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Abstract: Urban street greening, a key component of urban green spaces, significantly impacts
residents’ physical and mental well-being, contributing substantially to the overall quality and welfare
of urban environments. This paper presents a novel framework that integrates street greenery with
accessibility, enabling a detailed evaluation of the daily street-level greenery visible to residents. This
pioneering approach introduces a new measurement methodology to quantify the quality of urban
street greening, providing robust empirical evidence to support its enhancement. This study delves
into Nanjing’s five districts, employing advanced image semantic segmentation based on machine
learning techniques to segment and extract green vegetation from Baidu Street View (BSV) images.
Leveraging spatial syntax, it analyzes street network data sourced from OpenStreetMap (OSM) to
quantify the accessibility values of individual streets. Subsequent overlay analyses uncover areas
characterized by high accessibility but inadequate street greening, underscoring the pressing need for
street greening enhancements in highly accessible zones, thereby providing valuable decision-making
support for urban planners. Key findings revealed that (1) the green view index (GVI) of sampled
points within the study area ranged from 15.79% to 38.17%, with notably better street greening
conditions observed in the Xuanwu District; (2) the Yuhua District exhibited comparatively lower
pedestrian and commuting accessibility than the Xuanwu District; and (3) approximately 139.62 km
of roads in the study area demonstrated good accessibility but lacked sufficient greenery visibility,
necessitating immediate improvements in their green landscapes. This research utilizes the potential
of novel data and methodologies, along with their practical applications in planning and design
practices. Notably, this study integrates street greenery visibility with accessibility to explore, from a
human-centered perspective, the tangible benefits of green landscapes. These insights highlight the
opportunity for local governments to advance urban planning and design by implementing more
human-centered green space policies, ultimately promoting societal equity.

Keywords: street greenery; image semantic segmentation; machine learning; space syntax; accessibility;
street view

1. Introduction

Green vegetation, including trees, shrubs, and herbaceous plants, holds an indispens-
able role as organic elements that enhance urban environments, uplift the city’s identity,
and enhance the well-being of its residents [1–3]. It represents a critical facet that de-
mands consideration in the planning of eco-friendly urban spaces [4]. Recent decades
have witnessed a paradigm shift in urban planning, moving from prioritizing ‘growth-first’
approaches to emphasizing ‘quality enhancement’ within a broader ‘human-centric’ policy
framework. This citizen-driven demand for improved spatial quality has fueled research
exploring the quality of street greenery from a human-centered perspective [5].
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Streets, essential components of urban public spaces, represent the most frequently
visited public domain in residents’ daily lives. They possess the potential to enhance
inhabitants’ experiences and make substantial contributions to a city’s society and culture.
Existing research highlights the direct impact of street greening on augmenting residents’
perceptions of spatial quality and walkability within their communities [6]. Additionally,
easily accessible urban greenery can effectively foster a sense of place, alleviate daily
stresses, attract residents to outdoor activities, and facilitate routine social interactions [7,8].
Therefore, it is essential to develop methods for effectively measuring the actual benefits of
street greenery experienced by residents in their daily lives.

The crux of the issue revolves around two central questions: (1) How to achieve a fine-
grained analysis of human-scale greening perception in large-scale urban areas? (2) How
to integrate street greenery visibility with street accessibility to explore the tangible benefits
of green landscapes on a human perceptual scale?

Greening measurement constitutes a pivotal task in urban planning and management.
However, conventional manual measurement methods are laborious, time-consuming,
and often lack precision [9–11]. Currently, large-scale evaluations of urban street greening
primarily rely on metrics such as green coverage and the Normalized Difference Vegetation
Index (NDVI), extracted from satellite remote sensing images [12,13]. While these metrics
provide insights into the extent and distribution of urban green spaces, they are limited by
their satellite perspective and fail to capture the genuine visual experiences of city residents
regarding these green landscapes [14,15]. Consequently, they inadequately represent
whether these green spaces align with the people-centric principles of urban development.

Moreover, while the accessibility and visibility of street greenery are commonly con-
sidered, there is a need for a scientific approach to integrating the daily street accessibility
of individuals with the human-scale visual visibility of greenery. Such an approach aims to
precisely analyze the actual human-scale perception of greenery experienced during daily
accessibility, providing valuable insights for planners and policymakers aiming to enhance
greenery landscapes.

Overcoming these challenges requires innovative methods to evaluate the visibility
and accessibility of street greenery across vast urban areas. Fortunately, recent advance-
ments offer promising solutions. Firstly, readily available network street-view images and
OSM data provide ample data for large-scale greenery assessments [16,17]. Concurrently,
machine learning algorithms, particularly image semantic segmentation, significantly im-
prove the efficiency of extracting and analyzing image data [18]; this advancement enables
the rapid extraction of green information from photos. Spatial syntax tools have also
introduced novel research possibilities for accessibility analysis.

To comprehensively evaluate the human-scale street greening experience, this study
selects Nanjing’s main urban area as the research focus. This study utilizes BSV images as
the street green data source. Through image semantic segmentation, accessibility analysis,
and other methodologies, it thoroughly analyzes the accessibility and visibility of street
greenery within Nanjing’s main urban area from a human-scale perspective. The primary
objective of this study is to explore the correlation between street greenery visibility, as
determined by image semantic segmentation, and spatial accessibility, assessed through
spatial syntax. This study investigates the interplay between street greenery visibility and
accessibility, adopting a human-centered perspective to quantify the tangible benefits of
urban green spaces. By identifying areas with street greenery accessibility and visibility, this
analysis provides actionable insights for prioritized interventions in urban planning. These
findings can facilitate the organic revitalization of Nanjing’s street greenery landscape,
ultimately enhancing the lived experiences of residents.

