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Abstract: Forest canopy fuel moisture content (FMC) is a critical factor in assessing the vulnerability
of a specific area to forest fires. The conventional FMC estimation method, which relies on look-up
tables and loss functions, cannot to elucidate the relationship between FMC and simulated data from
look-up tables. This study proposes a novel approach for estimating FMC by combining enhanced
vegetation index (EVI) and normalized difference moisture index (NDMI). The method employs the
PROSAIL + PROGeoSAIL two-layer coupled radiation transfer model to simulate the vegetation
index, the water index, and the FMC value, targeting the prevalent double-layer structure in the study
area’s vegetation distribution. Additionally, a look-up table is constructed through numerical analysis
to investigate the relationships among vegetation indices, water indices, and FMC. The results reveal
that the polynomial equations incorporating vegetation and water indices as independent variables
exhibit a strong correlation with FMC. Utilizing the EVI–NDMI joint FMC estimation method enables
the direct estimation of FMC. The collected samples from Dali were compared with the estimated
values, revealing that the proposed method exhibits superior accuracy (R2 = 0.79) in comparison with
conventional FMC estimation methods. In addition, we applied this method to estimate the FMC in
the Chongqing region one week before the 2022 forest fire event, revealing a significant decreasing
trend in regional FMC leading up to the fire outbreak, highlighting its effectiveness in facilitating
pre-disaster warnings.

Keywords: forest canopy fuel moisture content; PROSAIL; PROGeoSAIL; enhanced vegetation index;
normalized difference moisture index

1. Introduction

Forest fires pose significant and formidable challenges in today’s world. Countries
across temperate, subtropical, and tropical regions are grappling with the menace of forest
fires due to the escalating impacts of global warming and heightened weather extremes [1,2].
The accurate and efficient early warning and monitoring of forest fires pose a critical issue
that governments must presently confront [3].

Forest fire events are influenced by multiple interacting factors. According to Pyne’s
wildfire triangle model [4], the occurrence of wildfires is primarily determined by climate,
topography, and fuels. Currently, early-warning methods for forest fires can be classified
into three main categories: fire weather forecasts, forest fire occurrence forecasts, and forest
fire behavior forecasts. The advancement of satellite remote sensing and internet big data
technology has facilitated the integration of weather conditions, combustible materials, and
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fire sources, leading to a mainstream approach known as forest fire forecasting, which aims
to predict the risk of forest fires [5].

Due to the complexity of the forest ecosystem, various factors in the wildfire triangle
model interact with each other within the natural environment [6]. This phenomenon
means that the influence of other factors on the relevant parameters of many forest areas
cannot be ignored in forest fire forecasting [7,8]. Undoubtedly, this complexity and difficulty
increase the challenges associated with forest fire forecasting.

Forest canopy fuel moisture content (FMC) acts as an important indicator reflecting
the dryness or wetness levels of wild vegetation while also significantly contributing to
evaluating susceptibility to forest fires. Previous research has demonstrated that when the
FMC falls below 100%, there is a significant increase in forest fire occurrence probability [9].
The sensitivity of FMC to weather conditions and internal vegetation dynamics makes
it one of an exemplary factor for forecasting forest fires among numerous others [10].
Consequently, the precise retrieval of FMC through remote sensing assumes paramount
importance as a fundamental step in evaluating forest fire risk.

Traditional methods for measuring FMC suffer from several limitations, such as their
high demand for manpower and resources. Consequently, they are generally inefficient and
unable to comprehensively cover vast forest areas. However, satellite remote sensing tech-
nology offers a solution by providing real-time observations across extensive regions [11].
This technological advancement overcomes the inefficiencies associated with traditional
physical parameter measurement methods and facilitates the prolonged monitoring of
FMC in large forest regions [12,13].

The most direct approach to quantitatively inverting FMC by using remote sensing is
to establish a correlation between vegetation canopy spectra and FMC. Some researchers
have explored this relationship through spectroscopic and spectral analyses, aiming to
construct empirical models that link spectral indices to FMC. These models rely on spectral
measurements of vegetation and corresponding field data on FMC [14,15]. However, the
construction of such empirical models requires a substantial number of field observations
and data samples. Additionally, these empirical models are area-specific in nature. As a
result, many researchers are inclined towards utilizing physical models for the quantitative
retrieval of FMC. Numerous studies have indicated that FMC can be approximated by
two parameters within the PROSPECT model [16] of leaf reflectance: equivalent water
thickness (EWT) and dry matter content (DMC). Therefore, radiative transfer models can
be employed to simulate vegetation spectral reflectance and estimate FMC [17]. Commonly
used models include the two-dimensional PROSAIL model [18], the Liberty model [19],
the GEOSAIL model [20], and the three-dimensional DART model [21–23]. The merit and
demerit of the FMC estimation methods described above are presented in Table 1.

