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Abstract: China has implemented several ecological projects in the Loess Plateau region to address
severe land degradation and soil erosion. Accurately assessing ecological restoration and its driving
factors remains challenging. Previous studies in this area concentrated on driving factors have
mainly focused on natural factors at the regional or watershed scale, with limited consideration
of socioeconomic factors at the county scale. In this study conducted in Huanglong County on
the Loess Plateau, the focus was to fill the gaps in previous research and provide insights into the
socioeconomic driving forces behind vegetation greening. Remote sensing image data (NDVI) from
1999 to 2019 were used to analyze vegetation greenness dynamics in the region. Five socioeconomic
variables were considered, including afforestation intensity, deforestation intensity, agricultural
intensity, village intensity, and road intensity layers, to characterize the impact of afforestation,
agriculture, and urbanization policies. The RESTREND (residual trends) method was employed to
assess the relative importance of climate and human activities on vegetation dynamics. This study
found that temperature–NDVI relationships are more suitable for building RESTREND models than
precipitation–NDVI relationships. Human activity was the main driver of vegetation dynamics,
contributing 62% compared to 38% from climate change. Agricultural practices and afforestation
were found to have a positive impact on ecological restoration, while deforestation and urbanization
had no significant impact. These findings highlight a conceptual framework for understanding the
intricate relationship between ecological restoration, climatic factors, and human activity on the Loess
Plateau. This study suggests that significant progress has been made in ecological restoration through
human efforts in combating land degradation. However, it emphasizes the need to strengthen
natural conservation efforts and gradually transition toward restoration processes driven by natural
forces for sustainable socioeconomic development. The methodology used in this study can be
applied to explore the driving forces of ecological restoration in other regions facing human-driven
land degradation.

Keywords: land degradation; ecological restoration; driving force analysis; RESTREND; contribu-
tion rate

1. Introduction

Land degradation is a significant issue affecting a large portion of the global land
area, particularly in dry areas. According to estimates from the Global Environmental
Fund, if the current trend continues, it is projected that by 2050, a significant portion of the
world’s land area, approximately 95%, will become degraded. This has serious implications
for the approximately 3.2 billion people who live in these areas, as well as for the overall
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health of the planet [1]. Efforts to combat land degradation and implement sustainable
land management practices are crucial to mitigate these negative impacts.

Land degradation refers to the deterioration of land quality and productivity caused by
various processes, including soil erosion, salinization, loss of soil fertility, and depletion of
seed banks [2]. It can occur in arid, semi-arid, or subhumid areas [3]. Both climate variations,
such as high temperatures, low annual rainfall, and high interannual variability, as well as
human activities, are the driving forces behind land degradation [4–7]. Human-induced
degradation is often cited as a primary cause of desertification in semi-arid areas [8,9].
Overgrazing, agricultural development, creation or movement of human settlements, and
unsustainable land-use practices are among the main contributors to desertification [10–12].
Land degradation has significant impacts on both the biological and economic productivity
of an area [13–15]. It affects vegetation cover, biodiversity, and density, leading to a loss of
ecosystem services. Additionally, it affects agricultural productivity, food security, and the
livelihoods of local communities [16,17].

Ecological restoration plays a crucial role in combating land degradation by improving
soil quality, enhancing biodiversity, and promoting sustainable land management practices,
especially in semi-humid and semi-arid areas [18,19]. It involves rehabilitating natural sites
that have been degraded or damaged by human activities through measures like reforesta-
tion, soil conservation, and habitat restoration [20]. The goal is to return these sites to their
previous state or a condition closely linked to the one unaltered by human influence [21].
The relationship between ecological restoration and land degradation is that ecological
restoration aims to reverse or mitigate the negative impacts of land degradation. Interna-
tional organizations, such as the United Nations Convention to Combat Desertification
(UNCCD), are actively involved in addressing land degradation. The UNCCD promotes
cooperation in combating desertification and mitigating the effects of drought. Additionally,
the Food and Agriculture Organization (FAO) and other environmental agencies collaborate
to raise awareness, develop sustainable land management practices, and implement rehabil-
itation measures in affected regions. More information about these organizations and their
efforts could be found on their respective websites: UNCCD (https://www.unccd.int/,
accessed on 1 March 2024) and FAO (https://www.fao.org/, accessed on 1 March 2024).

Evaluating the effectiveness of ecological restoration in controlling land degradation
requires the use of various indicators. These indicators include changes in vegetation
cover/greenness, soil erosion rates, soil fertility, biodiversity loss, and water quality. These
indicators vary in terms of data collection, analysis, and interpretation [22]. They can be
categorized into three main types: remote-sensing-based techniques, field-survey-based
techniques, and socioeconomic-based techniques.

