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Abstract: Accurately mapping urban above-ground vegetation carbon density presents challenges
due to fragmented landscapes, mixed pixels, and shadows induced by buildings and mountains.
To address these issues, a novel methodological framework is introduced, utilizing a linear spectral
unmixing analysis (LSUA) for shadow removal and vegetation information extraction from mixed
pixels. Parametric and nonparametric models, incorporating LSUA-derived vegetation fraction, are
compared, including linear stepwise regression, logistic model-based stepwise regression, k-Nearest
Neighbors, Decision Trees, and Random Forests. Applied in Shenzhen, China, the framework
integrates Landsat 8, Pleiades 1A & 1B, DEM, and field measurements. Among the key findings, the
shadow removal algorithm is effective in mountainous areas, while LSUA-enhanced models improve
urban vegetation carbon density mapping, albeit with marginal gains. Integrating kNN and RF
with LSUA reduces errors, and Decision Trees, especially when integrated with LSUA, outperform
other models. This study underscores the potential of the proposed framework, particularly the
integration of Decision Trees with LSUA, for advancing the accuracy of urban vegetation carbon
density mapping.

Keywords: urban; vegetation carbon density; mapping; de-shadow; spectral unmixing; machine learning

1. Introduction

Urbanization in China, with 65.2% of the population residing in urban areas [1], has
led to rapid economic development and increased migration to cities, resulting in reduced
vegetation cover and elevated greenhouse gas emissions [2]. Urban areas have become
significant contributors to climate change, emphasizing the urgency of understanding
and managing urban vegetation carbon density [3]. Recognizing the crucial role of urban
vegetation as a carbon sink, accurate estimates of carbon storage and sequestration are
essential for informed decision making by governments. Despite increasing awareness of
environmental issues, mapping urban vegetation carbon density faces challenges due to
complex landscapes, mixed pixels, and mountain- and building-induced shadows [4].

Carbon storage in urban vegetation, predominantly facilitated by urban forests, is a
pivotal element in carbon sequestration [5]. Urban forests, encompassing both woody and
associated herbaceous plants within and surrounding settlements, demonstrate the capacity
to sequester substantial carbon in both above-ground and below-ground biomass [6]. The
estimation of carbon levels at various scales involves a diverse array of methods, with local-
scale assessments relying on a combination of field and remote sensing data [7–10]. These
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assessments take into account factors such as tree species, canopy structure, diameters
at breast height (DBH), spatial resolution, spectral bands, and sensor characteristics, etc.
Moving to a regional scale, estimates incorporate additional variables related to climate
and the environment [11–14]. Commonly, allometric equations, grounded in physiological
relationships, are employed for biomass calculations, and their specifics may vary by
region [15–20]. While specific allometric equations for urban forests are limited, alternative
methods encompass the utilization of volume tables for tree biomass and the transfer of
biomass calculations for shrubs and grass in green urban areas. Remote sensing techniques
offer a cost-effective strategy for assessing vegetation biomass or carbon density across
extensive areas. The extensive adoption of various satellite data sources such as Landsat
Thematic Mapper, Landsat 8, Sentinel-2, MODIS, among others, provides multispectral
images and seamless integration with Geographic Information Systems (GIS). Various
techniques, including spatial interpolation and regression analyses, synergize field data
with remote sensing for mapping forest carbon density [21–24]. Remote sensing-based
methods, especially utilizing optical sensors like Landsat, MODIS, SPOT, and ALOS, offer
promising avenues for mapping vegetation biomass or carbon density [25–27]. Landsat,
with its free availability, medium spatial resolution, and historical data, is widely used,
yet may underestimate biomass in dense tropical rainforests [7]. Coarse spatial resolution
MODIS images suit global estimates but are unsuitable for small areas [28]. Very fine spatial
resolution images, e.g., QuickBird and Worldview series, are suitable for urban mapping
but hindered by high costs [29]. Active remote sensing techniques, such as LiDAR and
TLS, offer advantages in penetrating clouds but pose challenges in cost and sensitivity to
certain forest types [30–33]. Urban vegetation mapping is particularly challenging due
to fragmented landscapes and building- and mountain-induced shadows, with limited
research in this domain.