Table 1. Comparison of FMC estimation methods.

Model Type Model Merit Demerit

Empirical model Spectral model High accuracy in estimating FMC. Needs a large number of measured data;
existence of regional limitations.

Physical model

PROSAIL

Can be approximated by estimating
EWT and DMC; high accuracy in

estimating FMC for uniformly
distributed vegetation.

Only suitable for vegetation with uniform
canopy distribution; has hot spot effect.

Liberty Suitable for coniferous forests. Lack of dry matter weight parameter; can
only be approximated by other parameters.

GEOSAIL Suitable for reflectance simulation
of heterogeneous canopy. Has hot spot effect.

DART
Three-dimensional model; the light

transmission process of forest
canopy can be well restored.

Large amount of calculation.
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The PROSAIL model, which integrates the leaf optical model PROSPECT with the
canopy radiative transfer model SAIL, is extensively employed for biophysical and chemical
parameter retrieval, as well as spectral simulation. It has demonstrated high accuracy
in estimating FMC for uniformly distributed vegetation. Numerous researchers have
utilized the PROSAIL model to estimate FMC in grasslands and crops [24]. Previous
studies have indicated significant correlations between various indices, such as NDVI,
EVI, NDWI, and NDMI, and FMC, and regression models incorporating these indices
along with measured FMC data achieve remarkable accuracy [25]. However, when dealing
with forests characterized by tall and irregular canopy structures along with complex
understory environments, the selection of suitable models for FMC estimation becomes
more diverse [26,27].

Further research and analysis have shown good agreement between vegetation pa-
rameters derived from physical models or look-up table-based methods and measured
data [28]. Multiple-model analyses and accuracy evaluations of inverse canopy FMC esti-
mation further revealed that the PROGEOSAIL model outperformed the Liberty model for
sparse broadleaf and mixed conifer forests [29,30].

In response to the complex forest structure, improvements are being made to radiative
transfer models. For the prevalent “tall trees + low vegetation” double-layered forest
structures, some scholars have proposed combining the PROSAIL model with the PRO-
GEOSAIL model to construct a look-up table approach, approximating FMC through a loss
function [31]. While estimation of FMC based on physical models enhances applicability
compared with empirical models, the presence of loss functions in the look-up table method
creates an error between estimated and real values of FMC.

The objective of this research is to investigate the correlation between vegetation
index/water index and FMC by examining their numerical relationship to develop a model
for estimating FMC. Section 2 provides an overview of the study area and data utilized in
this work, and the method of combining vegetation indices and canopy radiative transfer
models to estimate FMC is presented. The results are shown in Section 3, followed by a
discussion in Section 4. Finally, the conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The study area is situated in Dali Bai Autonomous Prefecture, Yunnan Province,
China, at the confluence of the western Yunnan Central Plateau and the southern end of
the Hengduan Mountains, covering a core area of 170 square kilometers with an average
elevation of 2000 m (Figure 1). Influenced by the subtropical monsoonal climate pattern
at low latitudes, the study area exhibits an annual rainfall distribution characterized by
increases during summer and autumn and reductions during winter and spring. The
rainy season spans from May to October, contributing to approximately 83% of the annual
rainfall. Conversely, the dry season occurs from November to April, and accounts for only
17% of the annual rainfall. Dry weather conditions make forest fires likely to occur during
this period. Additionally, the significant topographic relief in the area poses challenges for
local fire services in controlling hill fires.
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Figure 1. Elevation of the study area.

2.1.2. MODIS Satellite Data

MODIS is a medium-resolution imaging spectrometer deployed on the Terra and Aqua
satellites and serves as a pivotal instrument in the US Earth Observation System (EOS)
program for monitoring global biological and physical processes. Terra is the morning
star, as it passes the equator from north to south at about 10:30 local time, and can acquire
up to four transit orbits daily. Aqua is the afternoon star, as it passes the equator from
south to north at about 13:30 local time. These two satellites collaborate harmoniously to
repetitively observe the entire Earth’s surface every 1–2 days, yielding a comprehensive
dataset comprising 36 bands of data. For this study, we utilized MOD09GA daily 500 m
surface reflectance data generated by MODIS from Terra (https://ladsweb.modaps.eosdis.
nasa.gov/ (accessed on 1 April 2023)). This Level 2 product offers valuable insights into
reflectance across bands 1–7, along with quality assessment ratings, observation ranges
and counts, as well as information regarding scan values at a resolution of 250 m. For our
analysis, we focused primarily on bands 01 (RED), 02 (NIR), 03 (BLUE), and 07 (SWIR) of
the MOD09GA product.

