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Abstract: The Tarim Basin is located in an arid inland area; the ecological environment is fragile,
and it is extremely sensitive to climate change. For the purpose of studying dynamic changes in the
vegetation response of vegetation in the Tarim Basin to extreme climate, this study used the Vegetation
Ecological Quality Index (EQI) as a vegetation indicator and calculated 12 extreme climate indices
using Rclimdex. Pearson correlation analysis was used to explore the relationship between EQI
values and various extreme climate indices at both inter-annual and intra-annual scales. Additionally,
geographic detector analysis was employed to examine the single and interactive effects of extreme
climate on the EQI for different vegetation types. The following was found: (1) During 2000–2022,
the EQI showed an upward trend in the Tarim Basin, and the increase in agricultural vegetation was
the fastest. (2) Since 2000, the extreme warm temperature indices have risen, whereas the extreme
cold temperature indices have declined. The warming rate of nighttime temperatures exceeds that of
daytime, and the extreme precipitation rises intensively. Simultaneously, continuous dry days have
also increased. (3) On an inter-annual scale, the EQI is primarily negatively correlated with the most
extreme warm temperature indices, while it is positively correlated with extreme cold temperatures
and extreme precipitation indices. On an intra-annual scale, there is an obvious regional concentration
in the correlation between the EQI and extreme climate indices. The diurnal temperature range (DTR)
and cold daytimes (TX10P) have inhibitory and promoting effects on areas with high and low EQI,
respectively. The extremum indices, temperature warm indices, and precipitation intensity indices
have a promoting effect on areas with a high EQI and an inhibiting effect on areas with a low EQI.
The interaction between extreme climate indices has a greater impact on the EQI than the effect of a
single extreme climate index, especially with a significant impact on forests and shrubs. This study
provides a reference for the early warning of meteorological disasters, ecosystem protection, and
sustainable management in the Tarim Basin.

Keywords: Tarim Basin; Vegetation Ecological Quality Index; extreme climate; contribution rate

1. Introduction

The occurrence and intensity of extreme climate events have significantly increased
due to the large-scale climate warming observed since the mid-20th century [1,2]. It is antic-
ipated that this trend will only grow stronger in the future [3,4]. Due to the unpredictable
and destructive nature of an extreme climate, it has a negative impact on ecosystems and the
social economy [5]. It has become evident that vegetation growth in terrestrial ecosystems
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is significantly impacted by climate change [6]. Extreme climates have a greater and more
pronounced impact on vegetation compared to a typical climate. This is due to the abrupt
onset of extreme climate, which leaves vegetation communities with insufficient time to
adapt, causing the population of crucial species in the ecosystem to decline, and causing
terrestrial ecosystems to face significant challenges [7–11]. Vegetation change caused by
extreme climate represents the most urgent and significant consequences of climate change
for both the economy and the environment. As a result, extensive research has been imple-
mented for the sake of the impacts of extreme climate upon vegetation [12–15]; monitoring
vegetation change and its response to climate extremes is essential to inform ecosystem
mitigation responses [16].

Data obtained through remote sensing can be employed to observe the varying changes
in vegetation [17]. Commonly used vegetation ecological indices include the Normalized
Difference Vegetation Index (NDVI) [18], Fraction of Vegetation Cover (FVC) [19], Enhanced
Vegetation Index (EVI) [20], Gross Primary Productivity (GPP) [21], and Net Primary Pro-
ductivity (NPP) [22]. However, these vegetation ecological indices reflect only one of the
vegetation indicators of vegetation coverage or productivity. The growth status of vegeta-
tion is not solely indicated by a single characteristic measure of vegetation productivity
or coverage, and the outcomes are not exhaustive [23]. Therefore, some scholars have
improved the vegetation index and constructed a comprehensive index through multiple
vegetation ecological indices to reflect the comprehensive growth of vegetation. At present,
the study on vegetation NPP and FVC is still in the research and application phase of
individual estimation methods [14,19], and few models and methods based on the two
have been observed to estimate the overall ecological quality of vegetation [23]. In 2019,
the China Meteorological Administration released the Land Vegetation Meteorological and
Ecological Quality Monitoring and Evaluation Level, which introduced the Vegetation
Ecological Quality Index (EQI) composed of the FVC and NPP as two key characteristic
quantities to comprehensively reflect the overall condition of vegetation and ecosystems;
by adjusting the weight coefficients of FVC and NPP, the EQI can be applied to different
regions [24]. Currently, research on the EQI mainly focuses on monitoring dynamic changes
in vegetation and reflecting the impact of climate change, human activities, and other fac-
tors on vegetation [25–28]. There are also studies using the EQI to reflect the response
of vegetation in the Yellow River Basin [29], the Chengdu–Chongqing Economic Zone in
China [30], and the Aksu region of Xinjiang [31] to extreme climates. These studies have
demonstrated the feasibility of using the EQI to study the dynamic changes in vegeta-
tion and its response to extreme climates. However, research on the EQI is still limited,
especially in relation to the Tarim Basin EQI, which is currently restricted to the Aksu
region on the northern edge of the Tarim Basin, and the weights of FVC and NPP in the
EQI calculation of the Tarim Basin refer to the EQI calculation of the Aksu area [31]. The
temporal and spatial characteristics of EQI changes are affected by the research period,
region, and vegetation type, leading to some differences [29]. Therefore, it is necessary to
conduct further research on the Tarim Basin EQI.