Fragmented urban landscapes often exhibit mixed pixels, complicating the effective
use of remote sensing data for Land Use and Land Cover (LULC) or change detection
analysis [34,35]. Spectral unmixing analysis, also known as Spectral Mixture Analysis or
Spectral Mixture Modeling, addresses this challenge by extracting sub-pixel information
through decomposing mixed pixels into fractional images corresponding to each endmem-
ber, representing a pure LULC type [36–40]. Spectral unmixing analysis methods fall into
two categories based on the algorithms used: linear mixture models (LMMs) and nonlinear
mixture models (NLMMs). LMMs assume that a mixed pixel’s DN value is determined by
the weights of endmember spectra and corresponding coverage area percentages, with the
condition that incident light interacts with only one surface component. While NLMMs face
challenges due to their intrinsic complexity, particularly in modeling and obtaining scene
parameters, LMMs remain more widely used in spectral unmixing analysis. Notably, there
is a lack of reported studies discussing the validation of spectral unmixing analysis results.

Following shadow detection, efforts to remove or minimize shadow impacts involve al-
gorithms targeting topographic, urban building, cloud, and multi-layered shadows. Recent
studies emphasize information recovery from shadows before their elimination, acknowl-
edging the weak information recorded by sensors in shadowed areas [41–43]. Terrain
shadows in mountainous regions, caused by low sun elevation angles and steep slopes,
reduce reflectance, causing spectral heterogeneity in land cover pixels [44]. Neglecting
mountain shadows in forest cover mapping leads to underestimation, emphasizing the
need for their removal. Methods like NDVI and band ratios, though simple, are influ-
enced by noise and lose spectral. Utilizing DEM combined with NDVI and topographic
correction models are employed to mitigate mountain shadows [45,46]. Urban areas face
challenges from building-induced shadows, hindering information extraction from high-
resolution images. Recent efforts focus on shadow removal for urban regions, employing
algorithms assuming a linear relationship between radiance in shadow and non-shadow
areas [47–49]. Shadow detection and de-shadowing are crucial preprocessing steps for
satellite images, significantly improving land use and land cover (LULC) classification
accuracy and facilitating vegetation carbon density mapping.
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Despite challenges in mapping urban vegetation, the integration of methods such
as shadow removal and spectral unmixing analysis holds promise for modeling carbon
density in urban environments. This research addresses this gap by emphasizing the
urgency of developing advanced methods to eliminate the effects of mixed pixels and
building and mountain shadows, providing a foundation for precise urban vegetation
carbon density estimates. The proposed methodology integrates machine learning algo-
rithms, de-shadowing, and spectral unmixing analysis, offering a comprehensive approach
to enhance accuracy in carbon density mapping. The objectives include comparing pixel
selection methods, developing shadow removal algorithms, and assessing various spatial
modeling techniques. By focusing on Shenzhen, a rapidly growing city in China, this study
aims to answer critical questions about model accuracy and shadow removal efficacy. This
research contributes to the broader context of combating global warming and underscores
the importance of precise information for effective urban vegetation carbon management.

2. Study Area and Datasets
2.1. Study Area

The study area is situated in Guangdong Province, southern China. Shenzhen city
spans from 113◦51′ E to 114◦21′ E and 22◦27′ N to 22◦39′ N, covering an area of 1996.85 km2

(Figure 1). Bordered by Mirs Bay to the east, the Pearl River estuary to the west, and
adjacent to the New Territory of Hong Kong in the south, Shenzhen features a diverse
topography. The southeast exhibits rugged terrain, while the northwest is predominantly
flat, with mountainous and hilly areas. Wutong Shan, the highest mountain at 943.7 m,
overlooks the coastline extending 230 km with six deep-water ports. The region includes
160 rivulets, major rivers like Shenzhen River, Maozhou River, Longgang River, Guanlan
River, and Pingshan River, with catchment areas exceeding 100 km2 but low surface run-off.