This research assists urban planners in maximizing greenery benefits from a human-
centric standpoint, fostering the equitable distribution of greenery across extensive areas at
the human perceptual scale, further enhancing the impact of green landscapes in people’s
daily accessible regions, and contributing to the creation of more livable and sustainable
urban environments.
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2. Literature Review
2.1. Large-Scale Analysis for Street Greenery

Presently, the primary analytical methods for large-scale street greenery encompass
remote sensing image analysis and street-view image analysis based on image semantic
segmentation techniques.

Remote sensing technology plays a pivotal role in providing comprehensive and spa-
tially explicit information regarding street greenery. Satellite imagery, aerial photography,
and LiDAR data are commonly employed remote sensing sources, facilitating the capture
of spatial distribution and extent of urban green spaces [19–21]. These sources enable the
extraction of vegetation indices for quantifying greenery. For instance, Chinmoy Sarkar
conducted a comprehensive assessment of urban greenery, street design, and walking
using satellite imagery and GIS, unveiling spatial patterns and disparities in green space
distribution [22]. Although these indices provide insights into the extent and distribution of
urban greenery, they are limited by the satellite perspective, unable to capture the authentic
visual experiences of urban residents regarding these green landscapes.

In addition to remote sensing technology, street-view images offer valuable perspec-
tives for analyzing street greenery, with higher spatial resolution. Street-view images are
captured by vehicles equipped with cameras or collected from online platforms such as
Google and Baidu, providing detailed visual information about green spaces along urban
streets [23]. Researchers can utilize street-view images to assess the quality, diversity, and
distribution of street trees, parks, and other green features [24]. By analyzing street-view
images, researchers can gain insights into the accessibility and visual perception of green
spaces from pedestrians’ perspectives. In recent years, street-view images have rapidly
emerged as vital data sources for geographic spatial data collection and urban analysis,
offering insights and supporting informed decision-making [25–27]. Furthermore, image
semantic segmentation technology has become a powerful tool for extracting detailed
information about street greenery from image data. Image segmentation algorithms based
on deep learning and convolutional neural networks make it possible to automatically
segment vegetation areas in images [28–30]. These technologies enable the precise identifi-
cation and classification of different types of vegetation in urban environments, such as
trees, shrubs, and grasslands [31]. By applying image semantic segmentation, researchers
can generate high-resolution maps of street greenery and quantify its spatial distribution
and composition [32]. The proliferation of large-scale image platforms, advancements in
computer vision and machine learning, and the availability of computing resources have
significantly bolstered technical support for research in this field.

2.2. Street Accessibility and Spatial Syntax

Within the context of urban planning, accessibility refers to the ease of using a
transportation system to reach desired destinations from a starting point [33,34]. It
reflects the potential for social, economic, and cultural exchange between the area
and other relevant locations. Urban green spaces, crucial components of urban green
infrastructure, offer numerous potential benefits for public health and well-being [35].
Their accessibility has become a key research focus within environmental justice, social
equity, and urban planning.

Much of the current research on green space accessibility focuses on analyzing access
to park spaces, specifically examining areas within urban landscapes with limited park
accessibility [36,37]. The aim is to strategically plan and develop park green spaces in these
areas, ultimately fostering fairness in green space accessibility [38]. Regrettably, limited
attention has been directed toward the accessibility of street vegetation, a highly visible
form of urban greenery frequently encountered by residents in their daily lives. Therefore,
it is imperative to acknowledge that the potential for people to interact with and be exposed
to daily urban street greening should be regarded as a crucial element in the realm of
human-centric urban green infrastructure development.
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Within the realm of spatial accessibility and urban morphology research, spatial syntax
reigns as a potent analytical tool for dissecting urban spatial accessibility [39,40]. Spatial
syntax analysis is also a useful tool for understanding how streets connect within a network.
It helps researchers, planners, and engineers estimate accessibility based on the network’s
configuration. This makes it a popular choice for urban street network analyses. By
combining spatial syntax theories with GIS, researchers can gain powerful tools for spatial
data analysis and geographical modeling. This allows for a better understanding of the
accessibility of green spaces within the streets that residents use most often. This fusion
of approaches helps us gain deeper insights into green space accessibility, contributing to
more comprehensive research on street space analysis.

2.3. Application of the Techniques with Urban Planning

The application of large-scale street greenery analysis techniques or spatial syntax
technology with urban planning is of paramount significance for urban sustainable develop-
ment [41,42]. By combining data-driven analysis with planning practices, researchers and
practitioners can optimize urban green infrastructure and enhance the quality of the urban
environment. For instance, Li proposed a framework that incorporates street greening
assessment into the urban planning process, utilizing GIS-based analysis to identify priority
areas for green interventions [16]. Similarly, scholars have investigated the relationship
between road networks and land use patterns, as well as the relationship between facility
accessibility and social inequality, aiming to further explore how to integrate spatial syntax
analysis with factors such as user perception, spatial functionality, and how to apply these
integrated analyses to urban planning and design practices [43–45]. This will provide
important guidance for better understanding the complexity of urban space and designing
more sustainable and human-centric urban environments.

The combination of street-view image analysis based on image semantic segmentation
technology and spatial syntax technology in urban planning research will play a crucial role
in shaping the future of urban sustainable development, providing a unique opportunity
to bridge the gap between large-scale urban spatial analysis and high-precision human-
scale green space assessment. It also provides valuable tools for researchers to assess the
extent, quality, and accessibility of urban green spaces, thereby supporting evidence-based
decision-making in urban planning and management.

