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Abstract: To solve the problems of low recognition accuracy and large amounts of computation
required in forest fire detection algorithms, this paper, aiming to make improvements in these
two aspects, proposes a G-YOLOv5n-CB forest fire detection algorithm based on the YOLOv5
algorithm and develops a set of real-time fire monitoring systems applicable to campus forest land
with the aid of deep learning technology. The system employs an unmanned vehicle to navigate
automatically and collect image information through a camera and deploys its algorithm on the
unmanned vehicle’s Jetson Nano hardware platform. The results demonstrate that the proposed
YOLOv5n-CB algorithm increased the mAP value index by 1.4% compared with the original algorithm
on the self-made forest fire dataset. The improved G-YOLOv5n-CB model was deployed on the
Jetson Nano platform for testing, and its detection speed reached 15 FPS. It can accurately detect and
display real-time forest fires on campus and has, thus, a high application value.

Keywords: campus forest fire detection; deep learning; YOLOv5; lightweight network; automatic
navigation

1. Introduction

Forests in nature are a precious resource for humankind and a gift from the earth.
However, forest fires not only cause damage to the natural environment but also seriously
endanger human life and give rise to huge losses. Therefore, studying forest fire monitoring
and early-warning systems is particularly important. Many Chinese universities have
experimental woodlands on and off campus for their students to study and research.
However, campus woodlands are usually located at remote sites; should a fire occur, it is less
likely to be discovered in time and is prone to cause significant harm. Hence, developing
a set of real-time monitoring systems for forest fire detection in campus woodlands is an
urgent task.

The main content of a real-time fire monitoring system lies in applying a target de-
tection algorithm and a forest fire detection algorithm. On the one hand, the research
orientation of object detection has gradually shifted from traditional object detection al-
gorithms to deep learning-based object detection algorithms in the past ten years. Many
researchers have reaped good results in studying traditional object detection algorithms [1].
The directional gradient histogram algorithm proposed by Navneet Dalal and Bill Triggs in
2005 has proven to be a fundamental algorithm for traditional target detection [2]. And,
with the rapid development of deep learning, the target detection performance of convolu-
tional neural network structures has been greatly improved due to their remarkable abilities
in feature extraction. In 2019, multi-scale target detection tasks with different perceptions
were first undertaken in the TridentNet network structure proposed by Li et al., and the
detection record of the COCO dataset was broken again [3]. In 2015, the YOLO algorithm
proposed by Redmon et al. witnessed, for the first time, regression thought to be specifically
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applied to the algorithm’s target detection task [4], which adopted the idea of regression to
realize the regression of candidate boxes while classifying objects instead of the concept
of the candidate region. Based on Faster R-CNN, the algorithm improved the detection
speed tenfold, making real-time detection possible. In 2020, Bochkovskiy et al. proposed
YOLOv4, a master of the YOLO series of algorithms, to improve the YOLO algorithm
in multiple stages [5]. On the other hand, forest fire detection methods may be divided
into methods using traditional technologies and those based on deep learning algorithms.
Traditional forest fire detection methods can be roughly divided into the following five cat-
egories: ground patrol, observation station detection, satellite remote sensing detection,
sensor detection, and aerial patrol. As insurmountable difficulties in forest fire detection by
traditional techniques exist, some researchers have begun to adopt classical deep learning
models to implement forest fire detection tasks and have obtained satisfactory results. In
2019, Li et al. [6] applied the SqueezeNet network to a forest fire detection task, integrating
multi-scale information while ensuring the integrity of the resolution information to attain a
high detection effect. In 2020, Avula et al. [7] proposed a forest fire smoke detection method
based on a fuzzy entropy optimization threshold in combination with a convolutional neu-
ral network. In 2021, Zhang Yong et al. [8] introduced MobileNetV3-Large into the YOLOv3
network, significantly reducing the model size. When the improved model was applied to
the substation fire detection scene, the accuracy and detection speed were improved [9]. In
2022, PI Jun et al. [10] replaced the backbone network of the YOLOv5s network with the
Shufflenetv2 network. They combined it with the idea of channel recombination to improve
the efficiency of feature extraction and significantly accelerated the detection speed of the
network. In 2022, Zhang Rong et al. [11] used GhostNet to extract features and combined
them with the Fcos detection network to significantly reduce the number of parameters
and the workload of computation, thus creating a lightweight fire detection network.

It is, thus, evident that applying deep learning to forest fire monitoring can improve
the speed and accuracy of fire detection [12]. However, the accuracy of the current forest
fire detection algorithm based on deep learning still needs to be improved, and its complex
model and high computing demand make it difficult to meet the real-time requirements
of forest fire detection. A typical forest fire detection system usually acquires images
through drones or robots with onboard cameras [10]. Then, it sends the images to the
high-performance computer deployed by the model for processing, making it difficult to
synchronize video acquisition and image processing. To address this issue, we integrate
deep learning and robotics in this work to achieve real-time forest fire detection. Through
the field deployment of the detection algorithms on the main boards, robots can now be
used not only for real-time image collection of a campus woodland but also to perform the
lightweight fire detection model improved from the YOLOv5 algorithm for real-time fire
detection in both a rapid and accurate fashion. This realization of real-time fire detection
in the scenario of campus woodlands is significant for the research on and application of
real-time forest fire detection based on deep learning.