Vegetation is highly sensitive to climate change in arid regions, and increasing temper-
ature and precipitation can prolong the growth period of vegetation in Central Asia [32]. In
the arid region of Eritrea, vegetation degradation has been attributed to extreme drought in
a warming climate [33]. In arid areas of Spain, vegetation is more responsive to drought [34].
There are similarities and differences in the responses of vegetation to climate in different
arid areas. The common denominator is that precipitation is the main factor affecting
vegetation in arid areas because changes in temperature and precipitation can determine
the hydrothermal conditions of vegetation growth, especially for arid and semi-arid ecosys-
tems [35]. Therefore, the response of vegetation to extreme climate in the Tarim Basin needs
to be explored. In previous studies, the primary focus was on examining how individual
extreme climate factors impacted vegetation. However, this approach failed to fully capture
the complete influence of extreme climate on vegetation growth. It overlooked the intricate
coupling effect between extreme climate indices, which has a more pronounced influence
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on vegetation [36,37]. In addition, the growth of vegetation in different ecosystems is
affected by distinct water and heat requirements; consequently, the impacts of extreme
climate on different vegetation types exhibit significant variations [38–40]. However, most
studies have ignored this difference by focusing on changes in the entire vegetation in
relation to the influence of extreme climate; less have studied the extreme climate in relation
to the influence of different vegetation types [41] and the extreme climate coupling effect of
vegetation growth [42,43]. Therefore, this study not only examines the impact of extreme
climate events on vegetation on both inter- and intra-annual scales, but also investigates
the combined impact of two extreme climate factors on the growth of various types of
vegetation, as well as the individual contribution of each extreme climate factor to vegeta-
tion growth. Although there have been studies on the effects of complex extreme climate
disasters on vegetation growth from various perspectives, there are still few systematic
studies on the coupling effects of multiple extreme climate indicators on the contribution
rate of vegetation [37]. Particularly lacking are studies on the effects of the coupling of
extreme climate on different vegetation types in arid areas.

The Tarim Basin is located in the southern part of Xinjiang, China. It is an inland
arid region that exhibits high susceptibility to climate change. Its vegetation is largely
distributed on the basin edge, where various oasis sizes and shapes are scattered [44–46].
The following are this study’s primary goals: (1) Breaking down the dynamic variations
in extreme climate and the EQI in the Tarim Basin’s vegetation distribution region in
order to improve knowledge regarding extreme climate change in arid regions, providing
guidance for future risk assessment and economic development in relation to climate-
related disasters, as well as a basis for preventing desertification. (2) Analyzing vegetation
responses to extreme climate in order to help alleviate the negative effects of extreme
climate and protect the ecosystem stability. (3) Exploring the contribution of extreme
climate to various vegetation types, providing strategies and laying a foundation for the
adaptation of vegetation to different climates.

2. Study Area

In the Tarim Basin, the climate is dry, experiencing an average annual precipitation of
116.3 mm. The river experiences its highest water levels in July, August, and September
due to snow melting and effects of glaciers [47]. The vegetation found in the Tarim Basin
primarily consists of trees and shrubs that are able to withstand drought conditions. These
types of vegetation are typically found growing along the river. Additionally, there are
numerous oases of varying sizes located along the periphery of the Tarim Basin, which
have a crucial function in supporting human survival and socio-economic progress and are
sensitive to the climate [48,49]. The research area was defined as the vegetation and oasis
distribution area near the basin, in addition to surrounding areas of the Taklimakan Desert
highway where vegetation is distributed (Figure 1a). The research area primarily consists of
woodland, shrubs, meadow, desert vegetation, and agricultural vegetation. The remaining
areas are predominantly characterized by bare gobi or desert (Figure 1b). The dominant
species are mainly shrubs and herbaceous plants. The main vegetation includes Populus
euphratica Oliv., Tamarix ramosissima Ledeb., Glycyrrhiza inflata Batal., Alhagi camelorum Fisch.,
Nitraria tangutorum Bobr., and Kalidium foliatum (Pall.) Moq. [50]. The main agricultural
crops are cotton, wheat, and corn [51].
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Figure 1. Study area location distribution maps: (a) distribution map of the geographical location and
meteorological stations of the Tarim Basin; (b) distribution map of vegetation types in the Tarim Basin.

3. Datasets and Methodology
3.1. Data Sources and Pre-Processing

The meteorological information originated from two sources. One of these sources was
the China Meteorological Data-Sharing Service System (http://cdc.cma.gov.cn/, accessed
on 13 February 2023), which contains the common maximal and minimal temperatures
and precipitation taken from 42 meteorological stations between 2000 and 2022. These data
were used for calculating extreme climate indices using the Rclimdex(1.0) software, and the
sunshine percentage was used to calculate the monthly solar radiation. The other source
was the National Earth System Science Data Center (National Science and Technology
Infrastructure of China) (http://www.geodata.cn, (accessed on 9 July 2023), accessed on
20 July 2023), which provided monthly mean temperatures and precipitation from 2000
to 2022 at a space resolution of 0.0083333◦ (more or less 1 km). We sampled the data to
a space resolution of 500 m as raster data, and interpolated the monthly solar radiation
data to an identical resolution by means of ANUSPLINE. The monthly mean temperatures
were used to calculate the NPP parameters in the CASA model, as well as monthly average
precipitation, and monthly solar radiation.

NDVI data were derived from the 2000–2022 MODIS13A1 data product, which was
supplied by the National Aeronautics and Space Administration (NASA) Data Center.
The spatial resolution was 500 m; in addition, the time interval was 16 days. From the
MODIS13A1 data, we selected images of the vegetation between April and October. Syn-
chronously, the maximal value synthesis (MVC) approaches were utilized, with the aim
of attaining month-by-month NDVI data. The NDVI data were then used to calculate the
NPP and FVC.

The data for the vegetation types comprised 1:1,000,000 vegetation type maps of
China from the Western China Environmental and Ecological Science Data Center (http:
//westdc.westgis.ac.cn, accessed on 6 August 2023); these data were applied to the CASA
model for the purpose of figuring out the NPP.

3.2. Methods
3.2.1. Calculation of the Extreme Climate Indices

We selected 12 extreme climate indices, recommended by the Climate Change Detec-
tion and Index Expert Group (ETCCDMI), that exhibited strong associations with vege-
tation, flood disasters, high temperatures, and low temperatures in the Tarim Basin, as
shown in Table 1. The raw data were first screened with the Rclimdex model to exclude
outliers. Missing values were recorded as −99 to ensure that no more than 1% of the values
were missing.

http://cdc.cma.gov.cn/
http://www.geodata.cn
http://westdc.westgis.ac.cn
http://westdc.westgis.ac.cn
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Table 1. The names and meanings of extreme climate indices.