3. Theoretical Framework

In the process of urbanization, urban green space construction is recognized as one of
the key means to maintain urban ecological environments and enhance residents’ quality
of life [46,47]. Green space construction plays a pivotal role in urban planning, not only
concerning the improvement in urban ecological environments but also involving the
rational allocation and utilization efficiency of urban resources, as well as the fair rights
and interests of residents [48–50]. Efficiency emphasizes the optimal use of resources, while
fairness focuses on the equitable distribution of resources. However, in urban green space
construction, efficiency and fairness often encounter conflicts and require a delicate balance.
We aim to investigate how to achieve a win–win situation in green space construction
through rational planning and design.

However, achieving both efficiency and equity in urban green space construction re-
mains a persistent challenge in urban planning. Street spaces, being the most frequently
utilized areas in people’s daily lives, are directly associated with residents’ well-being
regarding greenery [51,52]. Consequently, the fairness and efficiency of street greenery
landscape construction have become focal points in research and practice [53]. Cur-
rently, two core issues prevail in research: Firstly, how to conduct fine-grained analysis
of human-scale greenery perception efficiently and economically in large-scale urban
areas. Secondly, how to integrate the visibility of street greenery with street accessibility
analysis, prioritizing the enhancement of street greenery landscapes in highly accessible
areas, thus balancing fairness and efficiency, and exploring tangible benefits of green
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landscapes at the human perception scale. Therefore, this paper aims to propose a
comprehensive method for evaluating urban green space construction by considering
both equity and efficiency, integrating image semantic segmentation and spatial syntax
analysis techniques.

To scientifically analyze urban street greenery landscapes as perceived by people, we
employed a greenery analysis method based on image semantic segmentation [54]. This
method utilizes advanced image processing techniques to automatically perform semantic
segmentation on urban street-view images, accurately identifying greenery areas within
the images for rapid calculation of the proportion of green areas. Through this method, we
can objectively assess the quality of street greenery landscapes in various urban settings,
providing a scientific basis for subsequent planning and design endeavors.

Simultaneously, the potential for people to interact with and engage with daily urban
street greenery should be regarded as a key factor in the development of people-centered
urban green infrastructure. Therefore, considering residents’ perceptions of accessible
street spaces comprehensively, we employed a spatial syntax-based accessibility analysis
method [55]. This method considers various factors such as urban road networks and
transportation modes, comprehensively analyzing the paths and time costs for residents to
reach green spaces. By combining this method with a comprehensive analysis of current
green space distribution, we can prioritize enhancing greenery landscapes in street areas
with higher accessibility for residents and propose improvement suggestions.

By integrating the two analysis methods, we can comprehensively evaluate the
effectiveness of urban green space construction and provide scientific support for future
urban planning and design endeavors. The theoretical framework proposed in this paper
not only contributes to optimizing urban green space planning but also facilitates the
achievement of sustainable development goals for cities, thereby enhancing residents’
quality of life.

4. Materials and Methods
4.1. Study Area and Data Sources
4.1.1. Study Area

Nanjing, the capital of Jiangsu Province and a pivotal central city in eastern China,
holds a crucial position as an economic hub (Figure 1). Nanjing’s strategic location sig-
nificantly contributes to regional development, providing the city with abundant natural
resources [56]. Recent assessments indicate that nearly 41% of Nanjing’s developed areas
consist of green spaces, leading to its recognition as a ‘National Forest City’ due to its
favorable green conditions.

In recent years, as a rapidly developing urban center [57], Nanjing’s urban planning
and green space design have been crucial for residents’ quality of life and the sustainable
development of the urban environment [58]. Balancing equity while maximizing the
scientific enhancement of green space landscape benefits is an urgent issue that needs to
be addressed. This study focuses on the five central districts within Nanjing’s inner ring
road: Xuanwu, Qinhuai, Gulou, Jianye, and Yuhua, covering an area of approximately
400 square kilometers. These areas constitute the core of Nanjing, characterized by
dense infrastructure and population. Currently, there is an uneven development of street
greening landscapes in these areas, requiring urgent improvement. There is a need for a
scientific analysis of the current distribution disparities in green environments and the
effective enhancement of accessible street greenery for daily residents. Consequently,
conducting research in this region, particularly against the backdrop of ongoing urban
renewal efforts, can provide valuable insights into improving the quality of visible
greenery in densely populated urban environments.



Forests 2024, 15, 561 6 of 21

Forests 2024, 15, x FOR PEER REVIEW 6 of 22 
 

 

scientific analysis of the current distribution disparities in green environments and the 
effective enhancement of accessible street greenery for daily residents. Consequently, 
conducting research in this region, particularly against the backdrop of ongoing urban 
renewal efforts, can provide valuable insights into improving the quality of visible 
greenery in densely populated urban environments. 

 
Figure 1. Location of the study area. 

4.1.2. Data Sources 
This research primarily utilized administrative boundary data, road data, and BSV 

data for measuring street greenery conditions (Table 1). BSV images, which are street-level 
image data, offer extensive geographic coverage, standardized urban environments, 
geographic coding, and high-resolution images. They serve as a readily accessible 
resource for urban imagery.  

Table 1. Data sources. 

Data Name Data Source 
Administrative Boundary Shapefile Data https://www.resdc.cn/ (accessed on 15 July 2022) 

Road Shapefile Data 
https://www.openstreetmap.org/ (accessed on 15 July 

2022) 
Baidu Street View https://lbsyun.baidu.com/ (accessed on 15 July 2022) 

4.2. Methodology 
4.2.1. Extracting the GVI of the Street through Image Semantic Segmentation 

The image segmentation algorithm based on deep learning enables automatic 
segmentation of vegetation regions within the image. It facilitates the extraction of 
detailed information regarding street green spaces from street image data. Employing 
machine learning, it comprehends and segments the semantic content of the image, 

 
  Figure 1. Location of the study area.