2.1.3. Field Data

A predetermined number of quadrats were planned within this study area, and field
sampling was conducted to collect vegetation canopy leaves. The quadrat was consistent
with the spatial resolution of MODIS satellite imagery (500 m × 500 m). The selection
of clear sky conditions and the maintenance of a specific distance between samples were
prioritized during the planning stage. In this study, a total of 11 quadrats were designed in
the Cangshan area. The central coordinates of quadrats are shown in Table 2. The spatial
distribution of quadrats within the study area is illustrated in Figure 2.

The field samples were collected as follows: Firstly, the sample square number, the
coordinates of the center of the sample square (latitude, longitude, and elevation), and the
surrounding environment were recorded. Then, within each sample square, 5–10 canopy
foliage samples were collected in a natural environment. The coordinates of the current
sample point and the sample trees were also recorded and photographed. In each sample
plot, 5–8 randomly selected adult leaves of uniform size were collected. Finally, the
vegetation samples were sealed in bags, and relevant information was recorded on the bag
using a marker. The samples were labeled with a unique number following the format

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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“A-B”, where A represents the quadrat number and B represents the sample number
within that particular quadrat. The collected vegetation samples were brought back to the
laboratory for weighing purposes, and the fresh weight measurements were first obtained,
followed by drying at a constant temperature of 65 ◦C for 24 h before obtaining dry weights.
These two weight measurements were then utilized to calculate FMC as follows:

FMC =
Wh − Wd

Wd
× 100%, (1)

where Wh is the fresh weight of the leaf sample and Wd is the dry weight of the leaf sample.

Table 2. Details of the ground sampling sites.

Sample Plot Number Longitude Latitude Land Cover Type

1 100◦12′3′′ E 25◦34′57′′ N Forest
2 100◦10′1′′ E 25◦38′39′′ N Forest
3 100◦8′9′′ E 25◦41′52′′ N Forest
4 100◦6′39′′ E 25◦45′10′′ N Forest
5 100◦6′21′′ E 25◦49′13′′ N Grass
6 100◦5′19′′ E 25◦53′19′′ N Forest
7 100◦13′51′′ E 25◦33′3′′ N Forest
8 100◦11′14′′ E 25◦42′12′′ N Cropland

Forests 2024, 15, x FOR PEER REVIEW 5 of 19 
 

 

B”, where A represents the quadrat number and B represents the sample number within 
that particular quadrat. The collected vegetation samples were brought back to the labor-
atory for weighing purposes, and the fresh weight measurements were first obtained, fol-
lowed by drying at a constant temperature of 65 °C for 24 h before obtaining dry weights. 
These two weight measurements were then utilized to calculate FMC as follows: 

FMC 100%h d

d

W W
W
−= × , (1) 

where Wh is the fresh weight of the leaf sample and Wd is the dry weight of the leaf sample. 

Table 2. Details of the ground sampling sites. 

Sample Plot Number Longitude Latitude Land Cover Type 
1 100°12′3″ E 25°34′57″ N Forest 
2 100°10′1″ E 25°38′39″ N Forest 
3 100°8′9″ E 25°41′52″ N Forest 
4 100°6′39″ E 25°45′10″ N Forest 
5 100°6′21″ E 25°49′13″ N Grass 
6 100°5′19″ E 25°53′19″ N Forest 
7 100°13′51″ E 25°33′3″ N Forest 
8 100°11′14″ E 25°42′12″ N Cropland 

 
Figure 2. Location and landcover types of ground sampling sites. 

2.2. Methods 
The present study utilized a forward simulation dataset from a radiative transfer 

model to establish look-up tables and investigate the correlation between FMC and 

Figure 2. Location and landcover types of ground sampling sites.

2.2. Methods

The present study utilized a forward simulation dataset from a radiative transfer model
to establish look-up tables and investigate the correlation between FMC and vegetation
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index/water index, with the aim of developing an expedited FMC estimation model. The
overall procedure of this study is illustrated in Figure 3.
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2.2.1. Radiative Transfer Model

In this study, a two-layer coupled model based on PROSAIL and PROGEOSAIL was
employed to simulate the vegetation structural characteristics of “tall trees + low vegetation”
in the study area. The PROSAIL model is a mathematical model utilized for simulating
the spectral characteristics of vegetation, commonly employed in remote sensing and
vegetation monitoring research. Grounded on photosynthesis principles, the PROSAIL
model incorporates factors such as leaf structure, light transmission, and reflection to enable
the simulation of the spectral response of diverse vegetation types within the visible and
near-infrared bands. The PROGEOSAIL model is based on PROSAIL and incorporates a
geometric optical model to accurately depict the reflectance of non-continuous canopies.