Type Descriptive Name ID Definition Unit

Extreme
temperature

indices

Extremum indices
Min Tmin TNn The minimum daily minimum temperature

per month
◦C

Max Tmax TXx The maximum daily maximum
temperature per month

◦C

Cold indices
Cold daytimes TX10P Count of days where TX < 10th percentile % of days

Cold nights TN10P Count of days where TN < 10th percentile % of days

Warm indices
Warm daytimes TX90P Count of days where TX < 10th percentile % of days

Warm nights TN90P Count of days where TN > 90th percentile % of days

Absolute index Summer days SU25 Annual count when TX (daily maximum)
> 25 ◦C days

Other indices Diurnal
temperature range DTR

Mean value of the difference between TX
(daily maximum temperature) and TN

(daily minimum temperature)

◦C

Extreme
precipitation

indices

Intensity indices

Max. one-day
precipitation RX1d Maximum daily precipitation per month mm

Max. five-day
precipitation RX5d Maximum precipitation for five

consecutive days per month mm

Simple daily
intensity index SDII

Annual total precipitation divided by the
number of wet days (defined as PRCP

≥ 1.0 mm) in the year
mm/day

Continuous
indices

Consecutive dry
days CDD Maximum length of dry spells days

3.2.2. Pixel Dichotomy Model

Vegetation cover (FVC) refers to the percentage of the total area covered with ground
vegetation [52]. The vegetation cover calculated using the NDVI-based pixel dichotomy
model has high accuracy and is widely used [53]. In this study, the FVC was determined
using MODIS13A1 monthly synthetic NDVI data for the period spanning from April to
October, which represents the vegetation growing season, from 2000 to 2022. The model
of the pixel dichotomy was adopted for the sake of calculating the FVC, and the average
monthly FVC values were combined to calculate the annual FVC. The formula for the FVC
is as follows:

FVC = (NDVI − NDVIsoil)/
(
NDVIveg − NDVIsoil

)
(1)

NDVIsoil is nearly 0, and it refers to the NDVI value of pure bare soil pixels. NDVIveg
is roughly 1, and it refers to the NDVI of pure vegetation pixels. In fact, noise frequently
impacts remote-sensing images, which makes it hard for them to be up to standard in
real-world environments. In the calculation process, the gray value of the image element at
the 5th and 95th percentiles is typically used to calculate the FVC in desert areas, taking
into account the environmental characteristics of arid regions [54,55]. In this study, in
combination with previous research experience, the first 5% of the NDVIV was chosen
as the NDVIsoil, while the NDVI value corresponding to the latter 95% was selected as
NDVIveg.

3.2.3. NPP Calculation Based on CASA Model

The CASA model is the most extensively applied model for estimating light energy
utilization. Potter [56] was the first to use CASA to estimate the North American vegetation
NPP. Two main parameters, the vegetation absorbed photosynthetic active radiation (APAR)
and the light energy utilization ratio (ε), are primarily used to estimate the NPP [57]. The
formula for calculating this is listed as follows:

NPP(x, t) = APAR(x, t)× ε(x, t) (2)
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In Equation (2), the APRP denotes the favorable radiation for plant photosynthesis
(MJ·m−2) on a specific pixel (x) during the t month. The symbol ε represents the efficiency
of light energy utilization (x), also known as the photogenic utilization rate (gC·MJ−1).
Regarding the calculation methods for APAR and ε, please refer to the literature [58].

3.2.4. Calculate the Vegetation Ecological Quality Index

The Vegetation Ecological Quality Index (EQI), constructed from the vegetation NPP
and FVC, can reflect both the ability of vegetation to produce and its cover capacity per
unit area. The NPP and FVC form an integrated model using a weighted approach [29].
The formula for the EQI is as follows:

EQI = 100 ×
(

f1 × fvc + f2 ×
NPP

NPPmax

)
(3)

In Equation (3), the EQI ranges from 0 to 100. NPPmax stands for the highest value of
the vegetation NPP that was documented throughout the designated assessment period. f1
and f2 are weight coefficients, where the sum of f1 and f2 is 1, and the values of f1 and f2
are adjusted according to the region; in this study, both f1 and f2 are set at 0.5.

3.2.5. Pearson Correlation Analysis

Pearson correlation analysis is used to calculate the correlation coefficients between
extreme climate indices and the EQI. We employed the correlation coefficient for the sake
of indicating the extent to which vegetation responds to extreme climate (significance level
0.05) [16].

3.2.6. Geographic Detector

The geographic detector is a group of statistical approaches. This detector is used
for detecting the spatial differences and uncovering the driving factors and influencing
mechanisms behind them [59,60]. This study examined the explanatory power of individual
extreme climate factors and combinations of two extreme climate factors on the EQI using
factor detectors and interaction detectors.

Factor detector: The factor detector primarily quantitatively measures the spatial
differentiation of each natural factor’s impact on the EQI of the Tarim Basin by evaluating
the factor’s level of explanatory power. For the explanatory power q value, the formula is
expressed below:

q = 1 − ∑L
h=1 Nhσh

2

Nσ2 (4)

In Equation (4), h represents the layer of the influence factor. Nh refers to the sample
size of the factor in layer h. Additionally, N refers to the sample size of the factor in the
entire study area. Moreover, h refers to the variance of the factor in layer h; δh

2 refers to
the variance of the factor in the EQI of the research area. The q values span from 0 to 1. A
higher q value signifies a greater explanatory capacity of the factor in relation to the EQI
space distribution. q = 0 indicates that the factor is not correlated with the EQI. Conversely,
when q = 1, this suggests that the factor is capable of completely explaining the spatial
pattern of the vegetation ecological quality.

Interaction detector: The interaction detector is a tool utilized for the sake of de-
termining if the interaction between two influence factors will enhance or weaken their
explanatory EQI capability. It evaluates whether the impacts of these elements on the EQI
are independent of one another. In this study, interactive detection was used to reflect the
explanatory capability of the interaction between various extreme climate indices to the
EQI. The criteria for making these judgments are listed in Table 2.
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Table 2. Interaction types of impact factors.