4.1.2. Data Sources

This research primarily utilized administrative boundary data, road data, and BSV
data for measuring street greenery conditions (Table 1). BSV images, which are street-
level image data, offer extensive geographic coverage, standardized urban environments,
geographic coding, and high-resolution images. They serve as a readily accessible resource
for urban imagery.

Table 1. Data sources.

Data Name Data Source

Administrative Boundary Shapefile Data https://www.resdc.cn/ (accessed on 15 July 2022)
Road Shapefile Data https://www.openstreetmap.org/ (accessed on 15 July 2022)

Baidu Street View https://lbsyun.baidu.com/ (accessed on 15 July 2022)

4.2. Methodology
4.2.1. Extracting the GVI of the Street through Image Semantic Segmentation

The image segmentation algorithm based on deep learning enables automatic seg-
mentation of vegetation regions within the image. It facilitates the extraction of detailed
information regarding street green spaces from street image data. Employing machine
learning, it comprehends and segments the semantic content of the image, representing
a fundamental aspect of computer vision [54]. The objective is to assign a category label
to each pixel in the image. Scene and image segmentation can be viewed as extensions
of object detection, aiming to identify specific objects within an image and classify image
pixels into discrete categories describing the image [59]. The application of image semantic
segmentation utilizing deep convolutional neural network architectures allows for the ac-
curate and automated deep processing of street-view image data. This process enables the
identification of various elements within street-view images, including roads, greenery, sky,
buildings, etc. Subsequently, it allows for the extraction of green features from street-view
images and the calculation of street green visibility from a human-scale perspective.

https://www.resdc.cn/
https://www.openstreetmap.org/
https://lbsyun.baidu.com/
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Various image semantic segmentation models have been developed in recent years, pre-
dominantly based on deep convolutional neural networks. These models include FCN [60],
SegNet [61], PSPNet [62], and the DeepLabV3 series [63]. Among them, DeepLabV3+
stands out for its exceptional segmentation performance, leading to widespread adoption
in research endeavors. Consequently, this study selected the widely used DeepLabv3+
semantic segmentation model, as commonly applied in similar studies. Scholars have exten-
sively investigated various landscape elements of urban streets using this model. Following
the segmentation of the street-view image using the model, we performed calculations and
statistical analyses of the GVI for each photo based on the obtained semantic segmentation
results. Detailed operational procedures and calculation formulas will be elucidated in
subsequent chapters. Finally, to validate the accuracy of the model segmentation, we
randomly selected 100 segmented photos and compared them with manually segmented
photos for precision verification.

4.2.2. Accessibility Analysis Based on Spatial Syntax

Spatial syntax focuses on open space systems to achieve a spatial representation
of connectivity and understand how these spatial features influence behavior [64]. It
establishes a model to describe spatial relationships between entities, utilizing methods
such as network analysis, path analysis, and graph theory to analyze connectivity and
accessibility. Employing spatial syntax for accessibility analysis is a method of studying
relationships and accessibility between objects in a spatial environment, commonly applied
in fields like urban planning, transportation planning, and environmental management. In
this study, we will utilize spatial syntax to measure street accessibility.

A range of distance metrics, including the closeness, mean geodesic length, and
mean crow flight, have been developed to represent accessibility [65,66]. Analyzing street
accessibility through spatial syntax typically involves the use of ArcGIS software and
programming tools for practical analysis such as data processing, model construction, and
accessibility analysis. The accessibility results derived from this analysis can elucidate
differences in accessibility between various entities, explore factors influencing accessibility,
and propose corresponding conclusions and suggestions.

This study will utilize the sDNA 4.0.3 spatial syntax software based on the ArcGIS
10.6 [66], along with the angular betweenness metric to describe accessibility. Detailed
calculation formulas and operational procedures will be provided in subsequent chapters.

4.3. Research Design

The research design utilizes a three-step approach:
(1) Street green visibility analysis: Average green visibility of streets in the study

area is analyzed through the collection and processing of street images, categorized into
different levels.

(2) Street accessibility analysis: Street pedestrian and commuting accessibility is
evaluated using spatial syntax, assigning levels based on the degree of accessibility.

(3) Integrated analysis: A comprehensive analysis is conducted that integrates both
green visibility and accessibility metrics for each street. This identification helps pinpoint
areas where daily accessibility is high but there is a lack of sufficient greenery.

4.4. Research Process

The three-step research design outlined above translates into four specific phases in
practice (Figure 2). The initial phase involves data preprocessing, which includes extracting
coordinates of street-view sampling points from OSM to collect street-view images for each
point. Simultaneously, the road network is organized to facilitate subsequent accessibility
analysis. The second stage involves collecting panoramic street photos for street greening
analysis. The Baidu Application Programming Interface (API) is utilized to gather street
scenery images from various points, employing machine learning algorithms for data
processing. These algorithms conduct image semantic segmentation and extract the GVI,
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aiding in the measurement of street greening. The third step involves street accessibility
analysis. Spatial syntax tools, specifically sDNA spatial network analysis, are employed
to quantitatively measure daily and commuting behavior accessibility within the street
network. Finally, a comprehensive analysis integrates visibility and accessibility data. This
analysis assesses the alignment between how easily residents can reach streets and how
much greenery they can see from those streets, essentially quantifying ‘visible greening’.
This reveals priority streets for potential greening interventions within urban renewal and
construction efforts across the city.
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4.4.1. Data Preprocessing