In this two-layer coupled model, the PROSAIL model was used to simulate the spectral
reflectance of the lower grass layer, while the PROGEOSAIL model was utilized to estimate
the canopy spectral reflectance of the upper tree layer. The coupling of these models was
achieved by replacing the soil reflectance in the PROGEOSAIL model with the spectral
reflectance of the lower grassland simulated by the PROSAIL model [22]. This model
requires a total of 27 input parameters, including 12 parameters for the lower model and
15 parameters for the upper model. All parameters used in this model are listed in Table 3.
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Table 3. The PROSAIL + PROGEOSAIL model input parameters.

Model Input Parameter Symbol Unit Value

PROSPECT
(Lower plants)

Leaf structural parameters N / 2
Chlorophyll content Cab µg·cm−2 40
Carotenoid content Car µg·cm−2 8

Brown pigment fraction Cbrown / 0
Equivalent water thickness EWT g·cm−2 0.015

Dry matter weight DMC g·cm−2 0.008

SAIL
(Lower plants)

Solar zenith angle tts (◦) 30
Observed zenith angle tto (◦) 0

Leaf area index LAI / 2
Leaf inclination distribution

function
LIDFa / −0.35
LIDFb / −0.15

Hot spot effect factor hspot / 0.02
Soil reflectance Rsoil / 0.47

PROSPECT
(Upper forest)

Leaf structural parameters N / 2
Chlorophyll content Cab µg·cm−2 40
Carotenoid content Car µg·cm−2 8

Brown pigment fraction Cbrown / 0
Equivalent water thickness EWT g·cm−2 0.005–0.02

Dry matter weight DMC g·cm−2 0.001–0.015

GEOSAIL
(Upper forest)

Solar zenith angle tts (◦) 30
Observed zenith angle tto (◦) 0

Leaf area index LAI / 0–6
Leaf inclination distribution

function
LIDFa / −0.35
LIDFb / −0.15

Canopy cover Ccover / 0.85
Canopy height-to-width ratio CHW / 2

Crown shape / / Cone
Hot spot effect factor hspot / 0.02

Soil reflectance Rsoil / Lower plants’
reflectance

2.2.2. Sensitivity Analysis

In the two-layer coupled model, these parameters exhibited varying degrees and
ranges of influence within the 400–2500 nm band. This study assumed that each input
parameter in the model independently affects the simulation results and conducted a
sensitivity analysis on each parameter of the upper-model input. The Car parameter was
fixed at 8 µg·cm−2, Cbrown was fixed at 0 µg·cm−2, and the observed geometric parameters
tts and tto were fixed at 30◦ and 0◦, respectively. The leaf inclination distribution function
(LIDF) was assumed to have a spherical distribution, and the crown shape was fixed at
cone. The other parameters requiring testing in the sensitivity analysis were set to the
values specified in Table 4.

Table 4. Base values used for model test parameters of sensitivity analysis.

Input Parameter Symbol Unit Base Value

Leaf structural parameters N / 2
Chlorophyll content Cab µg·cm−2 40
Carotenoid content Car µg·cm−2 8

Brown pigment fraction Cbrown / 0
Equivalent water thickness EWT g·cm−2 0.015

Dry matter weight DMC g·cm−2 0.008
Solar zenith angle tts (◦) 30

Observed zenith angle tto (◦) 0
Leaf area index LAI / 2

Leaf inclination distribution function
LIDFa / −0.35
LIDFb / −0.15

Hot spot effect factor hspot / 0.02
Soil reflectance Rsoil / 0.47
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2.2.3. Construction of Total Look-Up Table

When employing the physical model for forward simulation of FMC, it is crucial to
emphasize the influence of four input parameters, i.e., leaf structural parameters (N), leaf
water content (EWT), dry matter content (DMC), and leaf area index (LAI), on the spectral
reflectance profile within the 800–2000 nm band. Given the extensive input parameters
required by the double-layer coupled model, it is imperative to further streamline variation
parameters and simplify the model based on the specific conditions in the study area.
This approach will help mitigate potential issues related to the pathological retrieval of the
model. In this study, the N value was set as a constant based on the stable vegetation growth
conditions in the mountainous forest study area. EWT, DMC, and LAI were considered
variable parameters in the upper model, while the other parameters remained fixed during
the forward simulation. All model parameters were defined as shown in Table 2 from
established references and previous experience. Specifically, the EWT values were selected
within the range of 0.005–0.02 with an increment of 0.001, the DMC values ranged from
0.001 to 0.015 with an increment of 0.001, and the LAI values ranged from 0 to 6 with an
increment of 0.1.