Remote-sensing-based techniques utilize satellite imagery and other remote sensing
technologies to assess changes in land cover, vegetation health, and soil conditions [23,24].
These technologies offer broad-scale and continuous monitoring of land degradation over
large areas. They can detect changes in vegetation cover, soil erosion, and land-use patterns.
Remote sensing techniques provide efficient data on a regional or global scale. However, it
is important to note that they may not provide detailed information on specific land-use
practices and socioeconomic factors [25].

Field-survey-based technologies involve on-site data collection and analysis. This
method includes field observations, soil sampling, and vegetation assessments. Field
surveys provide detailed information on specific locations and allow for a direct assessment
of land degradation indicators, such as soil erosion rates and vegetation health [26]. They
can also capture local variations in land-use practices and socioeconomic factors. However,
field surveys are time-consuming and resource-intensive, making them less efficient for
large-scale monitoring.

Socioeconomic-based technologies focus on the analysis of socioeconomic indicators
and data related to land use, agriculture, and human activities [27]. These indicators
can include changes in agricultural practices, land-use patterns, population density, and
economic factors. Socioeconomic-based technologies provide insights into the human
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drivers and impacts of land degradation. They help us to understand the underlying causes
of degradation and can guide policy and decision-making processes [28,29]. However, it is
important to note that these technologies may be limited in capturing the physical changes
in land cover and soil conditions.

Each monitoring approach has its advantages and limitations. Remote-sensing-based
technologies provide a broad-scale overview, field-survey-based technologies offer de-
tailed on-the-ground information, and socioeconomic-based technologies provide insights
into the human dimensions of land degradation. For large-scale and spatially patterned
assessments, remote-sensing-based methods have strong advantages over the other two
methods.

China has indeed achieved remarkable ecological restoration from land degradation
over the past three decades [30], particularly in the Loess Plateau [31–33]. The government
has implemented various ecological engineering and conservation policies, such as return-
ing farmland to forest projects, protecting natural forests, and prohibiting grazing and
logging [34]. These policies, supported with substantial funding, have resulted in positive
outcomes, including vegetation recovery, effective soil erosion control, and significant
social and economic development [35–37]. However, there is an ongoing discussion among
scholars regarding the extent to which human activities contribute to vegetation greening
on the Loess Plateau [38–40]. Most research has focused on vegetation greenness at the
regional [38,41–45] or watershed scale [46–50], with limited studies conducted at the county
scale. Additionally, the analysis of driving factors behind spatiotemporal changes in vege-
tation greenness has mainly focused on natural factors [51–53], with limited consideration
of socioeconomic factors.

The Loess Plateau is composed of over 340 counties [54], which serve as the basic
administrative units in China. Counties have independent operational characteristics and
diverse regional functions [55], making them crucial in implementing ecological initiatives,
safeguarding natural forests, and conducting reforestation programs [56]. Huanglong
County, located in the central Loess Plateau, has experienced significant changes in land
use and cover over the past two decades due to various ecological initiatives. It serves as a
representative area for ecological governance and restoration. The aim of our study was to
analyze satellite imagery data for Huanglong County over a period of 21 years in order to
address the research gap. Our specific objectives were as follows:

(1) Determine the trend of changes in vegetation greenness;
(2) Identify the dominant factor, whether climate change or human activities, influencing

the county-scale ecological restoration progress;
(3) Explore the human dimension that affects ecological restoration.

Through this study, we aimed to provide an accurate and comprehensive assessment
of the processes of vegetation greening and the underlying causes of restoration. This
research will contribute to the development of a scientifically sound ecological restoration
framework at the county level, helping combat land degradation in a meaningful way.

2. Materials and Methods
2.1. Study Area

Huanglong County (35◦24′09′′–36◦02′11′′ N, 109◦38′49′′–110◦16′49′′ E), located in
Shaanxi Province, China, is part of the Loess Plateau (Figure 1). It covers an area of
2751 km2 and has hilly terrain with elevations ranging from 656 m to 1774 m. The county
has a distinct continental climate, with an average annual temperature of 9.51 ◦C and
an average annual rainfall of 582 mm, mainly occurring between July and September
(Figure 2).
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In terms of forest, Huanglong County encompasses various types, including evergreen
broad-leaved forest, bottom mountain secondary shrubland, coniferous and broad-leaved
mixed forest, and coniferous forest. The main natural forest species in the county include
Quercus wutaishanica, Pinus tabulaeformis, and Robinia pseudoacacia. On the other hand,
apples, peaches, and apricots are the dominant economic forest species.

The county has a population density of 14.54 individuals per square kilometer and
an urbanization rate of 57.12% (2020). It has leveraged its abundant natural resources and
well-developed road transportation to develop specialty industries such as walnuts, honey,
and hairy crabs, contributing to an annual GDP of 2.305 billion.

Due to extensive exploitation of natural resources, agricultural activities, grazing,
and deforestation, Huanglong County has been facing severe soil erosion. In response,
ecological engineering projects, including the “Grain for Green” program and the Natural
Forest Protection Project, have been implemented since the 1990s. Protective policies such
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as mountain closure and nature reserve construction have also been put in place to address
these issues.