Shenzhen experiences a temperate monsoon climate, with a north/northeast monsoon
prevailing from September to mid-March, bringing cool, dry air. The summer monsoon
dominates from April to September, resulting in hot, humid weather with a heightened risk
of typhoons. The annual mean temperature is 22.4 ◦C, ranging from 12.1 ◦C in January to
28.1 ◦C in July, with extremes recorded at 38.7 ◦C and 0.2 ◦C. The frost-free period extends
over 355 days, with annual mean precipitation of 1933.3 mm mostly occurring between May
and September. The city’s geology includes granite, naceous shale, tuff, and metamorphic
and sandstone rocks. Two main soil types are prevalent: hill soils and alluvial soils, with
the latter confined to riverbanks, river plains, and the seashore.

Historically covered by climatic vegetation, Shenzhen’s landscape has evolved due
to human disturbances. Existing forests, mainly secondary and man-made, encompass
lowland evergreen monsoon forests, montane evergreen broad-leaved forests, ravine rain-
forests, mangroves, and plantations. Since becoming the first special economic zone in 1979,
Shenzhen has undergone rapid development, transitioning from a population of 20,000 in
1979 to over 20,709,400 in 2017. This growth has raised environmental concerns, including
urban sprawl, diminishing natural resources, reduced forest cover, and pollution. The city’s
economic progress, while significant, requires a critical examination of its environmental
impact and sustainable resource management.

2.2. Datasets

In this study, Landsat 8 images from the 8th and 15th of November 2014 were obtained
from the United States Geological Survey (USGS) website (http://earthexplorer.usgs.gov/,
accessed on 20 February 2018) and served as the primary data source for tasks such as
shadow removal, spectral unmixing analysis, model development for estimating vegetation
density. Additionally, high-spatial-resolution images from Pleiades 1A and 1B, dated on
the 17th, 19th, and 23rd of November 2014, were acquired for land use and land cover
(LULC) classification and validation of spectral unmixing analysis. Table 1 provides details
on the spectral and spatial resolution characteristics of Landsat 8 datasets and Pleiades-1A
and Pleiades-1B datasets.

http://earthexplorer.usgs.gov/
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Figure 1. The study area, Shenzhen city, and the spatial arrangement of sample plots within land 
use and land cover (LULC) categories were determined through the implementation of stratified 
random sampling to establish the plot sets. 
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Figure 1. The study area, Shenzhen city, and the spatial arrangement of sample plots within land use
and land cover (LULC) categories were determined through the implementation of stratified random
sampling to establish the plot sets.

The field survey data utilized in this study were gathered between August 2014 and
December 2015, aligning with the period of Landsat 8 image acquisition. A total of 188 plots
were measured during this timeframe. The sample plot locations were determined using
a global positioning system (GPS) device with a positional error of ±5 m. Following the
sample plot design specified for the National Forest Inventory in China (Chinese Ministry
of Forestry, 1996), variables related to grass, shrub, tree, and stand characteristics were
measured. Within each plot (Figure 2), tree attributes, including diameter at breast height
(DBH), height, and species, were recorded. For subplots with dimensions of 2 m × 2 m,
which contained shrubs and grass, measurements included shrub coverage percentage,
ground diameter, height, stock number, and species, as well as grass coverage percentage,
species, and height.
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Table 1. The band information for Landsat 8, Pleiades-1A, and Pleiades-1B.

Sensor Band Range (µm) Region Resolution

Landsat 8

Band1 0.433–0.453 Coastal/Aerosol 30 m
Band2 0.450–0.515 Blue 30 m
Band3 0.525–0.600 Green 30 m
Band4 0.630–0.680 Red 30 m
Band5 0.845–0.885 Near Infrared 30 m

Band6 1.560–1.660
Short

Wavelength
Infrared

30 m

Band7 2.100–2.300
Short

Wavelength
Infrared

30 m

Band8 0.500–0.680 Panchromatic 15 m
Band9 1.360–1.390 Cirrus 30 m

Band10 10.30–11.30
Long

Wavelength
Infrared

100 m

Band11 11.50–12.50
Long

Wavelength
Infrared

100 m

Pleiades-1A & 1B

Band0 0.430–0.550 Blue 2 m
Band1 0.490–0.610 Green 2 m
Band2 0.600–0.720 Red 2 m
Band3 0.750–0.950 Near Infrared 2 m
Band4 0.480–0.830 Panchromatic 0.5 m
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Figure 2. Schematic representation of the field plot data collection process for trees (represented by
the large square) and shrubs and grass (depicted by three smaller squares).