Description Interaction

q (X1 ∩ X2) < min(q(X1), q (X2)) Weakened, nonlinear (WN)
min(q(X1), q (X2)) < q (X1 ∩ X2) < max(q(X1), q (X2)) Weakened, unique (WU)

Max(q(X1), q(X2)) < q (X1 ∩ X2) < q(X1) + q(X2) Enhanced, bilinear (EB)
q (X1 ∩ X2) = q(X1) + q(X2) Independent (I)
q (X1 ∩ X2) > q(X1) + q(X2) Enhanced, nonlinear (EN)

Note: X1 and X2 indicate impact factors.

4. Results
4.1. Change Characteristics of Vegetation Ecological Quality

This study analyzed the annual mean (growing season) changes in EQI on an inter-
annual scale. As depicted in Figure 2, the EQI in the Tarim Basin exhibited a significant
increase from 2000 to 2022, growing at a rate of 1.52/10a (p < 0.001). During this specified
time frame, the EQI experienced its lowest value in 2007 (13.793), its highest value in
2015 (18.765), and maintained an average value of 16.603. The trend in the EQI change
for all vegetation types exhibited similarity to the annual EQI change trend (Figure 2b),
indicating a significant increasing trend. The range of the annual average EQI was found to
be 9.899–59.355. The EQI growth rate of agricultural vegetation was the highest at 3.71/10a.
On the other hand, desert vegetation exhibited the slowest growth rate, with a value of
1.45/10a.
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Figure 2. Inter-annual variations in the EQI from 2000 to 2022. (a) Variations in the overall EQI within
the Tarim Basin; (b) EQI fluctuations across different vegetation types.

Figure 3a shows the average EQI’s spatial distribution pattern in the Tarim Basin from
2000 to 2022. The EQI ranges from 0.12 to 78.15 across the study area. The regions with
high EQI values in the Aksu region are primarily located at the juncture of the regions
of Kuqa, Shaya, and Xinhe. Additionally, high EQI values are observed in Aksu city,
Southern Wensu, Northern Awati, and Alar. The high-EQI areas in the Kashgar region
are primarily found in Kashgar city, Shule, and Shufu to the north, and Yingjisha and
Zepu to the south. The areas with a high-value EQI in the Hotan region are relatively
scarce and mainly located in the oasis border areas in Southern Moyu, Southern Luopu,
and Northern Hotan County. Of the high-EQI-value areas in the Bayingoleng Mongolin
Autonomous Prefecture, the distribution is relatively limited and primarily concentrated in
Korla city. The areas with low EQI values are primarily found in the Chemma, Ruoqiang,
and Hotan regions located on the southern part near the above-described basin, as well as
in the central Kashgar and Aksu regions situated on the northern part near the basin. The
analysis reveals that the ecological vegetation quality in the northern margin of the basin
surpasses that of the southern one. Additionally, the northern margin is characterized by
a greater number of oases, whereas the southern margin is predominantly composed of
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desert and gobi landforms, resulting in larger areas with sparse or no vegetation. This can
be clearly observed in the regions of Chemma and Ruoqiang.
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The variation trend of the EQI for each pixel during the growing season in the basin
between 2000 and 2022 ranges from −2.93 to 4.05 (Figure 3b). The spatial distribution of the
EQI variation trends resembles that of the EQI mean values, where the EQI trend increased
in about 49% of the region. As depicted in Figure 3c, the observed rise in the EQI in the
Tarim Basin can be linked to both the enlargement of the oasis area and the augmentation
of vegetation within the pre-existing oasis area. Consequently, the EQI in the vicinity of
the oasis region exhibits a noticeable upward trajectory. The EQI decreased prominently
in desert and gobi regions in Chemma and Ruoqiang regions, while it demonstrated an
increase in most other regions within the basin. Particularly, there existed a prominent
increase of 22.32% observed primarily in the desert vegetation area.

4.2. Change Trend of Extreme Climate Indices

Figure 4 shows features of the extreme climate indices’ temporal variation. There are
obvious differences in the inter-annual variation in each extreme climate indices. The TXx
exhibited an increase at a rate of 0.4 ◦C/10a, the TNn increased at a rate of 0.5 ◦C/10a, and
the DTR exhibited a declining trend at a rate of −0.1 ◦C/10a. The rate of decrease in the
SU25 was 1.5 days/10a. The cold indices, TN10P and TX10P, decreased at rates of 0.8/10a
and 0.1/10a, respectively. The warm indices, TN90P and TX90P, showed a rising tendency,
with increasing rates of 1.1/10a and 0.8/10a, respectively. The rate of warming during the
night was found to be higher compared to the daytime. The extreme precipitation indices,
RX1d and RX5d, exhibited increasing rates of 1.4 mm/10a (p < 0.001) and 2.3 mm/10a
(p < 0.001), respectively. The SDII increased at a 0.4 mm·d−1/10a (p < 0.001) pace. The CDD
also raised at a growth rate of 7.1 days/10a. In general, between 2000 and 2022, the Tarim
Basin displayed a warming tendency; the single precipitation intensity increased and the
trend of continuous dry days also increased.



Forests 2024, 15, 505 9 of 22

Forests 2024, 15, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 4. Change trend of extreme climate indices in the Tarim Basin during 2000–2022. 

4.3. Correlation between the EQI and Extreme Climate Indices 
The correlation coefficient between vegetation and extreme climate indices can serve 

as an indicator for evaluating the influence of extreme climatic conditions upon vegetation 
growth. The inter-annual correlation coefficient is exhibited in Figure 5 as a spatial distri-
bution pattern. In the extreme temperature indices, DTR, TN90P, TX90P, TNn, SU25, and 
EQI are mainly negatively correlated. Specifically, the DTR and SU25 show a negative 
correlation in more than 80% of the regions studied. A prominent negative correlation is 
demonstrated in nearly 19.5% and 11.21% of these regions; it largely diffuses in western 
regions of Aksu, Kashgar, and Hotan. The correlation between the TN10P, TX10P, and 
EQI is predominantly positive, while the region displaying a significantly positive corre-
lation with the TX10P encompasses 11.60% of the overall region. It is chiefly distributed 
in Western Aksu, Kashgar, and Western Hotan. The TXx positively correlated areas are 
chiefly distributed in the southern margin of the basin. The positive correlation between 
extreme precipitation indices SDII, RX1d, and RX5d and the EQI occupies more than 60% 
of the regions, and 6.73%, 10.75%, and 11.81% of regions exhibit significant positive 

Figure 4. Change trend of extreme climate indices in the Tarim Basin during 2000–2022.

