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Abstract: The frequency of forest fires worldwide has increased recently due to climate change,
leading to severe and widespread damage. In this study, we investigate potential changes in the
fire susceptibility of areas in South Korea arising from climate change. We constructed a dataset of
large-scale forest fires from the past decade and employed it in machine learning models that integrate
climatic, socioeconomic, and environmental variables to assess the risk of forest fires. According
to the results of these models, the eastern region is identified as highly vulnerable to forest fires
during the baseline period, while the western region is classified as relatively safe. However, in
the future, certain areas along the western coast are predicted to become more susceptible to forest
fires. Consequently, as climate change continues, the risk of domestic forest fires is expected to
increase, leading to the need for proactive prevention measures and careful management. This study
contributes to the understanding of forest fire occurrences under diverse climate scenarios.
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1. Introduction

Climate change has led to a dramatic increase in the frequency and intensity of
hydroclimatic disasters (e.g., drought, flooding, and wildfire) over the past decade. For
example, in 2022, Pakistan experienced extensive flooding over approximately one-third
of its land area, while the 2019 Australian wildfires affected over 19 million ha of land,
leading to ecological damage and substantial economic losses [1–3]. South Korea has also
experienced numerous hydroclimatic disasters in recent years, including the 2019 Goseong
Gangneung Forest Fire, the 2022 Samcheok–Uljin Forest Fire, concentrated heavy rainfall
in the Gangwon region and the Seoul metropolitan area, and drought in the Yeongnam and
Chungcheong regions, all of which have had a significant impact on both the human and
natural environment [4].

With the greater prevalence of hot and dry weather conditions due to climate change,
there is a worldwide increase in the frequency of wildfires, accompanied by a growing
scale of damage [5–8]. Forest fires can lead to deforestation, habitat destruction, a reduction
in biodiversity, and the loss of soil nutrients within forest ecosystems [9]. They can also
have severe economic impacts, including decreased timber and livestock yields, the loss of
environmental functions in forests, damage to national parks, industrial disruptions, and
transportation disturbances [10]. The increasing frequency of forest fires is thus anticipated
to severely disturb forest ecosystems in the long term [11,12].
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To address forest fires, South Korea has implemented a range of policies. For example,
the 6th Basic Forest Plan aims for a 21% increase in forest growing stock by 2050 compared
to 2015. However, this plan acknowledges the persistent risk of large-scale forest fires and
resulting damage as residential areas expand into adjacent forested regions. The plan thus
aims to proactively prevent and respond to forest fires by employing advanced information
technology to minimize both the occurrence and impact of forest fires [13]. Nevertheless,
the 6th Basic Forest Plan acknowledges the risks associated with expanding residential
areas and the potential for large-scale wildfires and their damages in the current firefight-
ing policies. However, it lacks the necessary provisions for predicting future forest fire
occurrences. Forest fire prediction is a vital component of forest fire management in terms
of assessing the risk of forest fires, strengthening forest fire monitoring and suppression
efforts, and facilitating strategic planning and resource allocation for firefighting [14,15].

Among the various methods for predicting forest fires, machine learning is widely
employed. Machine learning, a branch of artificial intelligence (AI) and computer science,
focuses on utilizing data and algorithms to replicate the iterative learning process of
humans, thereby improving accuracy over time [16,17]. Major machine learning algorithms
include Maximum Entropy (MaxEnt), Gradient Boosting Machine, and Artificial Neural
Networks (ANNs). Maximum Entropy is an optimization technique that determines
the most probable probability distribution given specific constraints, proving effective in
predicting wildfire probabilities. Gradient Boosting Machines utilize ensemble learning,
enhancing prediction performance by amalgamating multiple decision trees. Artificial
Neural Networks, resembling networks of neural cells, serve as learning algorithms capable
of modeling complex nonlinear relationships. Additionally, a number of past studies have
built models based on machine learning techniques for the prediction of forest fires and
have used their output to assess forest fire risks [18–20]. Furthermore, with the escalating
risk of large-scale forest fires, it is imperative to formulate a forest fire prediction model
specifically tailored to anticipate and mitigate the impacts of such extensive occurrences,
aiming to minimize the resultant damages.