3. Methods
3.1. Above-Ground Vegetation Carbon Density Calculation Based on Survey Data

This study employed Pleiades 1A and 1B images for a visual interpretation-based
classification of the study area into five LULC types: forests, grasslands, built-up areas, bare
lands, and water bodies. The resulting classification guided a stratified random sampling
design across the entire study area, ensuring sample sizes proportional to each class’s
area and random plot locations within each type. For each plot, the biomass values of
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trees, shrubs, and grass were individually calculated and subsequently converted into
carbon. The total carbon for each plot was determined by summing the biomass values of
trees, shrubs, and grass. Subsequently, the plot carbon density was derived based on the
respective plot area. The estimation of tree biomass utilized the Tree Volume Calculation
Equation, considering both DBH and height measurements for various tree species in
Guangdong province (see Appendix A). The obtained tree volume was then converted
into biomass and carbon stock pools using conversion coefficients and empirical equations
specified for each tree species (NCFCSEM, 2010) as per Equation (1) and Equation (2).
Finally, the resulting forest carbon stocks were divided by the plot area to obtain forest
carbon density (Mg/ha).

BEF = a + b/M (1)

B = BEF ∗ M (2)

where BEF represents the biomass expansion factor, which varies across tree species,
growing locations, and tree ages. Coefficients ‘a’ and ‘b’ are derived from the Biomass
and Volume Relationship Parameter Values Table (refer to Appendix B). ‘M’ represents the
volume stock per hectare, and ‘B’ denotes biomass. The process of converting biomass to
carbon is grounded in the Carbon ratio table for different tree species in China (refer to
Appendix C).

Regarding shrub and grass carbon estimation, there is a limited number of models
or equations available. Fan (2011) proposed two equations, employing a remotely sensed
estimation model for estimating shrub and grass biomass. These include the shrub equation
Equation (3) and the grass equation Equation (4):

Shrub bimomass = 0.0398 × h1 − 0.3326 (3)

Grass biomass = 0.0175 × h2 − 0.2888 (4)

3.2. Image Pre-Processing and De-Shadow

Image pre-processing, involving radiometric and geometric correction, is essential for
preparing satellite images for tasks such as LULC classification, spectral unmixing analysis,
and model development. Radiometric correction involves standardizing the pixel values of
remotely sensed imagery, while geometric correction aligns the imagery to a precise spatial
location. For radiometric correction, the Landsat 8 data, initially obtained, underwent cali-
bration to convert digital numbers to at-sensor radiance, ensuring consistency and accuracy
in the radiometric values. Additionally, atmospheric correction procedures were applied to
mitigate atmospheric interference, enhancing the reliability of spectral information. Geo-
metric correction was conducted using ground control points and Digital Elevation Model
(DEM) data to rectify spatial distortions caused by terrain variations. This process ensured
accurate alignment of the imagery with the Earth’s surface, minimizing geometric errors.
These preprocessing steps were vital in mitigating distortions, standardizing radiometric
values, and enhancing the overall reliability of the dataset for subsequent analysis. For
Landsat 8, Level 2 data was acquired from the USGS service. Regarding Pleiades 1A and
1B images in this study, the process involved initial radiometric calibration using ATCOR
9.5, and the conversion of pixel digital number (DN) values to spectral reflectance was
carried out using the Model Maker of ERDAS IMAGINE 2023. Following this, geometric
calibration was performed using topographic maps, ensuring a root mean square error
(RMSE) less than one pixel, to minimize location errors for Pleiades 1A and 1B images.