2. Forest Fire Detection Algorithm Based on the Improved YOLOv5
2.1. Basic Structure of YOLOv5

YOLOv5 has five network structures, including YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. YOLOv5s is suitable for resource-constrained environments;
YOLOv5m is the choice for balancing performance and speed; and YOLOv5l and YOLOv5x
are ideal for tasks that require high precision. YOLOv5n is a compromise option that can
perform better on some tasks. Due to the high real-time requirements for forest fire detec-
tion, an extensive network structure affects the detection speed. Therefore, the YOLOv5n
network with a smaller network structure was selected as the benchmark network in this
study. Its network structure is shown in Figure 1.
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Figure 1. Network structure of YOLOv5.

In Figure 1, the YOLOv5 network structure mainly consists of four parts: input,
backbone, neck, and output, and each part is composed of different essential components
to accomplish its various functions.

2.2. The Improvement of the YOLOv5 Network
2.2.1. Mix the Attention Mechanism

The idea of the neural network attention mechanism is derived from the human visual
attention mechanism, which is to devote more attention to critical areas. At the same time,
the background is filtered or ignored. The attention mechanism of the neural network is to
imitate the human visual mechanism by using a set of weights to focus on the input’s key
information, obtain more useful feature information, and suppress or even filter irrelevant
information. Incorporating a neural network attention mechanism can enable the model to
extract more important features without increasing the calculation burden and the number
of parameters and effectively improve the detection effect of the model. This paper employs
SE, ECA, and CBAM attention mechanisms to improve the YOLOv5 network.

Among them, the SE attention mechanism helps solve the loss problem caused by the
different importance of different channels in the feature graph during convolution pooling.
Based on the original learning mechanism, it opens up a new network path, obtains the
attention degree of each channel in the feature graph through operation, and assigns an
attention weight to each feature channel according to the degree so that the convolutional
network pays more attention to these feature channels, and then secures the channel of the
feature graph that is useful for the current task and suppresses feature channels that are
not useful. Its structure is shown in Figure 2.
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C: channel, which indicates the number of channels in an image.
H: height, which indicates the number of pixels in the vertical dimension of the image.
W: width, which indicates the number of pixels in the horizontal dimension of the image.
Based on the SE module, the ECA module changes the FC layer used in the SE

module to 1 × 1 convolution to learn channel attention information. This operation avoids
the reduction in channel dimension when learning channel attention information and
effectively reduces the number of parameters. Its structure is shown in Figure 3.
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The CBAM attention mechanism module is a combination of channel and spatial
attention, which operates first through the former and then through the latter [13]. The
weights obtained by the two attention modules multiplied by the corresponding location
feature map element values are derived from the adaptive feature information. Compared
with other attention mechanisms based on single attention, CBAM combines the two to
achieve better results in model performance. Its structure is shown in Figure 4.
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2.2.2. Integrate the BiFPN Structure

Based on the bidirectional path fusion of PANet, Google proposed the BiFPN feature
fusion method. BiFPN boasts simultaneous access to bidirectional multi-scale connection
and unique feature weighted fusion mode, which not only strengthens the fusion of
different scale feature information between the deep layer and shallow layer but also adds
horizontal correlation between the same scale feature information, thus effectively avoiding
the loss of feature information caused by too deep a feature extraction network. Its structure
is shown in Figure 5.

C indicates the input feature map before feature fusion, which can also be called the
feature map of the current level. These feature maps will go through a series of feature
fusion operations, including up-sampling, down-sampling, and feature fusion, and finally
generate a fused feature map.

P represents the output feature map after feature fusion, also called the feature map
after fusion. This feature map is then passed to the BiFPN structure at the next level for
further feature fusion and processing.
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2.2.3. Lightweight Improvement Model Combined with GhostNet