As the model simulated hyperspectral data with a resolution of 1 nm and the MODIS
data image provided wide-band reflectance information, it was necessary to convert the
simulated hyperspectral data into wide-band data through spectral equivalence calcula-
tion [32]. The equivalence formula is

ρmulti(λi) = ∑ ρ(λ) f (λi)
f (λi)

(2)

where ρmulti(λi) is the reflectance of the channel with wavelength, λi is the wavelength, ρ(λ)
is the hyperspectral reflectance, and f (λi) is the spectral response function of the channel at
wavelength λi in the multispectral data center. The wavelength ranges of the MODIS 01, 02,
03, and 07 band reflectance data were obtained through equivalent calculation. We further
calculated the simulated enhanced vegetation index (EVI), the normalized differential
water moisture index (NDMI), and the FMC and constructed a look-up table comprising
EWT, DMC, LAI, and FMC. In particular, EVI and NDMI are calculated as

EVI = 2.5 × ρNIR − ρRED
ρNIR + 6 × ρRED − 7.5 × ρBLUE + 1

(3)

NDMI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(4)

where ρBLUE is MODIS data band 01, ρRED is MODIS data band 02, ρNIR is MODIS data
band 03, and ρSWIR is MODIS data band 07. In the upper model, PROGeoSAIL, the FMC
estimate formula is [33,34]

FMC =
EWT
DMC

× 100% (5)

2.2.4. Correlation Analysis

In constructing the total look-up table, the combined influence of EVI, NDMI, and LAI
on FMC can introduce ambiguity into the overall relationship between the independent
variables and the dependent variable. To address this issue, a method was employed
whereby LAI was temporarily held at a fixed value. Consequently, several sub-look-up
tables containing only two variables, EVI and NDMI, were constructed. These sub-look-up
tables were subsets derived from the total look-up table. By visually representing the
total look-up table and the sub-look-up tables separately by using scatter plots, it can be
observed that when LAI is fixed, the scatter distribution within each sub-look-up table
exhibits a regular surface-like pattern. Moreover, the scatter distribution of the total look-up
table can be seen as a combination of the scatter surfaces from the various sub-look-up
tables. This suggests that there exists an identifiable mathematical pattern among FMC,
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EVI, and NDMI when LAI remains constant. The scatter plots depicted in Figure 4 visually
demonstrate the aforementioned findings.
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The correlation between EWT, DMC, and the simulated EVI and NDMI in the sub-
look-up table was further investigated in conjunction with Equation (5). It was found
that when LAI is held constant as a precondition, there exists an approximate quadratic
relationship between EVI and FMC for a fixed value of EWT. Similarly, there exists an
approximate linear relationship between NDMI and FMC for a fixed value of DMC. These
functional relationships become more pronounced as the LAI values increase. This finding
may also account for the regular surface observed in the scatter plot of the sub-look-up
table when LAI is fixed.

Based on the observations derived from the sub-look-up table, there is a binary-
quadratic functional relationship among EVI, NDMI, and FMC. By integrating Equation (5)
with the established correlations between EWT and EVI, as well as between DMC and
NDMI, an estimation model can be constructed [35,36].

2.2.5. Estimation of FMC

Based on the aforementioned analysis, considering LAI as a predetermined constant,
a quadratic function is employed with EVI as the independent variable to characterize
EWT. Similarly, a primary function is utilized with NDMI as the independent variable to
characterize DMC. By incorporating both functions into Equation (5), an FMC estimation
model is constructed with EVI and NDMI serving as input parameters:

FMC =
a1x2 + a2x + a3

a4y + a5
(6)

where x is the value of EVI, y is the value of NDMI, and a1–a5 are the coefficients of the
model for the case where LAI is a fixed value. The model coefficients a1–a5 were determined
through the least square method and integrated to obtain the model parameter matrix for
the entire look-up table, which comprises several sub-look-up tables.