The accurate mapping of urban vegetation carbon density is hindered by shadows
cast by mountains and tall buildings in urban areas. Therefore, prior to utilizing Landsat
8 images for model development, a shadow removal process was undertaken. Most existing
shadow removal approaches operate on the assumption that variations in illumination
from different materials can be discerned based on their spectra. In these methods, the
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spectral value of a pixel within a shadow, denoted as “y”, is treated as a linear combination
of endmember spectra from fully illuminated surfaces, ei:

y = ∑i wiyei (5)

where wiy is the ith endmember weight for the pixel, then assumed that a pure shadow
pixel has the reflectance value of 0, the shadow fraction of a mixed pixel can be calculated
using equation Equation (6):

fy = ∑i wia − ∑i wiy (6)

where wiy is the ith endmember weight for pixel y, the weight can be extracted from each
spectrum by taking its dot product with a filter vector that is orthogonal to all endmembers
within the pixel, a is a fully illuminated pixel with weights wia summing to 1, fy is the
shadow fraction of pixel y. This developed a filter used as a mask which could be applied
to an image to estimate its shadow fraction

(
fy
)

for each pixel.
In constrained linear spectral unmixing analysis (LSUA), the ith endmember weight

could be extracted from each band with a filter vector vi that is orthogonal to all endmem-
bers; based on this, Equation (7) could be rewritten as:

fy = −∑i vT
i (y − a) = gT(y − a) (7)

where g is a vector used as shadow filter. If the shadow on a scene is rare, the mean of
scene spectrum can be used for a fully illuminated pixel (a). And the matched filter could
be defined as Equation (8):

q = C−1(t − a)/
[
(t − a)TC−1(t − a)

]
(8)

where q is matched filter, C is covariance matrix, t is the target spectrum. When t = 0, the
shadow matched filter could be expressed as Equation (9):

qshadow = −C−1a/
(

aTC−1a
)

(9)

Application of the matched filter to the Landsat 8 image yields an estimate of pixel-
level shadow fraction image (f). Then, the result was rebalanced to simulate illumination
by a spectrally uniform source using Equation (10):

F(λ) =
f(d(λ) + s(λ))
fd(λ) + s(λ)

= f(1 +
s(λ)
d(λ)

)/(f +
s(λ)
d(λ)

) (10)

where F(λ) is rebalancing result, d(λ) is spectrum of direct sun illumination, s(λ) is spectral
of sky illumination. After rebalancing, the de-shadow spectrum could be calculated by
Equation (11):

I = F((λ)/(1 − f) (11)

In this study, the pure shadow pixels were identified on the Landsat 8 image when
using the mosaicked Pleiades 1A and 1B image as a reference.

3.3. Spectral Unmixing Analysis

Before linear spectral unmixing analysis (LSUA) was conducted, the Landsat 8 image
underwent Minimum Noise Fraction (MNF) transformation to extract noise. Subsequently,
a Pixel Purity Index (PPI) was computed using MNF, projecting each pixel onto random
vectors in the reflectance space. Pixels scored based on their positions in the projection
plot, with the highest scores representing pure pixels. These PPIs were associated with the
original image to identify LULC types. N-Dimensional visualization validated endmember
purity, eliminating non-corner endmembers for a refined selection.
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For spectral unmixing analysis, there is a linear tool in ENVI 4.6, but it is half con-
strained with the results of unreasonable negative pixel values. In this study, a fully con-
strained model which solved the negative pixels was developed in Equations (12) and (13)
and it guaranteed that the fraction coefficients were positive and their summation was
equal to one.

∀i : ai ≥ 0 (12)

∑m
i = 1 ai = 1 (13)

where ai represents the fraction of each endmember in pixel x.

3.4. Modeling

To model vegetation carbon density, 648 spectral variables were derived from the
Landsat 8 image (Table 2), encompassing original bands, diverse transformations, band
ratios, PCA-generated bands, vegetation indices, difference vegetation indices, and texture
measures. Pearson product–moment correlation coefficients were calculated between these
variables and vegetation carbon density to assess their significance, utilizing a significance
level of 0.05 based on the student’s distribution.

Table 2. Spectral variables (SVs) obtained from the ten bands of Landsat 8.