Huawei Noah’s Ark Laboratory proposed the lightweight network GhostNet in 2020,
designing a unique convolutional structure that significantly reduces the amount of com-
putation. The detection effect is slightly improved under the same amount of computation
compared with other lightweight networks. The design idea comes from the visual analysis
of the intermediate feature images generated in the process of deep learning, and it is
found that the abundant and redundant information in the feature map can often reflect the
comprehensiveness of the input data. Therefore, the researchers designed a low-cost and
high-yield Ghost convolution unit to carry out these feature mappings containing redun-
dant information to reveal the information behind the intrinsic features fully. The Ghost
convolution unit adds the weight value of the feature map obtained by depth convolution
to the input feature map to retain the context feature information better. GhostNet designs
a unique Ghost module based on the Ghost convolution unit to extract features from input
images. Its structure is shown in Figure 6.
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As shown in Figure 6, the Ghost module first performs conventional convolution
operations on the input image to obtain the feature map of half the channel number of the
input image. Then, it performs deep convolution on the obtained feature map to generate
the result of the corresponding channel number. In the next step, the Concat operation is
performed between the profound convolution result and the original feature map, and the
number of channels in the output image is expanded to the same as that in the input image.
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The Ghost module’s effect is equivalent to a conventional convolution, but it dra-
matically reduces the computation through this particular structure. Therefore, many
researchers have improved their lightweight models by using the design idea of Ghost
modules instead of conventional convolution.

2.3. Forest Fire Dataset

Although there are countless forest fires worldwide every year, gathering images of
fires during the fire period is challenging. To study the fire test, 8000 images of open fire
and fire smoke were selected to showcase the characteristics of forest fires. Among them,
6500 were used as the training set and 1500 as the verification set (Figure 7).
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Figure 7. Forest fire detection dataset. (a–i) are the nine datasets we selected and we gave it a number
for visualisation and analysis in Section 2.4.2, the original model misses the regions with red arrows
in (e,i). The YOLOv5n-CB model proposed in this paper identifies the regions that are not detected
by the YOLOv5n model.

2.4. Analysis of the Multi-Stage Improvement Results of YOLOv5
2.4.1. Test Environment and Results Analysis

The performance verification test of this algorithm is carried out on the Windows
10 operating system with the above self-made forest fire dataset as the dataset, in which
6500 pictures are used as the training set and 1500 pictures as the verification set, including
two types of targets: fire and smoke. In the experiment, the Pytorch deep learning frame-
work is used for model training and reasoning, CUDA is installed to support GPU side train-
ing, and the three attention fusion mechanism models of YOLOv5 + SE, YOLOv5 + ECA,
YOLOv5 + CBAM, and the BiFPN structure fusion model are compared with the original
model. The results are shown in Table 1.



Forests 2024, 15, 483 7 of 23

Table 1. Comparison of performances.

Model Precision (%) Recall (%) Parameter (PCS) mAP@0.5 (%) GFLOPs

YOLOv5n 87.8 85.7 1,766,623 89 4.2
YOLOv5n + SE 88.2 86 1,774,815 89.4 4.2

YOLOv5n + ECA 86.9 86.6 1,766,626 89.5 4.2
YOLOv5n +

CBAM 88.1 87.6 1,774,913 89.7 4.2

YOLOv5n +
BiFPN 87.5 87.1 1,783,007 89.6 4.3

As seen from Table 1, among the three attention mechanisms, the integration of the
CBAM attention module has the most apparent improvement on model performance but
exerts little impact on the number of model parameters and the amount of computation.
Therefore, this paper finally chooses the integrated CBAM attention module as an improved
target model attention fusion mechanism method. At the same time, it is shown that the
missing rate of the YOLOv5n model in combination with the BiFPN structure is reduced,
effectively improving the model’s performance, and it is therefore considered an effective
optimization strategy.

2.4.2. Performance Analysis of YOLOv5n-CB Algorithm after Multi-Stage Improvement

Through experiments with the above-discussed improved YOLOv5n network at differ-
ent stages, it is verified that the improved methods have various degrees of improvement
targets for the model performance. Therefore, an enhanced strategy combining the CBAM
attention mechanism and the BiFPN structure was added to the original YOLOv5n model
and named YOLOv5n-CB. The new model was then trained, and the P-R curve comparison
between the improved model and the original model and the mAP value index comparison
figure are shown in Figures 8 and 9.

According to the comparison diagram of the P-R curve and mAP value index, it can
be seen that the performance of the proposed YOLOv5n-CB model is better. The specific
training indexes are shown in Table 2.

Forests 2024, 15, x FOR PEER REVIEW 7 of 23 
 

 

YOLOv5 + CBAM, and the BiFPN structure fusion model are compared with the original 
model. The results are shown in Table 1. 

Table 1. Comparison of performances. 

Model Precision (%) Recall (%) Parameter (PCS) mAP@0.5 (%) GFLOPs 
YOLOv5n 87.8 85.7 1,766,623 89 4.2 

YOLOv5n + SE 88.2 86 1,774,815 89.4 4.2 
YOLOv5n + ECA 86.9 86.6 1,766,626 89.5 4.2 

YOLOv5n + 
CBAM 

88.1 87.6 1,774,913 89.7 4.2 

YOLOv5n + 
BiFPN 

87.5 87.1 1,783,007 89.6 4.3 

As seen from Table 1, among the three attention mechanisms, the integration of the 
CBAM attention module has the most apparent improvement on model performance but 
exerts little impact on the number of model parameters and the amount of computation. 
Therefore, this paper finally chooses the integrated CBAM attention module as an im-
proved target model attention fusion mechanism method. At the same time, it is shown 
that the missing rate of the YOLOv5n model in combination with the BiFPN structure is 
reduced, effectively improving the modelʹs performance, and it is therefore considered an 
effective optimization strategy. 