The data preprocessing comprises two essential components. The first component
involves extracting sampling points from street network data. Initially, the line shapefiles
of streets from five urban areas in Nanjing are acquired using OSM. Subsequently, utilizing
ArcGIS, the street network within administrative boundaries is clipped, and sampling
points are extracted from the street shapefile at intervals of 300 m. These sampling points
encompass attribute data of the original OSM streets, along with longitude and latitude
coordinates. A total of 8330 street sampling points were extracted for this study. Figure 3
illustrates the distribution of all sampling points across the OSM street network. For a
detailed view of each sampling point’s precise location, longitude and latitude coordinates
are acquired using ArcGIS, establishing the groundwork for subsequent batch retrieval of
street-view images.
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The second part focuses on organizing and refining the street shapefiles, following
the prescribed steps outlined in the sDNA document. This stage involves the systematic
arrangement and cleansing of the street vector data, ensuring adherence to the specific
procedures stipulated by the sDNA document methodology [66].

4.4.2. Measurement Process of Street Green Visibility

To comprehensively assess street greening levels, this study captured a 360-degree
horizontal perspective around specific sampling points. Using the longitude and latitude
coordinates from these sampling points, we accessed the BSV API and configured parame-
ters. The vertical line of sight for each sampling point was uniformly set at 0◦, while the
horizontal angle remained fixed at 90◦. Subsequently, images were captured at specific
angles of 0◦, 90◦, 180◦, and 270◦, which were then stitched together to create a cohesive
360-degree horizontal street view, providing a comprehensive panorama of the surround-
ings. We input the coordinates of the 8330 sampling points mentioned earlier into the BSV
API using a Python 3.7 program to download BSV images in bulk. This study obtained
BSV images from 7272 sampling points, as some of these points lacked corresponding BSV
data. Key parameters are shown in Table 2.

Table 2. Key parameters in Baidu API.

Parameter Description Parameter Setting

API Key Developer’s key (Baidu API key) key = our API key
Location Coordinates of sampling point location example location = 118.672277, 31.928494

Fov Horizontal angle of view of the BSV image fov = 90, 180, 270, 360
Pitch Vertical angle of view of the BSV image pitch = 10

Utilizing a Deeplabv3+ model-based image semantic segmentation system and ma-
chine learning techniques with the cityscapes dataset, we applied pre-trained weights
to perform image semantic segmentation on the gathered street-view images within the
study area. This process involved accurately identifying green areas and representing plant
regions, using machine learning algorithms. Statistical analysis of these green areas within
the images, along with a specific formula, allowed us to compute the street GVI. Spatial
statistical methods were then applied to determine the GVI for each sampling point within
the study area (Figure 4).
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The formula for the GVI is as follows:

GVIn = Gn
An

= ∑4
i=1 gi

∑4
i=1 ai

, (1)

GVIn represents the GVI for a specific sampling point n; Gn denotes the sum of
the green areas in the four captured images around the sampling point; An signifies
the sum of the total areas in the four captured images around the sampling point; gi
represents the green area in each individual image (0◦, 90◦, 180◦, 270◦) around the sampling
point; ai’ denotes the total area in each individual image (0◦, 90◦, 180◦, 270◦) around the
sampling point. To validate the automated greenery extraction method, the green plant
proportion in each of the 100 randomly selected BSV images was manually calculated. A
high correlation (r = 0.90, p < 0.01) was found between the GVI extracted by the image
semantic segmentation method and the manual extraction, demonstrating strong agreement
between the automated and manual methods. Simultaneously, we associated the GVI data
analyzed at each point with the ArcGIS spatial database, facilitating the creation of a
distribution map for street sampling points categorized by their high and low GVI values.
Utilizing the street shapefile, we computed the average GVI value of sampling points along
the road and classified them into three distinct categories.

4.4.3. Measurement Process of Street Accessibility

In this study, street accessibility was assessed using spatial syntax, which delves into
open space systems, emphasizing spatial connectivity and exploring the impact of such
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spatial characteristics on behavior. The analysis utilized spatial design network analysis
software sDNA integrated with the ArcGIS platform. sDNA encompasses assessments
of the shortest path, considering topology, angles, or metric distance variations. Given
the established strong correlation between angular distance-based accessibility values and
observed human and vehicular behavior distribution, angular betweenness was employed
as a metric for road network accessibility. It assists in identifying the most accessible streets
within the study area. Specifically, sDNA tools were applied to compute accessibility
values. Two accessibility values, 500 m and 5000 m, represented pedestrian and vehicular
accessibility, respectively. Here, the radius signifies the metric distance from each segment
to the radius along all available streets and roads. Thus, the smaller radius (e.g., 500 m) pri-
marily identifies local-scale street relationships, often associated with pedestrian behavior.
Meanwhile, the larger radius (e.g., 5000 m) encompasses a wider area, emphasizing major
streets used in vehicular commuting behavior.

The angular betweenness formula can be represented as follows [65]:

AB(i) = ∑ s ̸=i ̸=t
σst(i)

σst
, (2)

AB(i) represents the angular betweenness of node i (node i is a node in the measured
network); σst denotes the number of shortest paths from node s to node t; σst(i) indicates
the number of shortest paths from node s to node t that pass through node i.

This formula computes the angular betweenness of node i by calculating the proportion
of shortest paths that pass through this node among all the shortest paths. It considers the
role of the node in connecting other nodes via shortest paths; the higher the number of
shortest paths passing through the node, the higher its angular betweenness, indicating
greater importance in the network. After analysis, the sDNA software will directly generate
a shapefile and display the angular betweenness value under the set parameters in ArcGIS.

