70,

https://rds.icimod.org/home/datadetail?metadataid=1889
https://rds.icimod.org/home/datadetail?metadataid=1889
https://rds.icimod.org/home/datadetail?metadataid=1889
https://rds.icimod.org/home/datadetail?metadataid=1889
https://rds.icimod.org/home/datadetail?metadataid=1889
https://rds.icimod.org/home/datadetail?metadataid=1889
https://rds.icimod.org/home/datadetail?metadataid=1889
https://rds.icimod.org/home/datadetail?metadataid=1889
https://rds.icimod.org/home/datadetail?metadataid=1889
https://livingatlas.arcgis.com/landcover/
https://livingatlas.arcgis.com/landcover/
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zq75, zq80, zq85, zq90, zq95, zpcum1, zpcum2, zpcum3, and CRR, respectively. The RF
model calculated and plotted the variable importance, showing the top variables for AGB
estimation (Figure 2).
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However, among them, height-related metrics such as zmax, zmean, zq75, zq80, zq90,
zq95, and density-based metrics, such as zpcum1, and zpcum2, exhibited relatively higher
values for %IncMSE and IncNodepurity. It was found that zq95 and zmax were the most
influential LiDAR metrics. Based on the training set, the model with the independent
variables zmax, zmean, zq75, zq80, zq90, zq95, zpcum1, and zpcum2 achieved the best
accuracy, with R2 of 0.93, RMSE of 38.45 ton/ha, and MAE of 25.06 ton/ha (Figure 3a).
The model performance of the test data resulted in an accuracy of R2 of 0.85, RMSE of
60.9 ton/ha, and MAE of 39.7 ton/ha (Figure 3b). A visual representation of the relationship
between predicted and observed values using a scatter plot is presented in Figure 3.
This plot provides a visual comparison, allowing us to evaluate the models’ predictive
capabilities for the training set and the test set using a random forest model.

Forests 2024, 15, x FOR PEER REVIEW 9 of 20 
 

 

However, among them, height-related metrics such as zmax, zmean, zq75, zq80, 
zq90, zq95, and density-based metrics, such as zpcum1, and zpcum2, exhibited relatively 
higher values for %IncMSE and IncNodepurity. It was found that zq95 and zmax were the 
most influential LiDAR metrics. Based on the training set, the model with the independent 
variables zmax, zmean, zq75, zq80, zq90, zq95, zpcum1, and zpcum2 achieved the best accu-
racy, with R2 of 0.93, RMSE of 38.45 ton/ha, and MAE of 25.06 ton/ha (Figure 3a). The model 
performance of the test data resulted in an accuracy of R2 of 0.85, RMSE of 60.9 ton/ha, and 
MAE of 39.7 ton/ha (Figure 3b). A visual representation of the relationship between pre-
dicted and observed values using a scatter plot is presented in Figure 3. This plot provides 
a visual comparison, allowing us to evaluate the models’ predictive capabilities for the 
training set and the test set using a random forest model. 

 
Figure 3. Scatterplot displaying correlation between observed and predicted AGB values for the 
training set (a) and the test set (b), using the best selected RF model. 

Figure 4 illustrates the AGB map produced using the random forest model with a 
resolution of 30 × 30 m. The predicted AGB values in the study area varied from 0 to 446.42 
ton/ha, with a mean value of 120 ton/ha. There is a noticeable variation in the spatial dis-
tribution of AGB within the study area. This distribution exhibited a distinct pattern, with 
AGB levels increasing from the east towards the center, and then decreasing further, high-
lighting the gradient of AGB levels across the study area (Figure 4). Parts of the eastern 
and western regions were characterized as low-value areas, with AGB levels recorded 
below 75.20 ton/ha. Parts of the southwestern and southeastern regions exhibited moder-
ate AGB values, ranging between 75.20 and 211.63 ton/ha. Furthermore, most parts of the 
northcentral and northeastern regions displayed the highest AGB values, with values 
larger than 211.63 ton/ha. The spatial pattern of AGB within the study area demonstrated 
significant heterogeneity, with distinct variations observed across different regions. 

Figure 3. Scatterplot displaying correlation between observed and predicted AGB values for the
training set (a) and the test set (b), using the best selected RF model.