2.4.2. Performance Analysis of YOLOv5n-CB Algorithm after Multi-Stage Improvement 
Through experiments with the above-discussed improved YOLOv5n network at dif-

ferent stages, it is verified that the improved methods have various degrees of improve-
ment targets for the model performance. Therefore, an enhanced strategy combining the 
CBAM attention mechanism and the BiFPN structure was added to the original YOLOv5n 
model and named YOLOv5n-CB. The new model was then trained, and the P-R curve 
comparison between the improved model and the original model and the mAP value in-
dex comparison figure are shown in Figures 8 and 9. 

 
Figure 8. Comparison of network’s P-R curve diagram. Figure 8. Comparison of network’s P-R curve diagram.



Forests 2024, 15, 483 8 of 23Forests 2024, 15, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 9. Comparison of network’s mAP metrics diagram. 

According to the comparison diagram of the P-R curve and mAP value index, it can 
be seen that the performance of the proposed YOLOv5n-CB model is better. The specific 
training indexes are shown in Table 2. 

Table 2. YOLOv5n-CB network performance. 

Model Precision 
(%) 

Recall 
(%) 

Parameter 
(PCS) 

mAP@0.5 
(%) 

GFLOPs 

YOLOv5n 87.8 85.7 1766623 89 4.2 
YOLOv5n-CB 88.6 87.7 1791297 90.4 4.3 

In Table 2, the accuracy rate and recall rate of the YOLOv5n-CB model are signifi-
cantly improved compared with the original model, increased by 0.8% and 2%, respec-
tively. This shows that the model’s false and missing detection rates for the verification 
set detection target are reduced. Still, the number of participants only increases by 1.7%, 
which does not significantly increase the model size. The mAP value index is increased 
by 1.4%, and the modelʹs performance is improved. This verifies the effectiveness of the 
proposed method. 

The experiments have shown that the performance of the YOLOv5n-CB algorithm 
model proposed in this paper is better. The results of model recognition are visualized 
and analyzed using the test pictures; part of the recognition effect is shown in Figure 10. 
The red arrows refer to the flame targets missed by the original model (e) and (i) in Figure 
7. 

Figure 9. Comparison of network’s mAP metrics diagram.

Table 2. YOLOv5n-CB network performance.

Model Precision (%) Recall (%) Parameter
(PCS) mAP@0.5 (%) GFLOPs

YOLOv5n 87.8 85.7 1766623 89 4.2
YOLOv5n-CB 88.6 87.7 1791297 90.4 4.3

In Table 2, the accuracy rate and recall rate of the YOLOv5n-CB model are significantly
improved compared with the original model, increased by 0.8% and 2%, respectively. This
shows that the model’s false and missing detection rates for the verification set detection
target are reduced. Still, the number of participants only increases by 1.7%, which does not
significantly increase the model size. The mAP value index is increased by 1.4%, and the
model’s performance is improved. This verifies the effectiveness of the proposed method.

The experiments have shown that the performance of the YOLOv5n-CB algorithm
model proposed in this paper is better. The results of model recognition are visualized and
analyzed using the test pictures; part of the recognition effect is shown in Figure 10. The
red arrows refer to the flame targets missed by the original model (e) and (i) in Figure 7.

As can be seen from Figure 6, the YOLOv5N-CB model can identify the categories of
fire and smoke presented in the figure, while the YOLOv5n model fails to detect them. At
the same time, the YOLOv5n-CB model not only identifies the missed flame target of the
original model but also has a higher confidence score than the original model, indicating
that the model identification is more accurate. Furthermore, the prediction frame is close to
the actual frame, indicating that the improved model has a good detection effect, proving
the proposed model’s application value.
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3. Improve the Lightweight and Model Deployment of the YOLOv5 Network

In practical application scenarios, low-performance object detection algorithms are
often deployed on terminals. Therefore, it is necessary to improve the lightweight model
to compensate for the terminal computing power deficiency. In this regard, it is planned
to carry out a variety of lightweight improvements on the above proposed improved
algorithm and analyze the performance of the improved model to select the optimal
lightweight improvement strategy and deploy the improved lightweight model on the
Jetson Nano device to test its running speed and detection effect.

3.1. Performance Analysis of Improved G-YOLOv5-CB Network Model

According to the above experimental verification, applying the lightweight strategy of
the GhostNet network to the YOLOv5n-CB model is necessary. The new model is named
G-YOLOv5-CB, whose structure is shown in Figure 11.
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The G-YOLOv5-CB model was trained with the same training configuration as above.
The P-R curve of the training process of the model is shown in Figure 12, where the AP
values of fire and smoke targets, namely, the area under the curve, are both about 0.9, which
proves that the proposed improved G-YOLOv5-CB model has excellent performance in
feature extraction and feature fusion of targets.
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The proposed model is compared with other deep learning detection models, and the
results are shown in Table 3.