4.4.4. Combined Assessment Measure of Visible Street Greenery and Street Accessibility

Through an analysis of GVI and accessibility in this study, we divided the streets into
three levels, high, medium, and low, based on the two attributes of GVI value and angular
betweenness. We delineated the spatial domains and prioritization levels for enhancing
urban street greening. Specifically, we pinpointed areas requiring immediate greening
enhancement within street landscapes, focusing on streets characterized by high accessibil-
ity but limited green coverage. These thoroughfares, extensively used by pedestrians or
commuters but lacking sufficient greenery, demand immediate comprehensive greening
improvements. They were categorized as the primary level, consisting of two types: streets
with high pedestrian accessibility but insufficient streetscape greening and streets with
high commuting accessibility yet inadequate streetscape greening. The secondary level
incorporates streets with low green coverage, excluding those previously mentioned. These
streets fall within the broader category necessitating greening enhancements and have been
classified as secondary priority areas in our study. Finally, the tertiary level encompasses
streets with moderate-to-high green coverage. Irrespective of their accessibility levels, these
streets do not require further greening enhancements and have been categorized as the
third priority in our research.

5. Results
5.1. Street Greenery Visibility Analysis

Figure 5a illustrates the GVI values across various sampling points within the
research area. This study conducted a statistical analysis of the GVI values across distinct
zones. As demonstrated by the boxplot (Figure 6), the GVI values of the sampling points
in the research area predominantly fall within the range of 15.79% to 38.17%, with a
median value of 26.50%. Overall, the median values of street greening in the five zones
are relatively consistent, varying between 22.18% and 29.65%. Specifically, the median
GVI of the Xuanwu District’s street sampling points is at 29.65%, with lower and upper
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quartiles at 17.81% and 43.61%, respectively. In comparison to other regions, this area
displays a relatively higher GVI among the sampling points. Conversely, the Yuhua
District’s median GVI stands at 22.18%, with the majority of its sampling points ranging
between 13.10% and 32.86%. In relative terms, this area demonstrates a comparatively
lower GVI among the sampled points.
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At the same time, the GVI value of each sampling point is associated with its corre-
sponding adjacent street segment, so that the average GVI value of each street segment can
be calculated. Furthermore, streets with available greening data were classified into three
categories based on the volume of greening data: low, medium, and high green visibility
streets (Figure 5b). Subsequent analysis within the research domain aimed to quantify the
lengths of streets in different districts necessitating urgent greening enhancements. As
outlined in Table 3, the Yuhua District demonstrates an average GVI value of 24.05%, with
streets categorized as having low green visibility spanning a length of 286.53 km, indicative
of inadequate greening conditions. In contrast, the Xuanwu District exhibits an average
GVI of 30.75%, signifying a relatively superior greening environment compared to others.
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Table 3. The GVI statistical table of the streets in the research area.

Area Average GVI (%) Total Length of Street
(km)

Street Length with
Low GVI (km)

Proportion of Street Length
with Low GVI (%)

Gulou District 27.85 436.94 140.62 4.73
Jianye District 28.87 718.76 160.66 5.40

Qinhuai District 26.25 477.58 154.25 5.19
Xuanwu District 30.75 524.4 136.76 4.60
Yuhua District 24.05 816.43 286.53 9.63

All 27.74 2974.11 878.82 29.55

If the urgency of street greening construction in the study area is based on the average
level of street GVI value, Yuhua District and Qinhuai District emerge as the areas requiring
immediate attention (Figure 5c). Similarly, when prioritizing based on the lowest level of
the street GVI value, these two districts also rank as priorities for construction (Figure 5d).

5.2. Street Accessibility Analysis

Figure 7 presents the street accessibility across the five urban districts of Nanjing.
This study assesses the road network accessibility in Nanjing’s research area using two
analysis radii for daily walking and commuting. Within the 500 m radius, roads with higher
accessibility concentrate primarily in the core urban regions characterized by shorter streets
and a higher intersection density. Conversely, within the 5000 m radius, higher accessibility
roads are evenly dispersed across the entire area, predominantly encompassing the main
and secondary arteries traversing these districts. Both radii’s results suggest a differen-
tiation in traffic potential concerning travel distances: shorter distances favor residential
streets, commonly utilized for daily walking, while longer distances for commuting tend
toward major express routes. Generally, pedestrian accessibility across the studied area’s
streets remains relatively low. Certain zones within the central area display commendable
pedestrian accessibility (Figure 7a). Additionally, Figure 7b highlights major highways and
primary streets denoted with high accessibility (highlighted in red), while streets exhibiting
lower accessibility, especially in the context of daily commuting, are depicted in blue.
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In this study, the first one-third of street segments were classified as highly accessible
streets based on their angular betweenness values. As detailed in Table 4, within the
Xuanwu District, streets characterized by high pedestrian and commuting accessibility span
lengths of 155.86 km and 249.15 km, respectively, accounting for 5.24% and 8.38% of the total
street length analyzed. Similarly, in the Yuhua District, streets exhibiting high pedestrian
and commuting accessibility encompass lengths of 89.3 km and 115.48 km, respectively,
representing 3.00% and 3.88% of the total street length examined. In comparison, Xuanwu
District and Gulou District exhibit relatively good levels of both walkability and vehicular
accessibility (Figure 7c,d).

Table 4. The statistics table of high accessibility streets.