4.3. Correlation between the EQI and Extreme Climate Indices

The correlation coefficient between vegetation and extreme climate indices can serve
as an indicator for evaluating the influence of extreme climatic conditions upon vegeta-
tion growth. The inter-annual correlation coefficient is exhibited in Figure 5 as a spatial
distribution pattern. In the extreme temperature indices, DTR, TN90P, TX90P, TNn, SU25,
and EQI are mainly negatively correlated. Specifically, the DTR and SU25 show a negative
correlation in more than 80% of the regions studied. A prominent negative correlation is
demonstrated in nearly 19.5% and 11.21% of these regions; it largely diffuses in western
regions of Aksu, Kashgar, and Hotan. The correlation between the TN10P, TX10P, and EQI
is predominantly positive, while the region displaying a significantly positive correlation
with the TX10P encompasses 11.60% of the overall region. It is chiefly distributed in West-
ern Aksu, Kashgar, and Western Hotan. The TXx positively correlated areas are chiefly
distributed in the southern margin of the basin. The positive correlation between extreme
precipitation indices SDII, RX1d, and RX5d and the EQI occupies more than 60% of the
regions, and 6.73%, 10.75%, and 11.81% of regions exhibit significant positive correlations,
respectively. SDII, RX1d, and RX5d show significant positive correlations with the EQI,
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primarily concentrated in the western regions of Kashgar and Hotan. The regions with
a negative correlation between the CDD and EQI represented 75.12%; the areas with a
prominent negative correlation were primarily observed in the northern margin of the
basin and the eastern region of Ruoqiang County.
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climate indices.

Figure 6 displays the spatial distribution pattern of intra-annual correlation coefficients
between the EQI and extreme climate indices. The correlations of the extreme temperature
indices, the TX90P, TN10P, TX10P, and TN90P, with the EQI are analogous to the distributing
pattern of inter-annual correlation coefficients. The regions where TN10P, TX10P, and EQI
are positively correlated are distributed in most parts of the Tarim Basin, but the areas
where TN10P is significantly positively correlated are relatively few, mainly concentrated
in Moyu County. The areas where TX10P is significantly negatively correlated are greater
than the significantly positively correlated areas, mainly distributed on the northern edge
of the Tarim Basin, where the EQI is higher. Conversely, TX10P shows a significant positive
correlation in the areas with higher EQI at the southern edge of the Tarim Basin. TN90P,
TX90P, and EQI are negatively correlated in most parts of the Tarim Basin. The areas
where TX90P is significantly negatively correlated account for 9.15%, but these areas are
concentrated in the regions with lower EQI values in the southern part of Kashgar and the
western part of Hotan. TNn, TXx, RX1d, and RX5d are significantly positively correlated
in areas with high EQI values, while areas with sparse or no vegetation show a negative
correlation. In particular, the regions where TNn and TXx are significantly negatively
correlated are close to 80%, indicating a clear regional concentration distribution feature.
The spatial distribution pattern of intra-annual correlation coefficients between the DTR and
EQI exhibits a significant divergence from that of the inter-annual correlation coefficients.
In terms of inter-annual analysis, DTR was negatively correlated with the EQI in most
regions. Conversely, on the intra-annual scale, the positive correlation area accounted for
78.68%. This positive correlation was primarily observed in regions characterized by sparse
vegetation. Conversely, oasis areas with high EQI values displayed a significant negative
correlation. It is evident that, in contrast to the inter-annual scale, the correlation on the
intra-annual scale exhibits distinct regional concentrations.
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4.4. Change Characteristics of Vegetation Ecological Quality

In this research, a factor detection analysis approach was adopted to examine the
influence of 12 extreme climate factors on the EQI intensity in the Tarim Basin, as well as
on different vegetation types. The findings are presented in Table 3. The TN10P contributes
the most to the EQI spatial distribution in the Tarim Basin (q = 0.193), followed by the RX5d
(q = 0.185). The influence of the same extreme climate on the EQI varies significantly across
different vegetation types. The SDII and the TX90P are identified as the primary factors
influencing the EQI of forests. The SU25, TX90P, SDII, TN10P, RX5d, and other similar
factors have been identified as the primary determinants influencing the vegetation EQI.
Among the various factors considered, the SU25 (q = 0.299) exhibits the most significant
influence on the shrub EQI. The variables of the RX1d, TN10P, RX5d, and DTR exert a
substantial influence on the meadow EQI. The desert vegetation EQI is primarily influenced
by the RX5d, with the RX1d having a secondary impact. It was discovered that the influence
of extreme climate upon agricultural vegetation was relatively minimal, with each extreme
climate factor contributing less than 10% to the agricultural vegetation EQI. Among these
factors, RX1d was identified as having the greatest impact on agricultural vegetation. The
study employed an interaction detector to examine how the interaction between various
extreme climate factors affected the EQI. The interaction detection analysis (Figure 7)
revealed that the interaction of these factors exhibited a nonlinear enhancement or a double-
factor enhancement relationship with the EQI. For the whole Tarim Basin, the variables
of the TX10P ∩ TNn (q = 0.296), TN10P ∩ TX10P (q = 0.287), TX90P ∩ TXx (q = 0.282),
and TN10P ∩ TX90P (q = 0.282) exhibit a significant impact on the EQI. The forest EQI
is primarily influenced by the TN90P ∩ SU25. The individual contribution rates of the
TN90P and SU25 to the forest EQI are moderate. However, their interaction significantly
enhances their overall influence. Both the shrub and meadow EQI are primarily influenced
by the TX10P ∩ TNn, whereas the agricultural vegetation EQI is most affected by the
TX10P ∩ TNn. The impact of the TNn on the EQI of shrub, meadow, and agricultural
vegetation was found to be minimal. However, it was discovered that the TNn impact
on the vegetation type EQI was enhanced when it interacted with other factors. This
suggests that the TNn acts as an indirect factor that affects the EQI of shrub, meadow, and
agricultural vegetation. The TX90P and RX5d exhibit the most significant contribution to
the desert EQI, with the TX90P having a relatively minor effect on the desert EQI, while the
RX5d has the greatest impact. The interaction between the TX90P and RX5d significantly
amplifies their impact on the desert EQI. It is evident that the EQI in each vegetation
type area is not only affected by a single factor but is the result of the combined action of
all factors. There exist notable variations in the extent to which extreme climate factors
contribute to different vegetation types.