Table 3. Model comparison results.

Model Parameter Weight File Size (MB) mAP@0.5 (%)

YOLOv5n 17.66 × 106 3.65 89
YOLOv3-tiny 21.73 × 106 16.7 79.4

YOLOv5s 70.25 × 106 13.7 90.6
Faster R-CNN 28.32 × 106 108.4 85.2
G-YOLOv5-CB 9.68 × 106 2.2 89.9

The experiments show that the complexity of the G-YOLOv5-CB model is significantly
reduced compared with other models for better real-time performance at the expense of a
minor precision loss. Therefore, the lightweight model is more suitable for deployment on
embedded devices.

3.2. Jetson Nano Model Deployment and Testing

The forest fire real-time monitoring system designed in this paper adopts Jetson Nano
as the detection platform for development. After setting up the environment, we copy
the YOLOv5 file package containing the changes in the G-YOLOv5n-CB model relative
to the original model and the best-pt file saved with the training results of the above
model, respectively, into the Jetson Nano system and the project, and use best-pt as the
detection model to capture the input image. After completing the deployment of the model,
parts of the images from the forest fire dataset are selected for testing on the Jetson Nano
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development board, and the specific test results are shown in Figure 13; the model can
detect both the fire and smoke targets presented in the picture. The average detection time
is 0.065 s and the average frame rate is about 15 FPS. The fast detection speed of the model
proves the effectiveness of the lightweight strategy and can meet the real-time requirements
of forest fire detection.
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4. Design of Campus Forest Fire Real-Time Monitoring System

The overall design of this system comprises three components: forest fire detection
module, carrier platform automatic navigation module, and upper computer display and
control module [14], as shown in Figure 14.

Forests 2024, 15, x FOR PEER REVIEW 12 of 23 
 

 

4. Design of Campus Forest Fire Real-Time Monitoring System 
The overall design of this system comprises three components: forest fire detection 

module, carrier platform automatic navigation module, and upper computer display and 
control module [14], as shown in Figure 14. 

 
Figure 14. Overall system design diagram. 

To fulfill the field operation in the campus woodland environment, this study adopts 
an intelligent vehicle as a carrier platform to carry out a forest fire detection function mod-
ule, cruise in the campus woodland, and conduct real-time detection. A smart vehicle ter-
minal’s function mainly includes a campus forest fire detection module and a map navi-
gation path planning module. The hardware connection diagram of the carrier platform 
is shown in Figure 15. 

 
Figure 15. System hardware connection diagram. 

4.1. Design of Campus Forest Fire Detection Module 
In the design of the environmental awareness module, the sensors used in the carrier 

platform mainly include the encoder at the tail of the motor, 2D LiDAR, and RGB-D depth 
camera. In this system, the AB phase incremental Hall encoder in the photoelectric en-
coder is used to obtain the motor information through the S2L radar and LeEco’s Astra 
depth camera, which can receive the steering state of the robot while measuring the speed. 

Figure 14. Overall system design diagram.



Forests 2024, 15, 483 12 of 23

To fulfill the field operation in the campus woodland environment, this study adopts
an intelligent vehicle as a carrier platform to carry out a forest fire detection function module,
cruise in the campus woodland, and conduct real-time detection. A smart vehicle terminal’s
function mainly includes a campus forest fire detection module and a map navigation path
planning module. The hardware connection diagram of the carrier platform is shown in
Figure 15.
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4.1. Design of Campus Forest Fire Detection Module

In the design of the environmental awareness module, the sensors used in the carrier
platform mainly include the encoder at the tail of the motor, 2D LiDAR, and RGB-D
depth camera. In this system, the AB phase incremental Hall encoder in the photoelectric
encoder is used to obtain the motor information through the S2L radar and LeEco’s Astra
depth camera, which can receive the steering state of the robot while measuring the speed.
The multi-sensor forest fire detection module supplements the forest fire target detection
method [15], composed of a CO gas sensor, flame sensor, and smoke sensor. When two or
more sensors reach the set alarm threshold conditions, it will send alarm information to the
system. The process is shown in Figure 16.