Area
High Pedestrian Accessibility Streets High Commuting Accessibility Streets

Length (km) Proportion (%) Length (km) Proportion (%)

Gulou District 135.6 4.56 227.86 7.66
Jianye District 100.23 3.37 178.84 6.01

Qinhuai District 126.1 4.24 202.36 6.80
Xuanwu District 155.86 5.24 249.15 8.38
Yuhua District 89.3 3.00 115.48 3.88

All 607.09 20.41 973.69 32.74
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5.3. Combined Analyses between Visible Street Greenery and Street Accessibility

To unify pedestrian accessibility, commuting accessibility, and street greening values
into a cohesive framework, these metrics are stratified into three levels based on street
quantity: high, medium, and low. Spatial areas characterized by low greening but high
accessibility fall under the primary level, while other areas exhibiting low greening are
categorized into the secondary level, leaving the remainder of street spaces in the tertiary
level. Figure 8a illustrates the landscape improvements in three levels of street greening,
highlighted from red to blue. The primary level, frequently accessed yet lacking in street
greening, denotes areas in urgent need of substantial greening landscape enhancement.
Approximately 139.62 km of streets in the study area fall into the primary level, constituting
4.69% of the measured street length, while approximately 739.20 km are categorized as
the secondary level, representing 24.85% of the measured street length (Table 5). Among
these, the Gulou District features the longest length of spaces needing improvement in the
primary level, totaling 38.93 km (1.31%), while the Jianye District showcases the shortest
length requiring enhancement in the primary level, totaling 13.57 km (0.46%). The Yuhua
District displays a higher length of secondary-level street spaces at 263.80 km (8.87%)
compared to the secondary-level spaces in other districts.
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Figure 8. Identifying the street levels and urgent sequence of street green space construction for
enhancing urban greening efforts. (a) The street levels for enhancing urban greening efforts; (b) the
urgent sequence of street green space construction.

Table 5. The statistics table of the street levels for enhancing urban greening efforts.

Area
The Primary Level The Secondary Level The Tertiary Level

Length
(km)

Proportion
(%)

Length
(km)

Proportion
(%)

Length
(km)

Proportion
(%)

Gulou District 38.93 1.31 101.69 3.42 296.32 9.96
Jianye District 13.57 0.46 147.09 4.95 558.1 18.77

Qinhuai District 26.44 0.89 127.81 4.30 323.33 10.87
Xuanwu District 37.95 1.28 98.81 3.32 387.64 13.03
Yuhua District 22.73 0.76 263.80 8.87 529.9 17.82

All 139.62 4.69 739.20 24.85 2095.29 70.45

5.4. Research Findings

This study highlights the importance of considering both street greening visibility
and accessibility for a comprehensive understanding of urban green space distribution.
An initial analysis of street greenery visibility reveals relatively favorable conditions in
Xuanwu (29.65% median GVI) and Gulou (27.37% median GVI) Districts compared to
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Yuhua (22.18% median GVI). Therefore, solely based on the street GVI values, both Yuhua
District and Qinhuai District emerge as areas urgently requiring street greening initiatives
(Figure 5c,d). However, when considering accessibility, a contrasting picture emerges.
Xuanwu (37.95 km) and Gulou (38.93 km) have the most primary-level streets in urgent
need of greenery improvement, constituting 1.28% and 1.31% of the total, respectively.
Conversely, Yuhua has a smaller proportion of streets needing improvement (22.73 km,
0.76%); under these conditions, Xuanwu District and Gulou District are areas that urgently
need street greening construction (Figure 8b).

Despite favorable baseline greenery, Xuanwu and Gulou Districts, located in the city
center, boast high accessibility due to their central location. In contrast, Yuhua’s streets lie
primarily in the outskirts, resulting in lower daily accessibility. This explains why Yuhua,
despite lower baseline greenery, requires less urgent improvement in the primary-level
streets compared to the centrally located districts.

Based on these findings, prioritizing street greenery improvement in highly accessible
areas with a low GVI is recommended. This approach maximizes the benefit of street
greenery for residents in areas they frequent most easily and efficiently, ultimately creating
a better balance between green visibility and accessibility. Meanwhile, it is worth noting that
in densely populated urban spaces such as the main urban area of Nanjing, high-density
urban construction limits the street space available for tree planting, resulting in high
accessibility and limited visible street greening. Therefore, in the process of strengthening
the urban greening landscape in the future and further improving road greening, other
forms of urban greening can also be considered, such as integrating vertical greening on
building facades.

6. Discussion
6.1. Fine-Grained Analysis of Human-Scale Greening Perception in Large-Scale Urban Areas

Previous practices and research in urban street greenery planning have often focused
on field surveys or measurements of visible greenery, often within limited geographical
areas such as neighborhoods [67,68]. With the advancement in large-scale remote sensing
data, scholars have begun utilizing remote sensing imagery for greening assessments.
While high-resolution images offer a useful tool for depicting green spaces at a fine level,
objective greenness derived from remote sensing imagery often lacks consistency with
human perception [69]. This inconsistency arises from the failure to consider the lateral
view of green coverage, representing what people actually see from ground level, which
directly relates to the benefits provided by street greening [9].

However, our study integrates large-scale urban street-level data collection with a
human-centric perspective. We employ machine learning-based image semantic segmenta-
tion to accurately analyze the visibility of human-scale greenery perception within urban
areas. In our research, the use of machine learning-based image semantic segmentation
automates the extraction of green pixel information from street images, replacing tradi-
tional manual methods [70]. This innovation significantly enhances the efficiency of data
collection and processing for measuring human-scale greenery perception. By utilizing
street-level imagery, our approach captures greenery from a human-scale perspective, more
accurately reflecting how people experience green spaces in their daily lives.

In conclusion, our study explores fine-grained analysis of human-scale greenery
perception in large-scale urban areas, revealing the research potential of new data
and methods.