2.2. Data Sources
2.2.1. Remote Sensing Data

The SPOT satellite (Satellite Pour I’ Observation de la Terre), developed by the Centre
National D’Etudes Spatiales (CNES, Paris, France), is an earth observation satellite used
for remote sensing. Since 1986, a series of SPOT satellites (SPOT 1–7) have been launched,
providing continuous remote sensing data for various application fields. The SPOT satellite
can capture images in the visible light band as well as capturing multispectral information,
including infrared bands. This makes the SPOT satellite particularly valuable for analyzing
vegetation, land cover, water bodies, soil, and other related studies. In vegetation research,
SPOT satellite images can be used to obtain vegetation coverage information, monitor
changes in vegetation, assess vegetation health, and more. Due to its high spatial resolution
and multispectral capabilities, the SPOT satellite is considered an important data source in
remote sensing research.

Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), are
commonly used in remote sensing to assess vegetation health and abundance [57]. The
NDVI is calculated using the reflectance values of near-infrared (NIR) and red (R) wave-
lengths from satellite imagery [58]. It provides valuable information about vegetation cover
and its changes over time. The value of the NDVI typically ranges from 0 to 1, with larger
values indicating thriving vegetation. By comparing these two spectral bands, the NDVI
can provide insights into vegetation density, growth stages, and overall health.

The vegetation index, particularly the NDVI, is widely used in various applications
such as agriculture, forestry, environmental monitoring, and land degradation assess-
ment [59,60]. It helps monitor changes in vegetation cover, identify areas affected by
drought, analyze land-use patterns, and assess the impact of human activities on ecosys-
tems [61]. In agriculture, the NDVI can be used to monitor crop health [62], identify growth
cycles, support irrigation and fertilization plans [59], and promote sustainable agricultural
management [63]. It provides valuable information for planning and protecting agricul-
tural resources. Overall, the vegetation index, especially the NDVI, is a valuable tool for
understanding vegetation dynamics and monitoring environmental changes over time.

A continuous annual maximum NDVI dataset for the Loess Plateau, covering the period
from 1999 to 2019, was gained from the Resource and Environment Science and Data Cen-
ter (RESDC, https://doi.org/10.12078/2018060601, accessed on 1 February 2023) [64]. This
dataset consists of 21 layers of maximum NDVI values derived from SPOT/VEGETATION.
The maximum synthesis method was used to mitigate the influence of cloud cover and other
obstructions, capturing the peak value of vegetation during the growing season. The dataset
has a temporal resolution of 1 year, a spatial resolution of 1 km × 1 km, and uses the Al-
bers_Conic_Equal_Area coordinate projection. This dataset is widely used for monitoring
vegetation changes at various scales and is particularly valuable for studying vegetation change
trends in larger areas [65,66]. While the 1 km resolution may not capture microscopic changes
in vegetation, it is sufficient for identifying and analyzing the main patterns of vegetation
change, especially at the county scale.

2.2.2. Climate Data

The climate data used in this study were obtained from the China Meteorological Data
Service Center for the years from 1999 to 2019 (http://data.cma.cn, accessed on 1 February
2023). The data were directly monitored at the meteorological station in Huanglong County.
The precipitation in Huanglong County ranged from 422.5 mm to 899.4 mm, with an annual
average temperature fluctuating between 8.5 ◦C and 10.3 ◦C. Since Huanglong County
has only one meteorological station, it is assumed that the precipitation and temperature
data are uniformly distributed and there is no spatial heterogeneity across the county.
This assumption is reasonable considering that the minimum level for establishing a
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national meteorological station in China is at the county level. It is important to note
that the climate data in each grid cell of Huanglong County are identical to the data
collected at the meteorological station. The meteorological stations in the surrounding
counties are far away and not representative for Huanglong county, which may result in
great errors for the interpolation of climate layers based on surrounding meteorological
stations [67]. Furthermore, the meteorological data obtained for this study are based on
monthly observations.

2.2.3. Socioeconomic Factors

Socioeconomic factors considered in this study include afforestation intensity, de-
forestation intensity, agricultural intensity, village intensity, and road intensity layers.
These factors represent three types of socio-economic policies: forestry, agriculture, and
urbanization.

The forestry policy comprises afforestation intensity and deforestation intensity layers.
The afforestation intensity layer is created using a kernel density estimation function,
utilizing a binary layer that transitions from nonforest land-use type to forest land-use type
between 1999 and 2019. On the other hand, the deforestation intensity layer is generated
with a similar method, but for the transition from forest land-use type to nonforest land-use
type during the same period. The agriculture policy involves the agricultural intensity layer,
which is produced using a kernel density estimation function based on cropland land-use
type data from 2019. For the urbanization policy, village intensity and road intensity layers
are considered. The village intensity layer is created through a kernel density estimation
function using village points data from 2019. Similarly, the road intensity layer is generated
using a kernel density estimation function based on road alignment data from 2019.