Here, an MQ-2 smoke sensor, an MQ-7 CO gas sensor, and a flame sensor are all
capable of measuring the conductivity of the gas sensor material to determine the concen-
tration of the measured gas in the air. Its detection performance at standard temperature
and pressure has long-term validity, and the work is stable and reliable. The flame sensor
detects the flame target in the environment through the sensitivity of the flame spectrum
and the detection distance changes with the size of the flame. The larger the flame and the
farther the detection distance, the better the detection effect.
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4.2. Automatic Navigation System Design
4.2.1. Overall Design of Automatic Navigation Function Module

The robot’s autonomous navigation in the campus woodland undergoes the process
from the set starting point to the destination, and how it navigates is similar to autonomous
driving. The structure of the automatic navigation system is shown in Figure 17.
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4.2.2. Navigation Map Construction

The Cartographer algorithm based on the graph optimization theory proposed by the
Google team is adopted as the map construction algorithm in this study [16]. It mainly
includes sensor data processing, local mapping, and global optimization [17]. The overall
framework flow of the algorithm is shown in Figure 18.
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4.2.3. Map Construction Experiment

To verify the mapping capability of the Cartographer algorithm in actual scenarios,
this experiment uses the Cartographer algorithm in the ROS system to construct raster
maps that are convenient for the subsequent movement of robots. To control the robot more
conveniently during the process of drawing construction, the robot is generally controlled
by a keyboard to move in the drawing environment. After the keyboard control function
is opened by inputting the keyboard control command on the PC side, the robot can be
controlled to realize the walking and turning functions in the natural environment. The Rivz
interface in Figure 19 shows the real-time mapping scene when the robot walks through
the whole area in the experiment scene. The white area in the figure is the map being built,
and the green lines are the map boundaries scanned by the radar during operation.
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Figure 19. Simulate the robot map construction process.

After the map is built, the saved raster map is shown in Figure 20. After comparing
actual scenarios, it can be concluded that the maps created by the Cartographer algorithm
have high reducibility to the natural environment and less noise, thus laying a good
foundation for implementing navigation functions.
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4.2.4. Path Planning

After the establishment of the map, to achieve the robot navigation function, the
robot’s driving route needs to be planned, mainly consisting of global and local path
planning [18].

In global path planning, the A* algorithm is selected to carry out the robot’s global
path planning [19]. This method is more targeted for the target point in the design, so
the search range of the route is narrowed, and the speed of path planning is extensively
promoted. The algorithm flow is shown in Figure 21.
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The A* algorithm searches the map path by estimating the moving cost of nodes on
the map, and its calculation formula is shown in Formula (1).

Fn = Gn + Hn (1)

In Formula (1), Gn is the generation value of the generated path from the starting point
to the specified node. Hn is the heuristic method used by the algorithm to estimate the
generation value of moving from the selected node to the endpoint. Fn is a global estimate
of generational value from start to finish.

For the A* algorithm, the Hn calculation involves many factors, including obstacle
information, path direction, etc. In this paper, the Euclidean distance, the linear distance
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method, is used to analyze the robot’s movement, the calculation formula of which is
shown in Equation (2).

Hn =

√
(Xn − Xgoal)2 + (Yn − Ygoal)2 (2)

In Formula (2), the coordinate of the robot’s current position is (Xn, Yn), the coordi-
nate of the target position is (Xgoal, Ygoal), and Hn is the Euclidean distance between the
two points.

4.2.5. Local Path Planning

The algorithm flow is shown in Figure 22.
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In Figure 21, the DWA algorithm first samples the velocity space of the robot and then
estimates the possible moving trajectory of the robot in the velocity space. The evaluation
function evaluates each trajectory. If there is an obstacle, the trajectory is skipped; if there is
no obstacle, the optimal trajectory is selected. The robot’s status is finally updated after
traversing all generated trajectories in space.

4.2.6. AMCL Positioning Algorithm

The AMCL algorithm, also called the adaptive Monte Carlo positioning algorithm, is
a positioning algorithm based on a particle filter [20]. This algorithm uses random virtual
particles to estimate the motion state of the robot in the process of driving and updates. It
evaluates the motion state of the robot in real time through alternate resampling and KLD
sampling methods to achieve accurate robot positioning.
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4.2.7. Navigation Test

After a study of related positioning algorithms and navigation algorithms, the base
map constructed by the Cartographer algorithm is used to test and analyze the navigation
functions of target points during the robot’s actual work. First, the saved two-dimensional
map is loaded into the ROS system to realize navigation functions, and the AMCL function
package is used to locate the robot. Then, the move base function package is used to
carry out path planning and movement control for the robot, and the global path planning
algorithm A* and local path planning algorithm DWA under the move base function
package are invoked to assist the robot in completing navigation. The robot navigation
process is shown in Figure 23.
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Figure 23a shows the starting point position of the robot. Figure 23b shows the setting
of the endpoint position and direction in the Rviz interface using the 2D Nav Goal tool
mouse. The green line in Figure 23c is the global path planned by the A* algorithm, and the
short red line segment in front of the robot is the local path generated by the DWA algorithm.
Figure 23d shows the robot reaching the endpoint. The experiment demonstrates that the
robot can reach the endpoint following the established route and realize free navigation
between the two points in the process of global navigation. At the same time, the navigation
obstacle avoidance function is tested by placing obstacles on the robot’s route.