Forests 2024, 15, 663 10 of 20

Figure 4 illustrates the AGB map produced using the random forest model with a
resolution of 30 × 30 m. The predicted AGB values in the study area varied from 0 to
446.42 ton/ha, with a mean value of 120 ton/ha. There is a noticeable variation in the
spatial distribution of AGB within the study area. This distribution exhibited a distinct
pattern, with AGB levels increasing from the east towards the center, and then decreasing
further, highlighting the gradient of AGB levels across the study area (Figure 4). Parts of
the eastern and western regions were characterized as low-value areas, with AGB levels
recorded below 75.20 ton/ha. Parts of the southwestern and southeastern regions exhibited
moderate AGB values, ranging between 75.20 and 211.63 ton/ha. Furthermore, most parts
of the northcentral and northeastern regions displayed the highest AGB values, with values
larger than 211.63 ton/ha. The spatial pattern of AGB within the study area demonstrated
significant heterogeneity, with distinct variations observed across different regions.
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3.2. Driving Factors of Aboveground Biomass
3.2.1. Variables Used in the RF Model

Figure 5 provides a visual representation of the explanatory variables used in our
analysis. By examining these variables in relation to AGB, we aimed to gain a deeper
understanding of the factors influencing the distribution of biomass in the study area.
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In this study, the explanatory variables of the study area were in terms of climatic,
topographic, soil, and land use land cover. The variables related to climate were mean
annual precipitation (MAP) and mean annual temperature (MAT). MAP was mainly from
1167 mm to 1334 mm across the study area. MAT was between 24.6 and 24.8 degrees
Celsius for the study area. Topographic variables included elevation, slope, and aspect.
Elevations ranged from 99 m to 214 m. Slope ranging from 0 degrees to 34.2 degrees. Aspect
refers to the direction in which slope faces, categorized into 10 ranges (0 = flat, 2 = north,
3 = northeast, 4 = east, 5 = southeast, 6 = south, 7 = southwest, 8 = west, 9 = northwest,
10 = north), respectively. Soil included soil type 2 (Udorthents, Ustorthents, and Haplaque-
nts) and soil type 4 (Haplaquents, Haplaqepts, and Eutrocrepts). Anthropogenic variables
included road distance and river distance. Road distance ranges from 0 to 3799.7 m. River
distance ranging from 0 to 3079.3 m. LULC included water, trees, grass, crops, shrubs,
built-up area, and bare ground, respectively.

3.2.2. Relative Variables Importance in the RF Model

The selected nine environmental variables for explaining the spatial distribution of
AGB, respectively, showed different relative importance values in the RF model (Figure 6).
Predictor variables included: land use land cover (LULC), average annual precipitation (pre-
cip), average annual temperature (temp), elevation, river, soil, road, aspect, and slope, re-
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spectively (Figure 6). Among the variables, LULC, precipitation, and temperature emerged
as the most influential factors, with relative importance percentages of 26.6%, 19%, and
18%, respectively. Elevation also played a significant role, with a percentage of 17.35%.
Other variables (soil, river, road, slope, aspect) had lower relative importance percentages,
ranging from 0.94% to 10.43%.
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3.2.3. Partial Dependence Plots (Response Plots)

The factors used in the RF model contributed differently to the AGB in the study area,
and their partial dependencies reflected their relationship to the AGB.

A single-variable partial dependence plot along with smoothed response curves for
the explanatory variables is shown in Figure 7. The y-axis displays the fitted function for
the response variable (AGB), and the model used is the random forest model. An increase
in the distance to the road from the forests up to 2000 m contributed to the decrease in AGB,
while an increase in AGB was found for longer distances. In contrast, river proximity up
to 2000 m contributed to an increase in AGB, and afterward, it contributed to a decrease
in AGB. An increase in precipitation up to 1250 mm contributed to the higher AGB, and
a higher precipitation amount decreased the AGB. Similarly, an increase in temperature
up to 24.80 degrees Celsius contributed to the increase in AGB, and after that, the variable
decreased AGB. An increase in elevation and slope further increased AGB. The amount of
AGB increased with aspects between 2.5 and 6, and then the amount of AGB stayed stable,
while there was an increase in AGB between aspects 7.5 and 10. Soil type 2 (Udorthents,
Ustorthents, and Haplaquents) contributed more to AGB than soil type 4 (Haplaquents,
Haplaqepts, and Eutrocrepts). Lastly, the comparison of land use land cover types (water,
tree, shrub, grass, crops, built-up area, and bare ground) revealed that trees contributed
more to AGB, and bare ground contributed less to AGB.
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4. Discussion