The binary layer transitions between nonforest land-use type and forest land-use
type during 1999 and 2019 were created using the land-use data from those respective
years. Similarly, the binary layer transitions from forest land-use type to nonforest land-use
type during 1999 and 2019 were generated by comparing the land-use data of those years.
The binary layer representing cropland land-use type in 2019 was produced based on
the land-use data from that specific year. In the generation of afforestation intensity and
deforestation intensity data, the comparison of land-use conditions in 1999 and 2019 was
conducted to capture the changing trends in the region over the 21-year period. While
this approach does not provide detailed annual change information, it offers insights into
the long-term trends and overall directions of change in the area. Regarding the data on
agricultural intensity, village intensity, and road intensity, the selection of data from 2019
allows for the assessment of the current impact of agricultural activities and urbanization
levels on vegetation restoration in the region.

The land-use data for 1999 and 2019 were sourced from Yang and Huang (2021), with
an overall accuracy of 79.31% [68]. Road maps and village points were acquired from the
OpenStreetMap database (https://download.geofabrik.de, accessed on 1 February 2023).
The kernel density estimation function is implemented using ArcGIS10.6 (Environmental
Systems Research Institute, Redlands, CA, USA). To normalize values between 0 and 1, the
intensity layers were scaled using the formula (X-cellStats(X,min))/(cellStats(X,max) − cell-
Stats(X,min)) using the RASTER package in R4.3 (R Foundation for Statistical Computing,
Vienna, Austria). The driving factor layers used in the analysis are depicted in Figure 3.

https://download.geofabrik.de
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2.3. Experimental Design and Data Statistical Analysis
2.3.1. Residual Trends Method

This study utilized the residual trends (RESTREND) analysis method to investigate
the factors driving NDVI change in Huanglong County. The RESTREND method, first
used by Evans and Geerken [69], is considered as a reliable method for distinguishing
the impacts of climate- and human-accelerated land degradation [70]. The methodology
controls for climate variations by establishing a regression between the NDVI (a measure of
vegetation greenness or ecosystem productivity) and precipitation [71–73]. The observed
NDVI values subtract the simulated NDVI values estimated from the regression model, the
results are known as NDVI residuals. A trend analysis is applied on the residuals, with
a positive trend indicating ecological restoration [74–76]. Further information about the
RESTREND method can be seen in Wessels et al. [71] and Evans and Geerken [69].

The method described in this study is based on two assumptions. Firstly, it establishes
a relationship between climate factors and NDVI to obtain predicted values, which repre-
sent the variability directly attributed to climate factors. Secondly, the residual is calculated
as the difference between actual observed values and predicted values, capturing the
variation that cannot be explained by climate alone. Typically, this unexplained variation
is attributed to human activities. It is important to note that the essence of RESTREND
thought is binary division and does not account for the influence of random processes. By
utilizing predicted values and residuals, it becomes possible to effectively distinguish the
impact of climate change and human activities on NDVI changes.

2.3.2. The Workflow for Statistical Analysis

RESTREND analysis has typically been developed to identify land degradation in
dryland grassland or desert ecosystems, primarily considering precipitation as the main
influencing factor [74]. However, it is important to note that this study conducted in
Huanglong County is situated in a semi-humid forest region, where temperature may also
play a significant role in driving vegetation greenness changes. Therefore, in constructing
the regression equation at the grid-cell scale, this study incorporates both precipitation and
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temperature factors. The key steps involved in utilizing this method to monitor long-term
ecological restoration of vegetation index are as follows.

Firstly, the 21 NDVI raster data for Huanglong County were converted into 21 vector
data using R language, resulting in an NDVI matrix with dimensions of 2811 × 21 [grid ×
layer]. Since vegetation growth in the Loess Plateau can be influenced by both temperature
and precipitation [77], this study adopted a regression analysis model that considers
the combined effects of temperature and precipitation. For each grid, a multivariate
stepwise regression analysis was performed to establish a regression equation, which can
be formulated as follows:

Obji = step
(

lm
(

NDVI[i,] ∼ gp + gt + gp2 + gt2
))

(1)

where Obji represents the optimal equation for grid i, NDVI[i,] represents the 21-year
sequence of NDVI data for grid i; and gp and gt represent the 21-year growing season total
precipitation and mean temperature data from the meteorological stations, respectively.
Additionally, gp2 and gt2 are the squares of the corresponding values of growing season
total precipitation and mean temperature, respectively. This equation is established to
investigate the nonlinear relationship between climatic factors and the NDVI.

Secondly, the expected values for each grid are predicted using optimal multivariate
equations specific to each grid. The regression residual is calculated as the difference
between the observed real values and the expected values. The formula can be expressed
as follows:

Resdi = NDVI[i,] − predict(Obji) (2)

where NDVI[i,] represents the 21-year sequence of the NDVI data for grid i, predict(Obji)
is the predicted value of the NDVI for each grid, and Resdi is the residual between the real
NDVI[i,] and predict(Obji) for each grid.