5. Test of Campus Forest Fire Real-Time Monitoring System
5.1. Upper Computer Interface Design

The upper computer interface is based on the PyQt5 design of the campus forest fire
real-time monitoring system interface. Using a GUI programming method to write a visual
interface, PyQt5 is a kind of human–computer interaction software that can be operated
through the peripherals without inputting instruction codes. The PyQt5 interface can be
designed to display the detection results more intuitively. Different buttons display target
detection results, robot control, sensor information, and fire alarm information. Among
them, the implementation process of the forest fire detection module of the system is first to
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collect environmental information through the USB camera and then to conduct real-time
detection on the Jetson Nano embedded platform. At the same time, the detection result is
transmitted to the display interface of the upper computer in real time through Wi-Fi and
socket protocol. The specific execution flow chart is shown in Figure 24.
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Figure 24. Forest fire detection system flow chart.

5.2. Automatic Navigation Function Test in Campus Woodland Scene

As shown in Figure 22, the outdoor laser SLAM construction of the carrier platform
can reflect the natural outdoor environment. After the map construction is completed,
click 2D NAV GOAL in the RVIZ tool to set the location of the target point and test the
avoidance function of the obstacle test system by simulating the pedestrian in the forest
scene as the obstacle.

Figure 25a shows the robot at the starting point, with the simulation of the pedestrians
existing in the actual woodland scene as obstacles. Figure 25b shows that the system
successfully identifies the obstacles. Figure 25c shows that the system successfully avoids
obstacles in the navigation process. The green line in the figure is the global planned
path, and the short red line is the local planned path. Figure 25d shows that the system
successfully reaches the target point and realizes the campus woodland scene’s navigation
and obstacle avoidance functions.
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6. Conclusions

1. A forest fire dataset is constructed. The forest fire image data are obtained through the
Internet, and the images are annotated by the Make Sense tool. A total of 8000 pictures
containing fire and smoke are made to convey the fire information, and the forest fire
dataset for the test is completed.

2. A YOLOv5n-CB algorithm with higher detection accuracy is proposed. Based on the
YOLOv5n model, the CBAM attention mechanism is introduced at the junction of the
backbone and neck to improve network performance effectively while introducing
only a small number of parameters. The idea of a weighted bidirectional feature
pyramid network (BiFPN) is introduced to enhance the neck part and strengthen
the feature extraction of the target. Experiments have shown that the YOLOv5n-CB
model integrated with the CBAM attention mechanism and BiFPN structure has a
higher accuracy and recall rate than the original model, the mAP value index on
the forest fire dataset has increased by 1.4%, and the network performance has been
significantly improved.

3. Aiming at the problem of large volume and complex calculation of the algorithm
model, the G-YOLOv5n-CB algorithm is proposed, and it can be deployed on the
Jetson Nano platform for real-time forest fire detection. The MobileNetV3 network
and GhostNet network are used to improve the lightweight feature extraction network
of the original algorithm. The test shows that integrating the lightweight strategy
of GhostNet reduces the number of parameters and the amount of computation
and keeps the drop in detection accuracy of the mAP value index at only 0.5%. By
comparing it with other in-depth models, the effectiveness of the proposed algorithm
is verified.

4. The G-YOLOv5n-CB model is deployed on the Jetson Nano platform, and the op-
erating environment of the model is configured. According to the experiment, the
detection speed of the model reaches 15 FPS, which meets the real-time requirements
of the system.

5. The global path planning algorithm A* and local path planning algorithm DWA are
used in the automatic navigation system of the carrier platform of this system to
plan the path of the robot, which realizes the target point navigation and obstacle
avoidance functions of the robot in the campus woodland scene.
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6. Based on PyQt5, the upper computer interface of the system is developed to realize
real-time display of detection results and action control of the robot. The compre-
hensive test shows that the system can carry out the real-time monitoring of campus
forest fires accurately.

Author Contributions: The real-time fire monitoring system in the campus forest land was developed
by D.X.; Q.W. proposed the G-YOLOv5n-CB forest fire algorithm; the verification experiment and
the writing of the article were carried out by J.C.; and the overall scheme was designed and the
results and analysis conducted by Z.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is sponsored by the 2023 Jiangsu Higher Education Teaching Reform Research
Project (2023JSJG716).

Data Availability Statement: The data supporting this study’s findings are available upon request
from the corresponding author.

Acknowledgments: Many thanks to Wang Jun of the Nanjing Forestry University for his assistance
in sample processing. And the authors appreciate Wang Xiwei for proofreading and language editing
of the final revision.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zahra, P.; Shervan, F.; Loris, N. Fabric defect detection based on completed local quartet patterns and majority decision algorithm.

Expert Syst. Appl. 2022, 198, 116827.
2. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015,

arXiv:1506.02640.
3. Tan, M.; Pang, R.; Le, Q. Efficientnet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.
4. Liu, Y.; Yin, B.; Zou, Q.; Xu, Y. Design of forest fire monitoring system based on UAV. Agric. Equip. Veh. Eng. 2022, 60, 105–108.