This study forecasts the likelihood of forest fires considering Shared Socioeconomic
Pathways (SSP) scenarios. By incorporating climate, topography, environmental, socioeco-
nomic, and historical forest fire locations into machine learning and statistics-based models,
we aim to predict the probability of medium–large-scale forest fires by considering SSP
scenarios using an ensemble technique. This approach seeks to offer scientific insights into
the occurrence and response mechanisms of forest fires under emerging climate change
scenarios. In contrast to prior studies that have focused on predicting current forest fire
risks based on existing climate conditions, our methodology enables the assessment of
future forest fire risks. This research contributes to the evaluation of forest fire risks in
South Korea and the formulation of anticipatory measures for the future forest ecosystem.

2. Data and Methods
2.1. Study Area

This study was conducted in South Korea, which is located at 33–39◦ N, 124–131◦ E,
with a total area of approximately 100,443.6 km² [21]. Forest covers approximately 62.7%
of the total land area, of which approximately 36.9% is classified as vulnerable deciduous
forest, which is a relatively high proportion [22]. The forest density increased due to the
implementation of the 1st and 2nd Forest Basic Plan projects from 1973 to 1987, creating an
environment that is more susceptible to large-scale forest fires, especially with the higher
proportion of mature forests (21–50 years old) [23]. The annual precipitation in South Korea
is approximately 1306.33 mm.

Most of this rainfall falls during summer, with approximately 58.4% of the annual
precipitation occurring during this season in 2022 [24]. As climate change worsens and the
aging of forests continues, an increase in forest fires in South Korea is predicted [7].
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2.2. Data

In the present study, the analysis period was divided into baseline years (2010–2019),
the near future (2040–2049), and the distant future (2070–2079) to track the potential impact
of climate change in accordance with the Basic Forest Plan. To establish the forest fire
prediction model, we collected information on medium- to large-scale forest fires recorded
from 2010 to 2019 provided by the Korea Forest Service to predict forest fires caused by
climate change (Figure 1). According to the regulations outlined in the “Regulations on the
Mission and Role of Forest Firefighting Agencies” by the Korea Forest Service, a large-scale
forest fire is one that spreads over an area of 100 ha or more, while a medium-scale forest
fire refers to cases that do not meet the criteria for a large-scale forest fire. In this study, a
medium-scale forest fire was thus defined as a forest fire with a damage area of 4 ha or more,
and the prediction of the potential occurrence of significant forest fires of medium–large
scale over a period of 10 years was referred to as the forest fire probability (FFP).
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Figure 1. Study area with average temperature (source: Korea Meteorological Administration) and
large forest fire occurrence points (source: Korea Forest Service).

Climatic, topographical, socioeconomic, and environmental variables were employed
in the individual and ensemble models to predict the FFP (Table 1). The climate data
utilized for this analysis had a spatial resolution of 1 km² and included the highest monthly
maximum temperature, lowest monthly minimum temperature, average relative humid-
ity in spring (March–May), precipitation during the driest quarter, and maximum wind
speed [25]. Climate information for the baseline period was derived from MK-PRISM v2.1
data produced by the Korea Meteorological Administration (KMA), while climate informa-
tion for the near and distant future was based on the SSP climate change scenarios provided
by the KMA [26]. PRISM, developed by Oregon State University in the United States, is a
model that statistically refines the observation data from automatic weather stations and
automated synoptic observing systems to produce high-resolution grid-based climate data,
incorporating factors such as the slope, distance, elevation, and marine influences [27–29].
MK-PRISM v2.1 is a modified Korean version of PRISM that provides a high-resolution
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grid-based climate dataset containing daily, monthly, and annual data from 2000 to 2019
with a spatial resolution of 1 km.

Table 1. Input variables used to estimate forest fire probability models.