Thirdly, a linear regression equation was employed to calculate the 21-year regression
residuals for each grid and corresponding year. The formula used for this calculation is as
follows:

Tredi = coe f (lm(Resdi ∼ year)) (3)

where Tredi represents the residual trend (regression slope) for grid i, and year marks
the duration from 1999 to 2019. The coef represents a function for extracting regression
slopes. When Tredi > 0, human activities had a positive effect on ecological restoration,
while Tredi < 0 indicates a negative impact.

Fourthly, the relative importance of human activity and climate change on vegetation
greenness can be calculated using the following formula:

Ac = di f f (range(predict(Obji))) (4)

Ah = di f f (range(Resdi)) (5)

Chi
=

Ah
Ac + Ah

(6)

In these formulas, Ac indicates the amplitude of changes in the NDVI caused by
climate change; Ah indicates the amplitude of changes in the NDVI caused by human
factors; Cci characterizes the rate of climatic contribution to the NDVI dynamics; and
Chi

characterizes the rate of human activity contribution to the NDVI dynamics. The diff
represents a function for calculating the difference between two data points. The range
represents a function for calculating the range size of a vector.

Finally, we investigated the impact of human activities on regression residuals. Here,
we calculated the correlation between the NDVI and each socioeconomic variable using the
Pearson correlation coefficient. The formula used for these calculations is as follows:

Ri = cor(Trend, social[[i]], method = “pearson”) (7)
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where social[[i]] is the i human disturbance factor (afforestation intensity, deforestation in-
tensity, agricultural intensity, village intensity, and road intensity), and Ri is the correlation
coefficient between Trend and the social[[i]]. The value range of R, the correlation coefficient,
is between −1 and 1. Positive values indicate a positive correlation, while negative values
indicate a negative correlation. The absolute value of the correlation coefficient is used to
determine the strength of the correlation. In general, a range of 0–0.1 indicates a negligible
correlation, a range of 0.1–0.39 indicates a weak correlation, a range of 0.4–0.69 indicates
a moderate correlation, a range of 0.7–0.89 indicates a strong correlation, and a range
of 0.9–1 indicates a very strong correlation [78]. To test the hypothesis, the threshold of
moderate correlation was used to detect the important social factor that affects residual
trends. Variables with R greater than this threshold will be considered the main factors
affecting residual trends.

All the analyses were carried out using the R4.3 software package (https://www.
r-project.org/, accessed on 1 February 2023) and ArcGIS 10.6 (Environmental Systems
Research Institute, Redlands, CA, USA). The overall workflow is shown in Figure 4.
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3. Results
3.1. Stepwise Regression and Residual Trend Analysis

We extracted grid values and climate data from the 21-year raster layer at correspond-
ing locations. Each NDVI grid value was considered as the dependent variable, while
the climate data were treated as the independent variable in establishing a regression
relationship. This process was repeated for 2811 grids. Table 1 provides a summary of the
regression results, indicating the established correlation between the NDVI and climate
factors in our study. The table shows that 95% of the grids exhibited good predictive perfor-
mance. Most regression models established on grids are linear with respect to temperature
rather than to precipitation. This means that temperature variation has a greater impact
than precipitation on the dynamics of vegetation greenness. However, the model also
showed poor prediction performance for approximately 5% of the grids distributed in the
western part, indicating that their vegetation greenness may not be affected by precipitation
or temperature. Additionally, the overall R2 value of the stepwise regression based on the

https://www.r-project.org/
https://www.r-project.org/
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grids was found to be significantly high (Figure 5A–D). From a spatial perspective, the
model showed better predictive performance for grids in the northern region.

Table 1. Statistics on the relationship between the NDVI and growing season precipitation
(gp)/temperature (gt) at the grid scale.

Formula Grids Percentage NDVI–Climate Relationship

NDVI ~ gt 2671 95.0% NDVI–temperature linear relationship
NDVI ~ 1 137 4.9% No NDVI–climate relationship

NDVI ~ gt + gp + gt2 + gp2 3 0.1% NDVI–climate nonlinear relationship
Total 2811 100%
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We visualized the spatial distribution of the residual trend (regression slope) for
2811 grids using a raster layer, as shown in Figure 5E. In the figure, a positive value
represents a positive trend. This two-dimensional representation allows readers to perceive
the changes in trends more effectively compared to a line chart with a single value. Figure 5F
provides a statistical indicator that helps us understand the frequency of the residual trend
in the regression equation. It indicates that 98% of the grid values were greater than 0,
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indicating a positive residual trend. This suggests a positive impact of human activities
on ecological restoration from 1999 to 2019. The higher values of the residual trends were
primarily concentrated in the southwestern region of Huanglong County.