Based on the parameter matrix figures and the scatter plot of the total look-up table,
it is evident that an increase in LAI results in a growing overlap in the independent
variable thresholds of neighboring surfaces. This is visually represented in Figure 5 by
the decreasing distance between neighboring surfaces in the scatter plot. Consequently,
estimating FMC based solely on these overlapping thresholds can lead to overestimated
or underestimated values, or even multiple possible results. To address this issue, it is
necessary to correct the step size of the LAI parameter. Previous research has demonstrated
that setting parameter step sizes according to a normal distribution can enhance estimation
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accuracy when using models like PROSAIL for vegetation physical parameter inversion [37].
Therefore, during actual calculations, the coefficient matrix should be constructed by
selecting a set of predetermined values within the LAI value range.
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3. Results
3.1. Results of Sensitivity Analysis

The influence of the change in each input parameter on the spectral curve is shown in
Figure 6. The above analysis demonstrates that FMC exhibits sensitivity in both the NIR
and SWIR bands. According to the analysis, Figure 6a–g show the spectral response of the
model output reflectance to the seven model input parameters. Figure 6a shows that the
leaf structure parameter (N) affects reflectance throughout the 400–2500 nm band range,
with the reflectance increasing as N increases. Figure 6b shows that the chlorophyll content
(Cab) mainly affects reflectance in the 400–800 nm band, with the reflectance decreasing as
Cab increases. Figure 6c shows that the equivalent water thickness (EWT) has an effect on
reflectance in the 1000–2500 nm band, with the reflectance decreasing as EWT increases.
At 1450 nm and 1650 nm, EWT has the most significant effect on reflectance and has the
greatest effect on reflectance near 1650 nm. Figure 6d shows that leaf dry matter content
(DMC) has an effect on reflectance in the 800–2500 nm band, with the reflectance decreasing
as DMC increases. Figure 6e shows that leaf area index (LAI) has a significant effect on
reflectance throughout the 400–2500 nm band. In the 700–1100 nm range, the reflectance
increases with the increase in LAI, but in the 500–700 nm and 1800–2500 nm ranges, the
reflectance decreases with the increase in LAI. In particular, the effect of LAI on canopy
reflectance is the most pronounced around 700–1450 nm and 1650 nm [38]. Figure 6f,g
show that canopy height-to-width ratio (CHW) and canopy cover (Ccover) have little or no
effect on reflectance across the 400–2500 nm band.

3.2. Model Coefficient Matrix

In this research, a set of 26 representative LAI values were selected: 0.1, 0.12, 0.14,
0.16, 0.18, 0.2, 0.23, 0.26, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1.1, 1.3, 1.6, 2.1,
2.6, 3.0, 4.0, and 6.0. The selection of LAI values was based on the consideration that
the range of independent variables in these surfaces covers the entire range of EVI while
minimizing overlap between adjacent surfaces’ independent variable ranges as much as
possible. For unselected surfaces corresponding to other fixed LAI values, using these
26 selected surfaces can fully compensate for their calculation, since their EVI and NDMI
value ranges overlap completely with those of the selected surfaces, and the distances
between them are very close. This approach helps reduce the size of the parameter matrix
and simplifies the overall model. Table 5 shows the LAI values and the corresponding
fitting coefficients for 26 representative surfaces.
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Table 5. Simplified model parameter matrix for FMC estimation, where a1 to a5 are the empirical
parameters in Equation (6).

LAI a1 a2 a3 a4 a5

0.1 3069.379 −846.395 58.362 −0.634 0.154
0.12 996.128 −285.384 20.446 −0.219 0.057
0.14 1587.222 −470.94 34.943 −0.401 0.109
0.16 1365.025 −418.881 32.146 −0.435 0.124
0.18 1104.593 −349.556 27.667 −0.412 0.123
0.2 1073.114 −351.119 28.733 −0.377 0.118

0.23 1063.039 −363.702 31.124 −0.43 0.142
0.26 946.679 −337.517 30.102 −0.446 0.156
0.3 831.378 −312.011 29.293 −0.465 0.171

0.35 668.267 −266.844 26.66 −0.42 0.167
0.4 695.166 −293.326 30.97 −0.513 0.214

0.45 553.187 −245.027 27.162 −0.517 0.226
0.5 449.88 −208.998 24.301 −0.474 0.217

0.55 459.904 −223.352 27.153 −0.538 0.257
0.6 358.562 −181.497 22.999 −0.468 0.230
0.7 350.395 −190.789 26.013 −0.593 0.309
0.8 359.677 −209.316 30.509 −0.739 0.403
0.9 266.166 −164.52 25.473 −0.634 0.36
1.1 246.09 −168.358 28.862 −0.802 0.484
1.3 218.468 −162.609 30.342 −0.926 0.588
1.6 158.4 −130.511 26.976 −0.973 0.652
2.1 15.362 −14.354 3.369 −0.156 0.111
2.6 13.508 −13.804 3.584 −0.209 0.154
3.0 14.264 −15.376 4.175 −0.297 0.224
4.0 2.726 −3.213 0.958 −0.104 0.081
6.0 3.074 −3.91 1.271 −0.268 0.213