Input Variable Variable Name Unit Source

Climate

Max. temperature of the warmest month ◦C Korea Meteorological Administration
Min. temperature of the coldest month ◦C Korea Meteorological Administration

Precipitation of the driest month mm Korea Meteorological Administration
Max. windspeed m/s Korea Meteorological Administration

Relative humidity during spring % Korea Meteorological Administration

Topographic
Elevation m NASA

Topographic wetness index - -
Aspect - -

Socio-economic
Distance from urban area m Land cover map from the Korea

Ministry of Environment

Population density People per km2 Population census from the Korean
Statistical Information Service

Environment Forest type - Land cover map from the Korea
Ministry of Environment

The Representative Concentration Pathway scenarios utilized in the IPCC 5th Assess-
ment Report were designed based on the radiative forcing exerted by human activity on
the atmosphere and provide greenhouse gas concentration trajectories. In contrast, the
SSP scenarios introduced in the 6th Assessment Report incorporate potential social and
economic changes arising from mitigation and adaptation efforts in response to climate
change. The SSP scenarios are thus more realistic in terms of future projections. The data for
the SSP scenarios originate from the UK Met Office’s prediction model UKESM1. Utilizing
data from UKESM1, an ensemble average is calculated by dynamically downscaling into
regional climate models, generating climate change scenarios with a spatial resolution of
25 km. Subsequently, each model is refined using PRISM, and an ensemble is constructed
for the five models to generate a climate change scenario at a spatial resolution of 1 km [30].

In this study, three SSP scenarios were employed. SSP1-2.6 assumes a sustainable
development path in which the rational and rapid progression of sustainable development
minimizes fossil fuel use due to the development of renewable energy. SSP2-4.5 represents
a scenario with moderate levels of mitigation and adaptation efforts for climate change,
while SSP5-8.5 assumes high fossil fuel use and greater urban-centric development. The
SSP1-2.6 scenario is particularly relevant in this context because the IPCC has recommended
achieving global carbon neutrality by 2050 to limit the global average temperature increase
to 1.5 degrees by 2100. Therefore, SSP1-2.6 is considered the scenario most similar to
carbon neutrality.

For the elevation, terrain wetness index (TWI), and aspect, which were employed as
the topographical variables, we utilized a digital elevation model with a spatial resolution
of 1 km provided by the Shuttle Radar Topography Mission (SRTM). The TWI was used to
reflect the soil moisture levels, which influence the dryness of the leaf litter and understory
vegetation, which are susceptible to ignition during a forest fire. Aspect represents the
direction of the slope within a grid; in the Northern Hemisphere, south-facing slopes
receive more sunlight, leading to drier conditions and a higher forest fire risk compared
to north-facing slopes. Empirical evidence from a study conducted during the 2007–2009
spring seasons that tracked a total of 101 forest fires in South Korea revealed that the
forest fire frequency on south-facing slopes was approximately 2.7 times higher than on
north-facing slopes [31].

The socioeconomic variables employed in the analysis were the distance from urban
area taken from land cover data and the population density per unit area. Social factors
that have been identified as having a significant correlation with forest fire occurrences also
have a positive correlation with population density in the modeling process [32], while the
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distance from urban area, calculated using the Euclidean distance method, represents the
accessibility to forests. The Euclidean distance is utilized to measure the shortest distance
between two points. This measurement method can also be applied in multidimensional
space and is employed to calculate the similarity or distance between data points [33].
These variables were included because approximately 178.3 cases of unintentional ignition
and 30.4 cases of cigarette-caused ignition occur on average each year, highlighting the
role of human activity in forest fires. Environmental variables were employed to reflect the
vulnerability to forest fires based on vegetation type, differentiating between coniferous,
deciduous, and mixed forests.

To enhance the accuracy of the modeling process and mitigate multicollinearity be-
tween variables, Pearson correlation coefficient analysis was conducted [34,35].

Factors with correlation coefficients exceeding 0.8 were excluded from the models.
However, despite the negative correlation of –0.81 between the maximum temperature of
the warmest month and elevation, elevation was retained in the modeling process because
elevation incorporates important topographical elements and anthropogenic factors such
as climate and accessibility.