(In Chinese)
5. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the Computer Society Conference

on Computer Vision & Pattern Recognition, San Diego, CA, USA, 20–26 June 2005.
6. Li, Y.; Chen, Y.; Wang, N.; Zhang, Z. Scale-Aware Trident Networks for Object Detection. arXiv 2019, arXiv:1901.01892.
7. Bochkovskiy, A.; Wang, C.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
8. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level Accuracy with 50x Fewer

Parameters and <0.5MB Model Size. arXiv 2016, arXiv:1602.07360.
9. Yang, Q. Fire image recognition algorithm based on improved DenseNet deep network. Comput. Appl. Softw. 2019, 36, 258–263.

(In Chinese)
10. Pi, J.; Liu, Y.; Li, J. Research on lightweight forest fire detection algorithm based on YOLOv5s. J. Graph. 2023, 44, 26–32. (In Chinese)
11. Avula, S.B.; Badri, S.J.; Reddy, G. A Novel Forest Fire Detection System Using Fuzzy Entropy Optimized Thresh holding

and STN-based CNN. In Proceedings of the International Conference on Communication Systems & Networks (COMSNETS),
Bengaluru, India, 7–11 January 2020.

12. Zhang, Y.; Liu, M.; Xu, S.; Ma, Y.; Qiang, H. Substation fire detection based on Mobile Netv3-Large-YOLOv3. Guangdong Electr.
Power 2021, 34, 123–132.

13. Zhang, R.; Zhang, W. Fire Detection Algorithm Based on Improved GhostNet-FCOS. J. Zhejiang Univ. (Eng. Technol. Ed.) 2022, 56,
1891–1899.

14. Yandouzi, M.; Grari, M.; Berrahal, M.; Idrissi, I.; Moussaoui, O.; Azizi, M.; Ghoumid, K.; Elmiad, A.K. Investigation of Combining
Deep Learning Object Recognition with Drones for Forest Fire Detection and Monitoring. Int. J. Adv. Comput. Sci. Appl. (IJACSA)
2023, 14, 25–29. [CrossRef]

15. Zhang, Q.-J.; Zheng, E.-G.; Xu, L.; Xu, W. Research on forest fire prevention UAV system design and forest fire recognition
algorithm. Electron. Meas. Technol. 2017, 40, 6.

16. Ma, Y. Research and implementation of fire monitoring system based on intelligent sensor. J. Taiyuan Univ. (Nat. Sci. Ed.) 2022, 40,
31–37.

17. Li, Y. Research on Indoor Omnidirectional Autonomous Navigation Robot Based on ROS; China University of Mining and Technology:
Xuzhou, China, 2020.

https://doi.org/10.14569/IJACSA.2023.0140342


Forests 2024, 15, 483 23 of 23

18. Di, Y.; Ma, X.; Dong, G. Front-end matching optimized algorithm of cartographer with multi-resolution layered search strategy.
Int. J. Model. Identif. Control. 2022, 40, 336–342.

19. Dwijotomo, A.; Abdul Rahman, M.A.; Mohammed Ariff, M.H.; Zamzuri, H.; Wan Azree, W.M. Cartographer SLAM Method for
Optimization with an Adaptive Multi-Distance Scan Scheduler. Appl. Sci. 2020, 10, 347. [CrossRef]

20. Chen, X.; Ji, J.; Jiang, J.; Jin, G.; Wang, F.; Xie, J. Developing high-level cognitive functions for service robots. In Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, ON, Canada,
10–14 May 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app10010347

	Introduction 
	Forest Fire Detection Algorithm Based on the Improved YOLOv5 
	Basic Structure of YOLOv5 
	The Improvement of the YOLOv5 Network 
	Mix the Attention Mechanism 
	Integrate the BiFPN Structure 
	Lightweight Improvement Model Combined with GhostNet 

	Forest Fire Dataset 
	Analysis of the Multi-Stage Improvement Results of YOLOv5 
	Test Environment and Results Analysis 
	Performance Analysis of YOLOv5n-CB Algorithm after Multi-Stage Improvement 


	Improve the Lightweight and Model Deployment of the YOLOv5 Network 
	Performance Analysis of Improved G-YOLOv5-CB Network Model 
	Jetson Nano Model Deployment and Testing 

	Design of Campus Forest Fire Real-Time Monitoring System 
	Design of Campus Forest Fire Detection Module 
	Automatic Navigation System Design 
	Overall Design of Automatic Navigation Function Module 
	Navigation Map Construction 
	Map Construction Experiment 
	Path Planning 
	Local Path Planning 
	AMCL Positioning Algorithm 
	Navigation Test 


	Test of Campus Forest Fire Real-Time Monitoring System 
	Upper Computer Interface Design 
	Automatic Navigation Function Test in Campus Woodland Scene 

	Conclusions 
	References