3.3. Mapping of FMC

According to the calibrated model, MODIS data were utilized for estimating the local
FMC within the study area on 24 March 2023. This facilitated the subsequent accuracy
verification by enabling a convenient comparison between the estimated results and the
measured data. Figure 7 shows the FMC estimation results for the study area. We can
observe that the FMC in the study area in March was generally low, which is consistent
with the higher occurrence of wildfires during the local dry season.
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3.4. Validation of Measured Data

The calculated results of the model were compared with the actual measured data for
eight corresponding pixels, as depicted in Figure 8. The blue dots are plotted with estimated
and actual measured values as horizontal and vertical coordinates, and the orange lines
fitted from these points. It is evident that the overall estimation outcomes exhibit closer
proximity to the actual measurements, with a coefficient of determination (R2) reaching 0.79.
Based on the FMC estimation results across the entire study area, it can be observed that the
overall FMC values are slightly lower than those found in normal forests, predominantly
ranging between 60% and 120%. This confirms that the FMC estimated from MODIS data
aligns well with ground-truth conditions. Since 2023, Yunnan Province has experienced a
prolonged period of dry weather, resulting in frequent forest fires. During data collection
in the study area, local forest fire danger warnings remained active, contributing to the
lower local FMC values. Both the FMC from ground measurements and remote sensing
retrieval effectively support this phenomenon.
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3.5. Applicability Test of the FMC Estimation Method

To further validate the reliability of the estimation model, this study selected several
historical fire events to estimate the pre-disaster FMC in the affected area and generated
corresponding maps [39]. Due to significant cloud cover in Yunnan during early April
2023, some surface reflectance data were missing. Consequently, the forest fire event that
occurred on 19 August 2022 in Chongqing was chosen for investigation. MODIS data from
12–18 August 2022 were employed to estimate the FMC in the Chongqing area before the
fire. As shown in Figure 9, a declining trend in overall FMC levels within Chongqing
during the week preceding the fire incident can be observed. Moreover, consistently low
FMC values were observed specifically in the western Chongqing region, which was an
area where initial fires ignited during this event. This trend indicates that FMC as an
indicator has a certain representativeness in forest fire risk assessment and also indirectly
indicates the accuracy and universality of the FMC estimation method proposed in this
study [40].
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4. Discussion
4.1. Comparison of FMC Estimation Models

In this study, a correlation between FMC and the vegetation index/water index was
identified through physical modeling. This finding is consistent with the conclusions
drawn by other scholars who have investigated the relationship between the vegetation
index and FMC using different physical models [41]. In further developing the estimation
model for vegetation index, water index, and FMC, it was observed that a single vegetation
index or water index exhibited limited correlation with FMC. However, by increasing the
number of independent variables and using the combination of vegetation index and water
index to construct the FMC estimation model, a strong correlation among these variables
was effectively expressed. The proposed method exhibits similar accuracy to the empirical
model while mitigating the limitations of the empirical model itself.

When utilizing physical models for inverting target vegetation parameters, many
scholars have employed look-up tables to simulate the target parameters in a forward
direction and utilized a loss function to approximate the inverted object within the look-up
table, which has been proven to be highly accurate [42]. However, the loss function always
presents a certain amount of error, and the look-up table itself does not adequately represent
the relationship between the input parameters and the target system parameters in the
model. Establishing a direct regression equation between input parameters and target pa-
rameters enables a more explicit reflection of their relationship while circumventing errors
introduced by the loss function. Although the model itself may contain some errors, com-
pared with using look-up tables combined with loss functions, the errors are reduced [43].
With further investigation into the correlation between vegetation index/water index and
FMC, improvements can be made to enhance both functional aspects used in establishing
such models, as well as the accuracy levels of FMC estimation models.

4.2. Impact Factor of the Model
4.2.1. Robustness Analysis

The estimation results of this model are primarily influenced by the input parameters
EVI and NDMI. To assess the model’s robustness, error was deliberately introduced in
these parameters. The findings reveal that when both EVI and NDMI were incrementally
increased from 0.02 to 0.2 with an interval of 0.02, the error in estimating FMC using the
model remained consistently within the range of −270% to 250%. These results provide
evidence supporting the robustness of the estimation model to some extent.
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4.2.2. Effect of LAI

The study demonstrates that the variation in LAI significantly impacts the spectral
reflectance of vegetation within the 800–2000 nm band, and several bands within this range
are sensitive to vegetation water content. This result indicates that the value of LAI has an
impact on this model [44,45]. In our study, we observed a decrease in correlation between
vegetation index/water index and FMC when the LAI values were low. This is evident in
the scatter plot, where the surface of the corresponding sub-look-up table becomes irregular
and less smooth with lower LAI values. Consequently, fitting coefficients to sub-look-up
tables with lower LAI values yields larger coefficient values. This partially compromises
the stability of the model during its application. However, since our research focuses on
forest canopies within an LAI range typically falling between 1 and 3, all sub-look-up tables
within this range display clear regularity. As a result, fitting yields significantly reduced
model coefficients. Therefore, in practice, smaller model coefficients are typically employed
for most FMC calculations, alleviating some of the model’s instability.