Table 3. Contribution of different extreme climate factors to the EQI of different vegetation types.

Regions DTR TN10P TN90P TX10P TX90P TNn TXx SU25 CDD SDII RX1d RX5d

Tarim Basin 0.160 0.193 0.117 0.101 0.099 0.119 0.142 0.074 0.018 0.076 0.141 0.185
Forest 0.156 0.091 0.195 0.197 0.208 0.101 0.157 0.133 0.067 0.238 0.124 0.113
Shrub 0.248 0.255 0.180 0.099 0.278 0.199 0.152 0.299 0.144 0.272 0.253 0.249

Meadow 0.101 0.120 0.076 0.088 0.055 0.099 0.086 0.047 0.095 0.065 0.124 0.103
Desert vegetation 0.109 0.103 0.084 0.029 0.031 0.082 0.107 0.065 0.036 0.059 0.117 0.121

Agricultural vegetation 0.027 0.032 0.013 * 0.049 0.031 0.021 0.035 0.010 * 0.023 0.029 0.061 0.060

Notes: * indicates that the p-value did not meet the significance threshold of p < 0.001.
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5. Discussion
5.1. Alteration in the Ecological Quality of Vegetation

From 2000 to 2022, the growing season EQI in the Tarim Basin exhibited a significant
increasing trend, aligning with the observed patterns of vegetation variation within Xin-
jiang [61], Northwestern China [16], and across the entirety of China [62]. From Figure 4,
it can be seen that in 2007, the extreme precipitation indices RX1d, RX5d, and SDII were
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relatively high, which could improve vegetation growth in the short term after rainfall.
However, the number of consecutive dry days (CDD) in 2007 was significantly higher
than in most years, i.e., there was extreme drought in the northwest of the Tarim Basin
in 2007 [63], and the TX90P was also higher than in neighboring years. Therefore, the
lowest EQI value in the Tarim Basin in 2007 may be related to the phenomenon of pro-
longed drought and high daily temperatures. In contrast, in 2015, the extreme precipitation
indices RX1d, RX5d, and SDII were relatively high, and the CDD was lower, promoting
vegetation growth, resulting in a higher EQI value in 2015 compared to other years. The
vegetation in the Tarim Basin is mainly agricultural, so the EQI for agricultural vegetation
is the highest [61]. This disparity can be attributed to the presence of a larger oasis area on
the northern edge, which surpasses that on the southern edge. This improvement in the
vegetation in the Tarim Basin is attributed not only to climatic factors but also to the posi-
tive outcomes of ecological restoration initiatives. With increasing human activities, oasis
agriculture has been vigorously developed [64]. The implementation of various projects,
including the Tarim River water diversion project, the Three-North Shelterbelt Project, and
sand control measures, has been carried out in a sequential manner [65,66]. These projects
have augmented the expanse of the oasis area within the basin and have also increased
the vegetation coverage within the transitional area between the desert and the oasis. The
vegetation conditions in the Tarim Basin have obviously improved. Due to the growth of
population and the development of the social economy, human activities have increasingly
interfered with the ecological system, leading to a reduction of vegetation in arid areas.
Therefore, human activities have both a promoting and inhibiting effect on the EQI of the
Tarim Basin [48]. In addition, the superimposed effects of human activities, climate change,
and other factors have caused the EQI of the Tarim Basin to show a fluctuating upward
trend. The EQI values of different vegetation types in the basin all show an increasing
trend. Among them, agricultural vegetation has the fastest increasing trend in terms of
the EQI. This can be attributed to the expansion of oasis agriculture within the Tarim
Basin, which has led to the cultivation of surrounding grasslands and unused land into
farmland, promoting the greening of the oasis edges [67]. Therefore, the growth rate of
agricultural vegetation in terms of the EQI (3.71/10a) is the fastest. The desert vegetation
is sparse due to harsh living conditions and is also impacted by the limited number of
ecological rehabilitation projects. Therefore, the desert vegetation EQI is the lowest and has
the slowest growth rate (1.45/10a).

5.2. Changes in the Extreme Climate Indices

On account of the delicate ecological balance, the Tarim Basin is painfully vulnerable
to the impact of extreme climate. Between 2000 and 2022, the Tarim Basin exhibited a
notable upward tendency in the extreme warm temperature indices, while simultaneously
experiencing a downward tendency in the extreme cold temperature indices. The magni-
tudes of the changes observed in the TN10P and TN90P exceed those observed in the TX10P
and TX90P, resulting in the nighttime temperatures rising more rapidly than the daytime
temperatures. The rate of warming for the daily minimum temperature exceeds that of
the daily maximum temperature, resulting in an asymmetry between the two changes and
ultimately bringing about a decline in DTR [68]. This changing trend is consistent with the
whole of Xinjiang and the world, but the warming rate of TNn is lower than the average
warming rate of TNn in China [69]. Extreme warm temperature events mainly occur in the
southern part of the Tianshan Mountains surrounding the Tarim Basin and the western
part of the Taklimakan Desert [70]. In the basin, the temperature demonstrates a consistent
rise, consistent with the broader temperature patterns observed in Xinjiang and across
China [71,72]. Therefore, it is evident that the extreme temperature indices demonstrate
significant regional coherence.