In our study, the random forest (RF) model was used to estimate and understand
the variability and spatial distribution of AGB in the managed forest. Powell et al. [41]
highlighted the RF model’s effectiveness, surpassing the performance of multiple linear
regression. The application of the RF model not only provided estimates for predictor vari-
ables but also allowed for an assessment of their relative importance and the visualization
of non-linear relationships through partial dependence plots (Figure 7). The RF model
is capable of modeling non-linear relationships without requiring explicit assumptions
about the functional form of the relationship and has been widely employed in forest
AGB estimation [18]. The predicted AGB in the study varied from 0 to 446 ton/ha with a
mean of 120 ton/ha, which closely aligned with the mean AGB of the field plots (Figure 4).
However, the average AGB (120 ton/ha) of trees was lower than the AGB (190 ton/ha)
estimated in the forest of the Terai region of Nepal [45]. This difference in estimates could
be because the samples cover the entire Terai region and possibly a more mature forest
with a more diverse species composition compared to our study site. Moreover, this study
explained the spatial distribution of AGB using the AGB map and all the explanatory
variables (Figures 4 and 5). The spatial distribution of AGB values in the study area showed
higher values in the northeast and southwest regions, gradually decreasing towards the
northwest. The study found that the factors influencing the spatial pattern of AGB were
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not uniform throughout the entire study area. The variables such as land use land cover
(LULC), precipitation, temperature, and elevation were identified as having higher relative
importance percentages in explaining AGB patterns. Conversely, variables like slope and
aspect had a lesser influence on AGB variation (Figure 6). The main factors influencing
the variability in AGB distribution were found to be land use land cover, MAP, and MAT,
collectively explaining 64% of the variability in AGB patterns (refer to Figure 6). The vege-
tation density, water availability, and temperature conditions emerge as essential factors
significantly influencing AGB levels across our study area.

Past studies have highlighted the influence of various factors such as topography,
species composition, climate, elevation, and soil fertility on the spatial distribution of above-
ground biomass (AGB) at the regional scale [72–76]. In our study area, while considering
land use land cover, the AGB increased with a higher percentage of land use land cover in
managed forests, especially with trees. The increase in the number of trees is a result of
reforestation efforts, such as planting trees in the harvested area (logging) and sustainable
forest management practices, including selective logging (thinning), proper harvesting
methods, and ensuring natural regeneration. These practices have led to the growth of new
trees and promoted the growth and sustainability of forests, resulting in higher AGB. With
regard to climatic variables, precipitation, and temperature explained non-linear effects on
AGB in the study site, respectively (Figure 7). Bowman et al. [77,78] study in Australian
temperate and subtropical eucalyptus forests found that plants require temperatures that
encourage growth while minimizing transpiration or autotrophic respiration. This indicates
the importance of maintaining optimal temperature conditions for plants to maximize their
growth potential. Lewis et al. [79] found an increase in AGB in African tropical forests
with precipitation during the driest nine months of the year and a decrease during the
wettest three months of the year. Malla et al. [71] reported a positive effect on AGB of the
precipitation of the driest month and the maximum temperature of the warmest month
in the forests throughout Nepal. The positive effect of precipitation during the driest
month suggests that ensuring water availability during periods of rainfall can contribute
to increased growth in the growing season [36], resulting in higher AGB. Similarly, the
positive influence of maximum temperature during the warmest months indicates the
importance of favorable temperature conditions for promoting forest growth and forest
biomass accumulation. The different climatic conditions can affect the dynamics of AGB
throughout the year. Previous studies, together with our results, show that precipitation
and temperature can have both positive and negative effects on the AGB distribution in
forests. However, other factors, such as soil characteristics, nutrient availability, distur-
bance regimes, and species composition, also interact with temperature and precipitation
to influence AGB patterns.

When considering slope, Du et al. [80] indicated that vegetation on higher slopes
tends to experience less human disturbance, allowing these areas to be better preserved,
fostering abundant forest growth, and promoting biomass accumulation. In terms of aspect,
studies conducted by Fan et al. [81,82] have demonstrated that the south-, southwest-,
west-, and northwest-facing slopes are often referred to as sunny slopes. These aspects
receive a greater amount of sunlight, leading to increased rates of photosynthesis and
greater vegetation productivity. As a result, the amount of AGB in these aspects tends
to be higher compared to other aspects. Regarding elevation, higher elevations are often
associated with cooler temperatures and increased moisture availability [42]. These favor-
able conditions create an environment conducive to plant growth and the accumulation of
biomass. Furthermore, elevated regions may exhibit distinct soil characteristics, nutrient
availability, and vegetation compositions, which can contribute to increased AGB levels.