4.3. Indicator Potential of FMC for Forest Fires

As one of the indicators reflecting the moisture level of forests, the trend of fuel
moisture content (FMC) can, to some extent, indicate forest fire risk. This conclusion
has been validated through application tests involving forest fire incidents, and other
researchers have reached similar conclusions when conducting FMC inversion and forest
fire-related studies by using different methods [5,46]. However, in practical applications, it
is more scientifically sound to evaluate the overall environment of the forest from multiple
perspectives, including climate, topography, vegetation, and so on, based on the principle
of forest fire prediction [47,48]. FMC is not the sole determining factor in the occurrence of
forest fires, but it is undoubtedly representative among these various influencing factors.

4.4. Limitations and Future Research
4.4.1. Effect of Terrain

Although the PROSAIL + PROGeoSAIL model does not need to consider the influence
of terrain and vegetation type, the study area’s high altitude and drastic topographic relief
inevitably affected the accuracy of the model to some extent [49,50]. Additionally, shadows
caused by mountain fluctuations may introduce certain challenges to the model. While
previous studies have suggested that estimating FMC by using EVI can partially alleviate
issues related to mountain shading, this paper did not investigate the impact of mountain
shadows on the model or assess how much mitigation is achieved after employing EVI.
These factors were not considered in this study and may lead to errors in the estimation
model due to topographic factors.

4.4.2. Cloud Interference

Cloudy weather conditions in the study area had an impact on this research. The
frequent occurrence of thick cloud cover often resulted in missing optical data used for
analysis, which posed challenges in monitoring long-term changes in FMC within the local
forested area [51,52].

4.4.3. Limitation of Model Validation

Due to the complex terrain in the research area and limited field measurement time,
the number of sample points collected for model accuracy verification is relatively small.
Additionally, considering the specific requirements of long-term FMC monitoring for
remote sensing data temporal resolution, this study opted for MODIS reflectance data with
a spatial resolution of 500 m after careful consideration, sacrificing some spatial accuracy
while ensuring daily temporal resolution. In future studies, it is essential to acquire more
field measurement data and employ satellite images with higher precision, such as Landsat,
to further validate the proposed model’s accuracy.
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4.4.4. Future Research

In subsequent studies, we will further analyze a range of effects resulting from moun-
tainous terrain relief and weather conditions. These factors will be considered when
optimizing the model to mitigate the modeling errors caused by terrain problems. To
validate the model’s applicability on high-precision images, additional field data collection
experiments will be conducted in subsequent research. The accuracy and reliability of the
proposed model may be further validated and substantiated through the utilization of
high-resolution satellite imagery such as Landsat [53].

5. Conclusions

In this study, an FMC estimation method based on the combination of EVI and
NDMI was introduced. This method provided estimates of FMC, taking into account
the correlation between EVI/NDMI and FMC. The accuracy of the proposed method was
validated by using field measurement data. Additionally, the model was applied to estimate
FMC in the week leading up to the forest fire that occurred in Chongqing in August 2022.
The study yielded the following key findings:

(1) Leaf structural parameter (N), equivalent water thickness (EWT), dry matter weight
(DMC), and leaf area index (LAI) exhibited significant influence on the spectral
curves generated by the two-layer coupled model employed for forward simulation.
Notably, LAI had a strong impact on the 700–1450 nm and 1650 nm bands, which are
particularly sensitive to vegetation water content. Consequently, it was observed that
variations in LAI played a crucial role in achieving an accurate estimation of FMC.

(2) A distinct correlation was observed when combining the vegetation index, water
index, and FMC. An estimation method based on a combination of EVI–NDMI was
developed to directly calculate FMC. Compared with the traditional FMC estimation
model, this method eliminated errors arising from using the loss function in physical
model-based forward simulations.

(3) Using the estimation model, the study projected the FMC one week before the
Chongqing forest fire in 2022 and identified a significant declining trend in the local
FMC leading up to the fire event. This trend highlights the effectiveness of early forest
fire warnings made possible by the proposed FMC estimation model.
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