3.2. Climate and Human Contributions

The decomposition of variation reveals that human activities have emerged as the
primary driving force behind vegetation change, accounting for 62% of the recovery, while
climatic factors have contributed 38% (Figure 6A). This indicates that human interference
has a much larger impact on vegetation greenness compared to climate change.
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Figure 6. The spatial pattern (A) and frequency distribution (B) of the climate contribution, as well as
the spatial pattern (C) and frequency distribution (D) of the human contribution to NDVI change
over 1999–2019.

When examining the spatial distribution of these contributions within the region, it
becomes apparent that the western parts are more influenced by human activity. This
suggests that human-induced land-use practices and ecological management in this area
have had a significantly positive effect on vegetation conditions. These positive influences
may include more intensive land-use practices and urban greening initiatives, among other
socioeconomic factors. Overall, these efforts have collectively facilitated the restoration of
vegetation and ecosystems.
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3.3. The Driving Force of Human Activities

The analysis in Figure 7 reveals that there is a positive correlation between residual
trends and all socioeconomic factors. Among these factors, we did not find strong or very
strong correlations among these 5 factors (R value greater than 0.7). However, afforestation
and agriculture have moderate correlation levels, with absolute values of R equal to 0.4
and 0.59, respectively. This suggests that afforestation density and agricultural density play
significant roles in the socioeconomic factors affecting vegetation recovery. On the other
hand, village density, deforestation density, and road density show weak or negligible
correlations with residual trends. This indicates that forest logging and urbanization have
no significant impact on ecological restoration.
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4. Discussion
4.1. Precipitation–NDVI vs. Temperature–NDVI Relationship

This study investigated the driving forces behind ecological restoration at the county
scale within the Loess Plateau region. Our research findings suggest that there is a distinct
linear correlation between vegetation and temperature, indicating that temperature plays
a predominant role in the vegetation–climate relationship, surpassing the influence of
precipitation. This finding differs from prior studies that focused primarily on precipitation
factors in arid desert and grassland regions, assuming precipitation to be the main driving
force behind vegetation change [74]. For example, Wang et al. analyzed the spatial patterns
of the NDVI in response to precipitation and temperature in the central Great Plains
and found relatively high correlations between accumulated precipitation and the NDVI,
suggesting that precipitation plays a significant role in vegetation dynamics [79]. Another
study by Yang et al. assessed the relationship between AVHRR/NDVI and climatology in
Nebraska, USA, and observed a higher correlation between precipitation and the NDVI
compared to temperature [80]. However, it is important to carefully consider whether this
strong correlation between vegetation and precipitation still holds true in humid forest
areas rather than dryland grassland/desert regions, as this aspect has been rarely addressed
in previous research.

In general, vegetation in humid regions tends to be more sensitive to temperature
variations, while vegetation in arid regions is more sensitive to rainfall variation. This is
because, in humid regions where rainfall is abundant, water availability is usually not a
limiting factor for plant growth [37]. Therefore, changes in rainfall cannot directly affect
vegetation growth and productivity. On the other hand, in arid regions, where water is
scarce, vegetation relies heavily on the limited rainfall it receives. Even small changes
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in rainfall can have a significant impact on plant growth and survival. Temperature, in
contrast, plays a crucial role in determining the rate of plant physiological processes, such
as photosynthesis and evapotranspiration. Therefore, the vegetation in humid regions
with cold temperature, like Huanglong County, is more sensitive to temperature variations
as it directly affects their metabolic activities and water loss through transpiration. Zhan
et al. also noted a positive correlation between the annual NDVI and temperature in
semi-humid areas [81]. This means that selecting the types of climate factors is crucial
when using the RESDTRED method to detect driving forces of change in forests in humid
areas. The traditional precipitation–NDVI relationship in grassland/desert regions may
not be applicable to forest regions. The inclusion of temperature factors in local regression
relationships is necessary to make them applicable to forest ecosystems. However, the
presence of time lags may introduce uncertainty, as mentioned in Section 4.3 of this paper.
This uncertainty has implications for the analysis and interpretation of the data.

4.2. Human Dimensions on Vegetation Greening

Our study suggests that human activities have emerged as the primary driving force
behind vegetation change, contributing 62% to the recovery of vegetation, while climatic
factors only accounted for 38%. This indicates that the impact of human interference on
vegetation greenness far outweighs that of climate change. It is worth noting that our
findings differ slightly from broader research on the Loess Plateau, which emphasizes the
approximately equal importance of human activities and climatic factors in the process of
vegetation restoration. For example, Shi et al. indicated that the contribution of human
factors to vegetation growth was 54.2% and that of climatic factors was 45.8% [82].