2.3. Machine Learning and Ensemble Method

In this study, machine learning algorithms were employed to predict the occurrence
of forest fires based on climatic variables, topographic factors, socioeconomic, and en-
vironmental variables. The machine learning algorithms used for the analysis included
Random Forest (RF), Maximum Entropy (MaxEnt), Generalized Boosting Model (GBM),
Artificial Neural Network (ANN), Classification Tree Analysis (CTA), and Flexible Discrim-
inant Analysis (FDA), while the statistical-based Multivariate Adaptive Regression Splines
(MARS) and Generalized Linear Model (GLM) were also used. Except for the MaxEnt
model, the other models required both occurrence and non-occurrence data for forest fire
locations, with a 5:5 ratio maintained via random sampling.

The accuracy of both the individual models and the ensemble model was evaluated
using the area under the curve (AUC) derived from the receiver operating characteristic
(ROC) curve. The verification of the model’s explanatory power using the AUC was
utilized to assess the diverse models. It is deemed that the closer the AUC value is to 1, the
more accurately the model predicts outcomes. If the AUC value exceeds 0.7, the model is
recognized to possess substantial explanatory power [36,37]. Model validation involved
splitting the dataset into training and testing data at an 8:2 ratio.

To enhance the accuracy of the ensemble model, the eight models were repeated
10 times, and an ensemble was run based on the mean ensemble approach, with only the
results with an AUC of greater than 0.7 considered. The ensemble method runs multiple
models, combines their predictive values, and utilizes them for final decision making
(Figure 2). This approach has been widely used in various studies to compensate for the
errors and uncertainties of individual models [38–42].

The output of both the single models and the ensemble was an FFP ranging from 0 to 1.
The FFP results were categorized into five grades using equal intervals. Areas with an FFP
of 0.2 or lower were classified as safe from forest fires, those with an FFP of 0.2–0.4 were
considered relatively safe, those with an FFP of 0.4–0.6 were considered to have a relatively
low fire risk, those with an FFP of 0.6–0.8 were considered to have a relatively high fire risk,
and those exceeding 0.8 were classified as high-risk areas.
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3. Results and Discussion
3.1. Model Accuracy and Variable Importance

The average accuracy from 10 repeated runs for each model is presented in Table 2. The
accuracy of the ANN and CTA models was relatively low compared with the MaxEnt, RF,
and GBM models. Models with AUC values exceeding 0.7 were combined in the ensemble,
which consequently exhibited a higher AUC than the individual models, confirming
its effectiveness in mitigating the uncertainties and errors associated with single-model
approaches.

Table 2. Area under the curve (AUC) values for each model.

Model AUC

Machine learning

Random Forest 0.732
MaxEnt 0.746

Generalized Boosting Model 0.725
Artificial Neural Networks 0.590
Classification Tree Analysis 0.579

Flexible Discriminant Analysis 0.677

Statistical learning
Multivariate Adaptive Regression

Splines 0.689

Generalized Linear Model 0.660

Ensemble Mean 0.976

The importance of factors influencing the forest fire prediction models is presented
in Table 3. The method of evaluating importance proceeds as follows: Initially, model
prediction is performed using a dataset in which a single variable is randomly mixed from
the given data. Then, the Pearson correlation coefficient between the reference prediction
and the prediction derived from the dataset is calculated. After that, the larger the value
obtained by subtracting the correlation coefficient from 1, the greater the influence of the
variable on the model, and a value close to 0 indicates that the influence of the variable
on the model is small [43]. The importance is presented as a relative value, averaging
the significance of each factor across 10 repetitions of the eight models. Elevation had
the highest importance (0.352), followed by relative humidity during spring, minimum
temperature of the coldest month, and aspect.
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Factors aside from altitude are highly correlated with fuel dryness, underscoring
that the dryness of the fuel is a substantial contributing factor to forest fire incidents.
This underscores the significance of precipitation in formulating forest fire prediction and
response strategies.

Table 3. Mean importance of the variables for the individual models.