In this study, an analysis of extreme precipitation indices RX1d, RX5d, and SDII reveals
a significant increasing trend, suggesting a rise in precipitation intensity within the Tarim
Basin from 2000 to 2022. It is anticipated that this trend will persist throughout the 21st
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century [71,73]. The amount of rainfall in the eastern part of the Tarim Basin is significantly
higher than in the western part. Intense rainfall is mainly concentrated on the southern
slope of the Tianshan Mountains, and extreme precipitation is significantly increased in
the northern part of the Tarim Basin [74]. In addition, the changes in temperature and
precipitation in the Tarim Basin can be reflected in the changes in glacial lakes. The
expansion of glacial meltwater has increased the area of lakes, mainly due to the large-
scale reduction in glaciers under warming conditions. The expansion of non-glacier-fed
lakes reflects an increase in precipitation in the mountainous areas of the Tarim Basin [75].
These findings provide confirmation that the climate in Xinjiang is undergoing a gradual
transition towards a warmer and more humid pattern. Hu observed a declining trend in
the number of overall cumulative dry days (CDD) in Xinjiang [76]. However, in this study,
the CDD showed a rising tendency, which contradicts the general pattern observed in
Xinjiang, and compared to northern Xinjiang, there are fewer RX1d and RX5d events with
weaker intensity in the Tarim Basin, while the CDD events are the opposite [77]. Under
RCP4.5 and RCP8.5 scenarios, Zhang concluded that the CDD in Central Asia is expected
to increase slightly in the 21st century [78], and persistent drought in southern Xinjiang is
also expected to intensify [79], aligning with the conclusions drawn from this research. It
is evident that the extreme precipitation indices exhibit significant spatial heterogeneity.
The escalation in the intensity of drought is anticipated to result in a corresponding rise
in the process of desertification [80]. Therefore, in future endeavors related to ecological
construction and protection, it is imperative to prioritize drought prevention and control
measures in order to mitigate the risk of desertification expansion.

5.3. The Impact of Extreme Climate on the Ecological Quality of Vegetation

From the correlation coefficient of the spatial distribution, in comparison to the re-
sponse patterns observed on the inter-annual scale, the intra-annual scale EQI influence
upon extreme climate indices in the basin demonstrates a more geographically concen-
trated spatial distribution. The main reason is that the EQI’s inter-annual correlation with
the extreme climate indices reflects the correlations of long-term sequence trends, while
the intra-annual analysis of the EQI and the extreme indices eliminates some influencing
factors with seasonal characteristics [81]. Additionally, vegetation is less distributed in
the basin, and the gobi and desert areas are larger than that of the oasis. Moreover, the
oases within the basin display a concentrated distribution pattern that is specific to the
region. The regional concentration of the correlation coefficient is more pronounced at the
intra-annual scale.

The extreme warm temperature indices TN90P, TX90P, and extremum indices TNn
contribute positively to the growth of vegetation in the concentrated oasis area of the
Tarim Basin, while they have an inhibitory impact on the desert vegetation outside the
oasis area. Conversely, these indices have an inhibitory effect on desert vegetation outside
the oasis region. The primary factor contributing to this difference is that precipitation is
only one of the water sources required for oasis vegetation, whereas high temperatures
provide sufficient heat for photosynthesis, which promotes the growth of vegetation [12].
The increasing temperature results in glaciers and snow melting, which also promotes
improvements in the oasis vegetation’s ecological quality [82]. However, the decrease
in glacier area and snowfall during the summer and autumn seasons poses a threat to
ecological and agricultural security of downstream oases, increasing the risk of flood
disasters [83]. The rise in temperature causes intensified drought stress, which causes the
increased evaporation of soil humidity and severely impedes desert vegetation growth [84].
Therefore, the SU25 exerts a greater influence on desert vegetation. The cold indices
TN10P and TX10P have an eminent inhibitory influence on oasis vegetation. The dominant
cause of this phenomenon is the low temperature, which shortens the period of vegetation
growth. Especially in April and October, the basin temperature is low, which results in
an insufficient accumulated temperature for vegetation growth. This negatively impacts
vegetation development. The DTR inhibits oasis vegetation growth and is associated with
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an increase in nighttime temperatures. The rise in nighttime temperatures will lead to
crop respiration and organic matter decomposition [43]. Research has shown that a rise
in the minimum day and night temperatures has a significant positive impact on shrubs
and desert vegetation, reducing the hazard of vegetation damage by frost [43,85]. This is
consistent with the positive effects of the TN10P, TX10P, and DTR on the desert vegetation
observed in this study.

Extreme precipitation on an inter-annual scale is an important factor in improving the
desert vegetation EQI. Except for a few oasis areas, the duration of CDD has a detrimental
impact on vegetation in other regions, particularly on desert vegetation. The SDII, RX1d,
and RX5d have promoting effects on oasis and desert vegetation, except in non-vegetated
areas. They exhibit a significant positive correlation with vegetation in desert regions.
In Xinjiang, about 50% of all of the precipitation falls under extreme precipitation. The
increase in precipitation in Xinjiang is primarily driven by extreme precipitation [64],
indicating that extreme precipitation contributes significantly to vegetation development
and distribution in most areas. However, the increase in precipitation, along with a
decline in extreme cold events and a rise in extreme warm events, will worsen the extreme
climate activities, risking ecological and agricultural security [83]. The RX1d and RX5d
indices, however, only exhibit a strong positive correlation with vegetation in the oasis
region on the intra-annual scale. This is because the long-term growth of vegetation relies
more heavily on the continuity and consistency of precipitation. For vegetation not used
to accommodating to the drought environment, sudden rainfall can exert a prominent
influence on vegetation growth and stability [41]. Additionally, research results have shown
that, in the Inner Mongolia region, the long-term extreme precipitation indices of RX1d and
RX5d are negatively correlated to desert vegetation [38]. This is because the soil in desert
vegetation cannot retain water for extended periods, and the vegetation is immediately
impacted by extreme precipitation. In large areas without vegetation in desert regions,
extreme precipitation does not have the same effect as in other types of vegetation. This
is the same as the results of this study. At the inter-annual scale, the impact of extreme
precipitation on vegetation is integrated throughout the entire growing season, promoting
long-term growth. Compared to temperature, precipitation is the primary climatic factor
influencing inter-annual variations in vegetation [86]. Therefore, extreme precipitation
significantly influences vegetation growth and distribution patterns in the Tarim Basin.