Furthermore, our study has incorporated more empirical evidence on human activity
factors than previous studies, including afforestation, deforestation, and agricultural and
urbanization policies. Our findings reveal that afforestation and agricultural policies have
positively influenced vegetation recovery and enhanced vegetation restoration. In contrast,
deforestation and urbanization have shown negligible impacts on vegetation dynamics.
Based on our study, we have developed a conceptual model (Figure 8) to illustrate the
vegetation changes in Huanglong County. This framework model reflects deliberate and
systematic human interventions aimed at the restoration or reconstruction of ecosystems
that have been subjected to natural or human-induced disturbances, degradation, or
damage, with the goal of facilitating their gradual return to their original state, in line with
the definition of ecological restoration.
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that afforestation and agricultural policies have played a significant role in enhancing ecological
restoration in the region. On the other hand, the impacts of deforestation and urbanization on
ecological restoration have been negligible. Interestingly, temperature, rather than precipitation,
significantly impacts ecological restoration.
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4.2.1. Afforestation Policies

Afforestation policies, such as the Grain for Green program, have played a significant
role in enhancing vegetation restoration in Huanglong County. The Grain for Green
program is a notable afforestation policy in China that promotes vegetation greening
through various measures and strategies. These policies focus on restoring degraded forests
and establishing new forest areas. Measures include identifying steep slope farmlands
(>25◦), providing state funding to incentivize farmers to retreat from these areas, and
implementing manual or unmanned aerial vehicle planting of seedlings or grass seeds [83].

For example, during the first phase of the afforestation program from 1999 to 2012,
Huanglong County experienced significant land-use transformations. This involved allocat-
ing 4220 hectares for afforestation on previously cultivated land, reforesting 2907 hectares of
barren hills, and implementing forest conservation and nurturing initiatives on 800 hectares
of mountainous terrain. As a result of these afforestation efforts, vegetation cover, vegeta-
tion greening, and ecosystem functions have increased in the county.

4.2.2. Agricultural Policies

Agricultural policies have indeed played a role in enhancing vegetation restoration
in Huanglong County. China has implemented several agricultural improvement policies.
These policies aim to protect farmland and promote the development of high-standard
farmland. They include measures such as prohibiting the occupation of farmland, reshaping
the agricultural land surface, upgrading agricultural infrastructure, using machinery for
seed sowing, building irrigation systems, applying scientific fertilization techniques, and
developing advanced planting technology. These activities create favorable conditions
for vegetation growth and help compensate for limited rainfall in dryland areas through
adequate water supply [84].

Furthermore, agricultural practices such as crop rotation, soil conservation, and nutri-
ent management can improve soil fertility and promote healthy plant growth [85]. However,
it is important to note that the expansion of agriculture may have negative consequences,
such as the conversion of natural vegetation into agricultural land, leading to a loss of
biodiversity and disruptions in the natural ecosystem [86]. Therefore, implementing sus-
tainable agricultural practices is crucial to minimize negative impacts and ensure long-term
vegetation greening. Overall, agriculture contributes to vegetation greening by improving
water availability, nutrient supply, and proper land management practices. However, it is
essential to carefully consider the ecological balance and implement sustainable practices
to avoid detrimental effects on the environment.

4.2.3. Deforestation and Urbanization Policies

Usually, deforestation and urbanization are not conducive to vegetation greening [87].
However, our study indicates that in the case of Huanglong County, deforestation and
urbanization have had negligible impacts on vegetation greening. We speculate that this is
due to the implementation of China’s National Forest Conservation Program and national
urban greening policies, which aim to protect vegetation from adverse factors.

China’s National Forest Conservation Program aims to address the issue of defor-
estation by implementing measures to reduce the commercial cutting down of trees for
purposes such as timber production and wood extraction. This is performed to conserve
forests, protect biodiversity, prevent deforestation, mitigate climate change, and promote
sustainable forest management. It involves implementing legal and regulatory measures,
establishing protected areas or conservation zones, promoting alternative livelihoods for
communities that depend on logging, and encouraging responsible forestry practices that
prioritize ecological sustainability [88].

On the other hand, national urban greening policies regulate urban greening rates
in the form of laws. It involves the creation and maintenance of parks, gardens, street
trees, green roofs, vertical gardens, and planting trees around residential areas [89]. Urban
greening aims to enhance the quality of urban environments by providing numerous
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benefits. These include reducing air and noise pollution, mitigating the urban heat island
effect, improving mental and physical well-being, promoting biodiversity, and creating
more pleasant and livable urban spaces. These policies have been effectively implemented
in the region, resulting in minimal negative impact of destructive human activities on
vegetation greenness.

4.3. Sources of Uncertainty

The RESTREND method used in our study is a widely accepted approach for analyzing
the driving forces of NDVI dynamics. It effectively distinguishes between the impacts of
climatic factors and human activity on ecological restoration. However, it is important to
note that the RESTREND method assumes an instantaneous relationship between climate
and vegetation, neglecting time-lag effects. The presence of severe human interference
or localized redistribution of water and heat can challenge this assumption, leading to
unrealistic internal assumptions [74]. Furthermore, the observation of time-lag effects
between the NDVI and climate also challenges the internal assumptions and may potentially
affect the results of our study [90]. Incorporating time-lag effects into the regression models
could be a valuable improvement for the RESTREND method in future research.