Variable Type Variable Mean Importance

Climate

Max. temperature of the warmest month 0.066
Min. temperature of the coldest month 0.175

Precipitation of the driest month 0.094
Max. windspeed 0.021

Relative humidity during spring 0.268

Topographic
Elevation 0.352

Topographic Wetness Index 0.036
Aspect 0.147

Socio-Economic
Distance from used area 0.026

Population density 0.064

Environment Forest type 0.030

3.2. Forest Fire Probability Attributable to SSP Scenario
3.2.1. Baseline Period

The FFP predictions made by the ensemble model for the 2010–2019 period are pre-
sented in Figure 3. During this baseline period, regions along the eastern coast and some
inland areas exhibited relatively high FFP, resembling the characteristics of major domestic
forest fires. Gangwon-do, Gyeongsang-do, and the Seoul metropolitan area were relatively
vulnerable to forest fires, while regions along the western were relatively safe from forest
fires. The high FFP in Gangwon-do was attributed to strong winds, steep terrain, and the
presence of vulnerable pine forests, meaning that this region had a significant risk of major
forest fires breaking out [44]. Moreover, in the western region, there is a higher prevalence
of broad-leaved forests in comparison to coniferous forests, and these forests exhibit a
relatively fragmented distribution. Furthermore, the non-forest area is more extensive than
that in the eastern coast region, contributing to the comparatively lower vulnerability of
the west coast area compared to the eastern region.

To evaluate the accuracy of the forest fire susceptibility model, a comparative analysis
was conducted by examining the occurrence of large-scale forest fires over the past 20 years.
In the last two decades, a total of 24 major forest fires have been recorded, 21 of which
occurred in areas with an FFP of over 0.8. The ensemble model thus demonstrated high
reproducibility for large-scale forest fires, indicating that it effectively learns climatic
variables based on training using accumulated occurrence data, particularly in relation to
major forest fires.

3.2.2. SSP1-2.6

The FFP predictions made by the ensemble model for SSP1-2.6 are presented in
Figure 4. Similar to the baseline period, the eastern region near the Taebaek Mountains was
identified as the area most prone to forest fires. Due to efforts to mitigate climate change,
the forest fire risk in Gyeongsangbuk-do decreased in both the near and distant future
compared to the baseline period. However, in the near future, the forest fire risk in the
western region increased compared to the baseline period before subsequently weakening
over time due to the gradual reduction in greenhouse gas levels. The gradual rise in FFPs
in the western region implies a growing likelihood of extensive wildfires in broad-leaved
forests. This indicates that even presently considered relatively secure broad-leaved forests
may become susceptible to forest fires with the progression of climate change.
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3.2.3. SSP2-4.5

The FFP predictions made by the ensemble model for SSP2-4.5 are displayed in
Figure 5. As with the baseline and the SSP1-2.6 scenario, the eastern region near the Taebaek
Mountains was identified as particularly vulnerable to forest fires. As time progresses
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from the near future to the distant future, the risk of forest fires in Gyeongsangbuk-do
significantly escalates. The topography of South Korea generally exhibits an elevation
increase from west to east, and this is anticipated to contribute to the heightened FFP in
high-altitude areas as climate change advances. While the size of the area with a high
FFP compared to the baseline year was generally lower, there were more forest fire-prone
areas in the western region. However, unlike the SSP1-2.6 scenario, the stronger forest fire
risk in the western region was projected to continue without a significant reduction in the
far future.
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3.2.4. SSP5-8.5

The FFP predictions made by the ensemble model for SSP5-8.5 are presented in
Figure 6. The SSP5-8.5 scenario led to an increase in forest fire-prone areas compared to
the existing scenarios, with a relatively high FFP observed in most central and eastern
regions, excluding some high-elevation areas in Gangwon-do. The greater the elevation of
mountain ranges in South Korea, the more formidable the terrain becomes, impeding the
movement of manpower and presenting challenges in extinguishing forest fires. This is
primarily due to the limited availability of water for firefighting purposes. According to our
findings derived from considering the SSP5-8.5 scenario, which exacerbates vulnerability
to wildfires in numerous regions, it is anticipated that small-scale forest fires may escalate
into larger-scale forest fires.

In contrast to the SSP1-2.6 and SSP2-4.5 scenarios, the SSP5-8.5 scenario led to a
continued rise in forest fire-prone areas in the near future, surpassing those of the baseline
period. Forest fire-prone areas were also expected to expand in various regions, including
Gyeongbuk, the Seoul metropolitan area, and Daejeon, thus differing from the trends
observed for the other scenarios.