In our study area, the AGB was most abundant at the higher altitudes, particularly in
areas dominated by soil type 2 (comprising Udorthents, Usotorthents, and Haplaquents).
These regions are less conducive to agricultural activities and have limited accessibility via
road networks. Previous studies have also indicated a positive relationship between altitude
and AGB in similar areas [34,83]. Similarly, Nepal et al. [84] reported increasing AGB of
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trees with increasing elevation in the subtropical forest of Nepal. The elevation gradient is
associated with changes in temperature, precipitation, and forest-type succession [85]. The
elevation of our research site, typically ranging from 99 to 214 m above sea level, suggests
that a significant climate change is unlikely to occur. Contrary to the findings of many
studies [86–90] that indicate a decline in AGB with increasing elevation, we observe an
opposing trend. This discrepancy could be attributed to the relatively narrow range of
elevation (99 m to 214 m) encompassing the forested areas within our study site.

Regarding the road feature, the presence of a road has a negative impact on AGB up to
a certain distance, potentially due to factors such as increased human disturbance and land
conversion near roads. However, beyond a specific threshold distance, the negative effects
diminish, or other factors such as reduced human activity or improved environmental
conditions lead to an increase in AGB. The contribution of distance to the nearest road is
consistent with [91], who observed lower AGB in the distance from the forests to the road
up to 2000 m, while higher AGB was found for longer distances. AGB distribution is likely
to be higher in areas with less human disturbance [92,93].

Regarding rivers, the initial increase in AGB with proximity to rivers could be at-
tributed to factors such as increased water availability, moisture gradient, nutrient de-
position, or favorable soil conditions near riverbeds. These factors can promote plant
growth and result in higher AGB. However, beyond the threshold, the decrease in AGB
with increasing river distance suggests that other factors may come into play. These could
include factors such as reduced water availability, increased competition for resources,
or changes in soil properties farther away from the river. These conditions may lead to
decreased vegetation growth and, consequently, lower AGB.

Soil properties play a significant role in influencing the AGB of tropical forests [39,79,94,95].
Various soil properties, such as pH, organic matter, total nitrogen, total phosphorus, and
others, are analyzed to assess their impact. Within our study area, soil type 2 contributed
more to AGB than soil type 4 (consisting of Haplaquents, Haplaqepts, and Eutrocrepts).
The soil type 2 exhibits higher organic matter content, enhanced water-holding capacity,
and improved nutrient availability [96], thereby fostering greater plant growth and biomass
accumulation. Moreover, these soil types possess superior drainage and aeration properties,
which facilitate root development and nutrient uptake. Conversely, soil type 4 exhibits
lower organic matter content, diminished water retention capacity, and limited nutrient
availability. These characteristics can impede plant growth and biomass production within
these soil types. Our findings regarding the impact of soil on AGB align with previous stud-
ies. However, it is important to note that soil type alone may not be the sole determinant of
AGB. Other factors, such as climate, topography, land use, and vegetation composition can
also interact with soil type to influence AGB patterns. The complex interplay of these factors
should be considered when understanding the dynamics of AGB in forest ecosystems.

It is crucial to understand the limitations of our study. Firstly, our investigation
exclusively focused on managed forests in the Terai region of Nepal, which may limit
the generalization of the findings to other forest types or areas. Additionally, we solely
examined AGB and did not consider below-ground forest biomass. The study did not
consider the influence of biotic factors such as forest types or stand age, which could also
affect AGB in forests. While our results provide valuable insights, it is crucial to interpret
them within the context of these limitations. Future studies should address these limitations
to obtain a more comprehensive understanding of the subject matter.

5. Conclusions

The study examined the spatial patterns and influencing factors of forest aboveground
biomass (AGB) in a managed forest in the Terai region of Nepal using geospatial and
statistical techniques. The mean forest AGB in the study area was 120 ton/ha, with a
range from 0 to 446 ton/ha in the 30 m resolution. AGB exhibited a higher distribution in
the northeast and southeast regions, gradually decreasing towards the northwest. AGB
positively correlated with elevation, slope, and distance from rivers, while it negatively
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correlated with proximity to roads. The increase in precipitation and temperature con-
tributed to the initial rise in AGB, but beyond a certain lag, these variables led to a decline
in AGB. Land use land cover, precipitation, and temperature predominantly contributed
to the spatial distribution of AGB variation, accounting for 64% of the variability. The
aspect had the least effect on AGB distribution. This study showed the influence of climate,
land cover land use, and topography on the AGB pattern in the forest. With the help of
the ALS-based AGB maps and various explanatory variables, it was possible to better
understand the spatial pattern of AGB and the factors influencing AGB distribution across
the managed forest. The results obtained from our study hold significant importance for
making decisions about managing forests sustainably and mitigating climate change in the
Terai region of Nepal. Understanding the factors that drive AGB variation such as climate,
soil characteristics, species composition, and disturbance regimes, allows us to develop
more accurate AGB, and predictions of forest productivity. The accuracy of the model can
be improved further using larger forest biomass datasets and other explanatory variables.
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