In our study, we observed that 4.9% of the grids in the regression models did not reach
a significant regression level. These grids were primarily located in urban and agricultural
areas, which contributed to the increased uncertainty in our study. One potential solution to
address this issue is to use a global regression model (GRM) instead of the local regression
model (LRM) that we utilized in this study. The GRM assumes that all grids in a dataset
follow the same mathematical relationship and aims to establish a single equation to
describe the relationships between variables for the entire dataset. This approach may be
more suitable for datasets with overall trends, thus avoiding the issue of nonsignificance
encountered in local regression models. However, GRMs have been criticized for neglecting
local habitat heterogeneity [91]. On the other hand, LRMs offer more flexibility as they
create regression models for each grid in the region. This makes them better suited for
situations where the data exhibit local differences, heterogeneity, or nonlinear relationships.
The choice between the GRM and the LRM depends on the research question and data
characteristics. Comparing and selecting between these two optimization methods can be a
potential avenue for future research.

In the exploration of human activity dimensions, we discovered moderately correlated
factors, but did not find strongly or very strongly correlated factors. The following question
arises: is it meaningful to discuss moderate correlation? Moderate correlation can indeed
have significance in certain contexts. While it may not be as strong or direct as strong corre-
lation, moderate correlation can still provide valuable information and clues in research and
analysis. Firstly, moderate correlations can offer preliminary clues or directions, helping
us understand the problem and lay the foundation for further investigation. Secondly, in
complex systems where multiple factors influence phenomena, moderate correlation can
provide insights into the system’s internal workings. Even if the correlation between a
variable and the target variable is weak, it can still play a role in the overall operation of
the system. Finally, in multivariate analysis and predictive model optimization, moderate
correlation can be important for the overall model, as variables may interact or have com-
mon influences. Moderately correlated variables might exhibit stronger predictive ability
when combined with other variables. Therefore, moderate correlation can be meaningful
in exploratory research, multivariate analysis, predictive model optimization, and under-
standing complex systems. Further research can focus on exploring the comprehensive
impact of moderately correlated variables.

4.4. Implications and Future Directions

The findings of our study have the potential to contribute to our understanding of
the drivers of ecological restoration in land degradation regions and aid in identifying
areas undergoing human-induced changes. Our research focuses on county-level units
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rather than natural geographical units because county-level units are the fundamental
units of social and economic activities. This study provides insights into the complex
interactions between climate, human activities, and vegetation dynamics in semi-humid
forest environments. These insights can inform policy and practice in the restoration and
sustainable management of these ecosystems not only in the Loess Plateau but also in other
regions. Based on our research, we suggest focusing on four aspects of content in the future:

(1) Further investigation into the comprehensive role of socioeconomic factors is cru-
cial. Previous studies have provided limited consideration of these factors and their
complex interactions. Future research should aim to deepen our understanding of
how human activities, including land-use changes, population density, and economic
development, influence vegetation greening at the county scale;

(2) Conducting long-term monitoring and analysis at the county scale would offer a
comprehensive understanding of vegetation dynamics and the factors driving them.
This approach would enable us to identify trends in vegetation greening and detect
any temporal changes or variations in the driving forces;

(3) To obtain a more comprehensive understanding of the factors driving vegetation
greening, future research could conduct comparative studies across counties on the
Loess Plateau. This approach would allow for the analysis of ecological initiatives,
land management practices, and their respective impacts on vegetation greening;

(4) Expanding the research scope to include a broader range of regions outside the
Loess Plateau would enhance the generalizability of the findings and provide a more
comprehensive understanding of the driving forces behind vegetation greening at the
county scale.

5. Conclusions

This study effectively disentangled the effects of climate and human activity on vegeta-
tion greening using the RESTREND method. Our study shows that the temperature–NDVI
relationship is more suitable for establishing regression equations than the precipitation–
NDVI relationship in our forest region. Agricultural practices and afforestation significantly
promoted vegetation recovery, whereas deforestation and urbanization exhibited negligible
impacts on vegetation dynamics. The contribution of human activity outweighed the im-
pact of climate change on vegetation greening. This means that significant progress toward
ecological restoration has been achieved with the assistance of human effort in the Loess
Plateau. However, future challenges lie in the need to strengthen natural conservation
efforts and gradually transition from human-driven restoration processes to those driven
by natural forces. This transition will facilitate the more effective utilization of climatic
factors as the dominant drivers of ecological restoration, leading to a more sustainable
ecological balance (climax theory). Only in this manner can they align with nature-based
solutions. Further investigation of the role of socioeconomic factors, long-term monitoring,
comparative studies across counties and regions, and exploring more driving models for
ecological restoration are important for advancing our understanding of ecological restora-
tion. These efforts will help identify the best restoration paradigm and contribute to more
effective and sustainable restoration practices.
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