3.2.5. Changes in Forest Fire Risk

To assess the forest fire risk for the different SSP scenarios, regions with an FFP of
0.6 or higher were identified as areas susceptible to forest fires. The total area classified
as susceptible to forest fires for each SSP scenario is presented in Table 4. In comparison
to the baseline period, the area susceptible to forest fire decreased for the SSP1-2.6 and
SSP2-4.5 scenarios, while it was higher for the SSP5-8.5 scenario. However, although the
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SSP2-4.5 scenario exhibited a reduction in forest fire risk in the near future, a subsequent
rise was projected for the distant future.
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Table 4. Forest fire risk area by SSP scenario (unit: km2).

Model Current
2040s 2070s

SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5

Forest fire risk area 39,121 28,579 27,111 42,260 25,387 31,274 56,861

Considering the variations in forest fire risk areas associated with these scenarios, there
is a compelling need for the continuous monitoring of forest fires and the enhancement of
early extinguish systems to mitigate the escalation of localized incidents into large-scale
forest fires. It is imperative to accurately anticipate high-risk forest fire areas in the future
and devise suitable responses and preventive measures for these regions. Furthermore,
it is crucial to establish a flexible and sustainable forest management policy based on the
prediction of future forest fire risks under each scenario.

3.3. Implications and Limitations

In this study, an ensemble of various machine learning models trained using climatic,
topographic, and demographic data pertaining to the locations of major forest fires was
employed to mitigate the errors and uncertainties associated with individual fire risk
prediction models. The AUC of the ensemble model was particularly high, standing at
0.976, surpassing the AUC of previous forest fire prediction models [45–48]. In addition, by
training the ensemble using extreme climatic conditions associated with the spread of large
forest fires following ignition, the FFP predictions for significant forest fires were shown to
be useful for analyzing climate change adaptation measures.

However, there are limitations to this study. Forest fires are significantly influenced by
socioeconomic factors. However, this study did not consider future changes in important
socioeconomic variables in the modeling process. Furthermore, the analysis did not account
for changes in environmental variables such as shifts in forest types, thus limiting the
generalizability of the study. Additionally, topographic factor changes at a spatial resolution
of 1 km are unpredictable and therefore could not be accounted for.
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Particularly, machine learning models are significantly impacted by the training data
they receive. In this study, the spatial coordinates of forest fire occurrences were derived
from a limited timeframe, resulting in a concentration of coordinates primarily in the eastern
region. The influence of these spatial coordinates is a contributing factor to the elevated
FFP in the eastern region. To address these limitations in future studies, enhancing the
dataset by extending the temporal coverage of forest fire occurrences could provide a more
comprehensive understanding. Furthermore, factors crucial to the model’s performance
are those associated with fuel dryness. Improved results could be achieved by effectively
incorporating measures that reflect the dryness of the fuel.

4. Conclusions

In recent years, hydrological disasters have become more frequent due to climate
change, and numerous studies have focused on predicting and managing forest fires.
Forest fire prediction plays a crucial role in forest fire management, with future occurrences
being predicted based on historical or present climate conditions. In the present study, the
FFP in Korea was assessed using an ensemble machine learning model incorporating new
climate scenarios, topographic data, and socioeconomic data. Changes in the FFP for the
near and distant future were then analyzed for different SSP scenarios.

In the baseline period, 39,121 km² of South Korea was classified as vulnerable to forest
fires, representing approximately 38.9% of the country. However, in the 2070s and under
the SSP5-8.5 scenario, this was projected to increase by approximately 34.7%. The eastern
region was identified as highly vulnerable to forest fires in the baseline period, while the
western region was classified as relatively safe. However, in the 2070s and under the
SSP5-8.5 scenario, some of these safe areas in the western regions were predicted to become
vulnerable to forest fires. In conclusion, as climate change continues, the risk of domestic
forest fires is expected to rise, highlighting the need to develop effective preventative and
management measures. This forest fire prediction model, developed utilizing forest fire
occurrence data and diverse datasets, is positioned to offer foundational information to
facilitate forest fire management and adaptation to climate change. Its deployment is
expected to make a substantial contribution to the establishment of a safer environment
and reduce damages resulting from forest fires.
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