6.2. Examining Actual Greening Perception in Daily Street Spaces at the Human Scale

The accessibility and interaction of urban greenery by individuals should be regarded
as a key concern in sustainable urban planning, particularly in themes related to environ-
mental justice and health [50,71]. Currently, significant research has been conducted on
the geographical accessibility of green spaces such as parks and woodlands using GIS
applications, focusing on metrics like shortest distance or travel time [72]. However, limited
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attention has been given to the accessibility of roadside vegetation, which constitutes a
highly visible form of urban vegetation that many residents encounter and experience
daily [73]. Moreover, in contrast to recent studies solely focused on street greening, some
methodologies overlook the comprehensive analysis of everyday accessible public spaces
and street greening visibility [25,74]. In contrast to recent studies solely focused on street
greening, our approach integrates the visibility of street greening with street accessibil-
ity, quantifying the actual benefits of green landscapes experienced within the human
realm. By overlaying street accessibility with greening values, the accuracy of estimating
the real benefits to urban residents is enhanced, thereby providing valuable insights for
evidence-based decision-making in urban planning and design practice.

Essentially, this study prioritizes an actionable approach to measure visible street
greening associated with human behavior and experience. This method swiftly and directly
quantifies the greenery encountered by residents in their daily lives. The practical appli-
cation of this quantitative approach offers hope for decisionmakers and urban planners
to effectively identify discrepancies in greening resources. This information informs the
formulation of green space optimization policies that prioritize social equity. These policies
target streets with high accessibility but low green visibility, aiming to enhance green
levels and improve living environments. Such a strategic approach, besides preventing
the gentrification of green spaces, also contributes to the development of human-centered
livable societies. Therefore, integrating quantifiable visible greening requirements into
urban zoning and design guidelines, as supplementary indicators, promotes street greening
from a human-centered perspective.

6.3. Future Research and Limitations

Further research could explore the relationship between residents’ daily exposure
to visible street greenery and their well-being, including environmental attitudes, social
cohesion, physical activity, and psychological health. This knowledge can inform planning
and policy-making to promote well-being, public health, and social equity by addressing
unequal green space distribution and associated health risks. Ultimately, it fosters healthy
urban planning practices.

Moreover, there are practical applications and extensions in both research content
and methods. For cities with multi-year street image data, continuous monitoring of the
greenery at different stages can be achieved through data comparison between different
years, serving as an objective basis for urban construction and management decisions. In
areas lacking databases like BSV, and in sensitive areas such as historical centers, panoramic
cameras can be employed for data collection, followed by data processing and analysis us-
ing the mentioned technological methods to achieve similar analytical outcomes. Likewise,
in the improvement in green landscapes in certain sensitive areas, local planning authorities
should review these suggestions in conjunction with various other considerations, such
as land availability, preservation of historical facilities, and transportation issues, to select
suitable locations for design interventions aimed at increasing greenery.

Additionally, there are also some limitations in our study. Firstly, there are areas not
covered by the street image database. Similarly, the distance set for data collection points
in this study was 300 m. For urban environmental studies using finer-scale street-view
images, smaller distance intervals could be considered, as different distance intervals can
impact the precision of street greening data analysis.

7. Conclusions

The focus of this study lies in the integration of advanced techniques such as image
semantic segmentation and spatial syntax to combine street greenery visibility with street
accessibility. This study has two main characteristics: Firstly, a significant achievement of
this study is the meticulous measurement and analysis of human-scale greenery perception
across large urban regions. Leveraging machine learning-based image semantic segmenta-
tion, this research achieves the automated segmentation of a large number of street-view
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images. This approach facilitates the accurate calculation of street GVI with advantages
such as scalability and cost-effectiveness, effectively addressing the time–cost challenges
associated with large-scale urban analysis. Secondly, this study integrates street greenery
visibility with street accessibility to explore the tangible benefits of green landscapes on a
human perceptual scale. By overlaying street accessibility with greenery value, it enhances
the accuracy of estimating actual benefits to urban residents. This approach provides a
novel perspective for the fine assessment of street greenery in barrier-free urban spaces. We
aimed to balance fairness and efficiency in urban planning by comprehensively considering
street accessibility and greenery visibility, thereby swiftly enhancing the visibility of green
spaces in streets frequented by residents in the most efficient and cost-effective manner.

This study provides a prioritized strategy for enhancing street greening, offering
valuable guidance to urban planners and policymakers for targeted interventions in critical
areas. Informed by a thorough analysis of accessibility and visibility, these interventions
encompass several key approaches: The implementation of targeted greening initiatives
in areas characterized by high accessibility but limited green visibility is proposed. This
approach is aimed at optimizing the distribution of urban green spaces and fostering
residents’ well-being. Additionally, the integration of quantifiable visible greening criteria
into urban zoning and design guidelines is recommended. This integration emphasizes a
human-centered perspective, thereby promoting street greening effectively. Overall, these
urban planning strategies are anticipated to effectively enhance urban green space planning,
optimize urban space utilization, and elevate residents’ quality of life in the research area.

Future research efforts could emphasize several key areas. Firstly, investigating the
correlation between residents’ exposure to visible street greenery and diverse dimensions
of well-being, including environmental attitudes, social cohesion, and psychological health,
would provide valuable insights. Secondly, exploring the potential of emerging technolo-
gies, such as panoramic cameras and machine learning algorithms, for ongoing monitoring
of street greening and its influence on urban environments holds promise for advancing
our understanding. Lastly, assessing the effectiveness of various greening interventions in
improving urban livability and promoting social equity would be instrumental in guiding
future urban planning endeavors.

In summary, this study not only advances our understanding of human-scale greening
perception in urban areas but also provides practical guidance for urban planning and
design practices. By synthesizing our findings and offering precise recommendations, we
aim to contribute to the development of sustainable and livable cities.
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