5.4. Effects of Extreme Climate on Different Vegetation Types

According to the factor analysis, the extreme precipitation factors RX1d and RX5d
make a significant contribution to the overall Tarim Basin EQI. The EQI of forests, grass-
lands, desert vegetation, and agricultural vegetation are most impacted by the extreme
precipitation indices. Although the shrub EQI is most affected by the SU25, the extreme pre-
cipitation factors of SDII, RX1d, and RX5d also make significant contributions to the shrub
EQI. Overall, precipitation exerts a larger influence on vegetation than temperature, which
corresponds to the discoveries of Chen and Yu [87,88]. However, single-factor extreme
climate analysis is no longer sufficient for fully assessing the influence of extreme climate
upon vegetation. Additional examination is required to comprehend the combined impacts
of extreme climate on vegetation [13]. The results of the interacting-factor analysis indicate
that the interplay between any two extreme climate factors exceeds the impact of a single
factor. This means that the EQI spatial distribution is affected by the interaction of various
factors that have an influence. We found that the combined effect of the TX10P ∩ TNn
has the greatest impact on shrubs and grasslands. Most shrubs grow near riverbanks and
are primarily Tamarix ramosissima. Their growth requires not only heavy rainfall but also
depends on groundwater [89]. Especially in summer, the combined effect of the TX10P and
TNn can reduce soil water evaporation in arid areas, maintain soil moisture, and increase
the available water for vegetation transpiration. On the other hand, it can reduce vegetation
transpiration during the day and increase the net photosynthetic rate of vegetation during
high temperatures, thereby promoting vegetation growth. Within the forest, the Populus
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euphratica is the main tree species, primarily distributed within the Tarim River Basin. Its
water requirements for growth mainly depend on the river and groundwater [90]. The com-
bined effect of the TN90P and SU25 contributes the most to the forest EQI. Higher daytime
temperatures can not only promote vegetation photosynthesis but also contribute to glacier
and snow melting. The melting of these due to high temperatures can supplement river
flow and provide water resources for vegetation [91,92]. Higher nighttime temperatures
can alter and promote vegetation growth, primarily through lessening frost. It may also be
related to the phenomenon of overcompensation. Studies have found that, under sufficient
soil moisture and nutrient conditions, higher nighttime temperatures enhance leaf respira-
tion. This leads to a faster consumption of leaf carbohydrates and stimulates compensatory
photosynthesis the following day [93]. As a result, vegetation growth is promoted.

The contribution of the single factor TX90P to desert vegetation growth is low, but its
interaction with RX5d, the precipitation factor, prominently promotes the desert vegetation
growth. This suggests that the desert vegetation distribution is primarily affected by precip-
itation [94,95]. Conditions of precipitation provide the necessary moisture for the growth
of vegetation in the desert. Higher daytime temperatures can promote photosynthesis
and extend the growth period of vegetation [43,88]. For example, the vegetation index in
autumn responds slightly more to temperature than to precipitation, and higher tempera-
tures can delay the autumn growing season [96]. The growth of agricultural vegetation is
more influenced by human factors, including irrigation and mulching. Therefore, extreme
climate has a relatively small impact on agricultural vegetation. The interaction between
the TN10P and TNn has the greatest impact on the growth of agricultural crops. This is
achieved by reducing soil evaporation to maintain a balance between the available water
and the vegetation. Additionally, the TN10P can also suppress vegetation respiration,
thereby reducing the consumption of dry matter.

6. Conclusions

The Tarim Basin ecosystem is vulnerable to extreme climate change, and vegetation
plays an important role in maintaining the regional ecosystem balance, retaining soil water,
and reducing wind erosion. Studies on the effects of extreme climate on vegetation are
helpful for formulating long-term vegetation adaptation strategies, maintaining ecological
security, improving water resource utilization efficiency, and preventing desertification.
Therefore, it is necessary to study the influence of extreme climate on vegetation in the
Tarim Basin. This study utilized the Rclimdex model to calculate 12 extreme climate
indices that are closely associated with vegetation, flooding disasters, and high and low
temperatures in the Tarim Basin. The EQI was chosen as the vegetation ecological indicator.
This study analyzed the dynamic changes in each extreme climate index and EQI, as well
as the response of the EQI to each extreme climate factor. The main conclusions obtained
were as follows:

(1) From 2000 to 2022, the growing season EQI in the Tarim Basin shows a significant
upward trend. The agricultural vegetation EQI has the fastest rate of increase, while
the desert vegetation EQI has the slowest rate of increase. Therefore, future ecological
restoration measures can consider focusing on desert vegetation to improve the overall
vegetation spatial changes in the Tarim Basin.

(2) During the period of 2000 to 2022, the extreme temperature indices in the Tarim
Basin indicated an increase in the warm indices and a decrease in the cold indices.
Additionally, the extreme precipitation intensity indices exhibited an upward trend,
and the number of dry days also increased. The risk of high-temperature disasters,
persistent droughts, and floods will increase in the Tarim Basin in the future, which
should be paid attention to, and it is necessary to implement increased measures for
preventing this in order to deal with climate disasters.

(3) On an inter-annual scale, the EQI is mainly negatively correlated with most extreme
temperature indices, while it is positively correlated with extreme cold temperature
and extreme precipitation intensity indices. Extreme precipitation plays a dominant
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role in the spatial distribution of the EQI. On an intra-annual scale, the correlation
between them varies significantly due to the differences in EQI values, and the
impact of extreme climate on the EQI shows clear regional concentration. The EQI
in the Tarim Basin is not only influenced by a single extreme climate factor but
is the result of the combined effects of various extreme climate factors, especially
with significant impacts on forests and shrubs. Strategies for adapting vegetation to
extreme climates need to consider the compound influence of various extreme climate
factors. According to the difference in the influence of extreme climate on different
vegetation types, appropriate ecological protection measures can be carried out for
different vegetation types.
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