Spectral Variables Definitions of Spectral Variables # of SV

Original band

Band 1 (Coastal Aerosol), Band 2 (Blue), Band 3 (Green—GRN), Band 4
(Red), Band 5 (Near Infrared—NIR), Band 6 (Shortwave Infrared

1—SWIR1), Band 7 (Shortwave Infrared 2—SWIR2), Band 8 (Cirrus),
Band 9 (Long Wavelength), and Band 10 (Long Wavelength)

10

Inversions of bands IBi = 1
bandi

, i = 1, . . . 10 10
Simple two-band ratios SRi,j = Bandi

Bandj
, i, j = 1, . . . 10; i ̸= j 90

Three-band ratios TRi,j,k = Bandi
Bandj+Bandk

, i, j, k = 1, . . . 8; j ̸= j ̸= k 359

Difference vegetation indices DVIi,j = Bandi − Bandj i, j = 1, . . . 10; i ̸= j 45
Shortwave infrared-visible band ratio SVR = SWIR1/

[
RED+GRN

2

]
1

Normalized difference vegetation index NDVI = NIR−RED
NIR+RED 1

Modified normalized difference
vegetation index MNDVI = NIR−RED

NIR+RED

(
1 − SWIR1−SWIR1min

SWIR1max−SWIR1min

)
1

Red–green vegetation index GRVI = (RED − GRN)/(RED + GRN) 1
Reduced simple ratio RSR = NIR

RED

(
1 −

(
SWIR1−SWIR1min

SWIR1max−SWIR1min

)
1

Soil adjusted vegetation index SAVIl = (NIR−RED)(1+l)
NIR+RED+l , l = 0.1, 0.25, 0.3, 0.5 4

Atmospherically resistant vegetation index ARVI = [NIR − (2 × RED − BLUE)]/[NIR + (2 × RED − BLUE) ] 1
Enhanced vegetation index EVI = 2.5(NIR − RED)/(NIR + 6RED − 7BLUE + 1) 1

Principal component analysis The first 3 PCs from Principal component analysis (PCA) 3

Texture measures
Texture measures derived from the Grey-Level Co-occurrence Matrix,
encompassing mean, angular second moment, contrast, correlation,

dissimilarity, entropy, homogeneity, and variance.
80

Spatial autocorrelation analysis revealed significant clustering of plot carbon density
values across the study area, indicating varying relationships between vegetation carbon
values and original Landsat 8 spectral bands in different locations. This variability and
nonlinearity are evident in scatter plots shown in Figure 3.

Considering the intricate urban landscape and the nonlinear relationship between
vegetation carbon density and Landsat 8 images’ original bands (Figure 3), this study
employed two global parametric spatial interpolation models—Linear Stepwise Regression
(LSR) and Logistical Model based Stepwise Regression (LMSR) [50–54]—along with three
local non-parametric models—k-Nearest Neighbors (kNN) [55], Decision Trees (DT) [56],
and Random Forests (RF) [57]. These models were utilized to map vegetation carbon
density, incorporating spectral variables and vegetation fraction derived from LSUA, in
comparison to the complex urban context.
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3.4.1. Linear Stepwise Regression Model

The LSR model, commonly applied in mapping forest biomass and carbon density, was
employed in this study to identify statistically significant spectral variables that enhance
model fit and reduce sum of squared errors. Additionally, it assessed collinearity among
spectral variables from Landsat 8 imagery, and the chosen significant independent variables
were subsequently utilized in the backward-based linear stepwise regression, Equation (14)

y = β0 + β1X1 + · · ·+ βiXi + · · ·+ βnXn (14)

where y is the vegetation carbon density, βi is the ith coefficient and Xi is the ith spectral
variable derived from the Landsat 8 image.

3.4.2. Logistical Model Based Stepwise Regression Model

The LMSR, a probabilistic statistical prediction model handling binary dependent
variables, was employed in this study with a dependent variable ranging from 0 to 1.
Standardizing the plot vegetation carbon density values to this range, LMSR, coupled with
stepwise regression, identified significant spectral variables. Multicollinearity analysis,
utilizing the variance inflation factor (VIF), flagged highly correlated variables (coefficients
ranging from 0.03 to 0.99). Variables with VIF exceeding 10 were considered indicative
of severe multicollinearity. The stepwise logistic regression, conducted in R statistical
software, version 3.5.3, employed the LMSR model, denoted by Equation (15).

P =
eb0+b1x1+b2x2+···+bnxn

1 + eb0+b1x1+b2x2+···+bnxn
(15)
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where P represents standardized plot vegetation carbon density values, e is the natural
logarithm base, b0 is the interception at y-axis and bi is the coefficient of the ith independent
variable xi, xi is the ith significant spectral variable derived from the Landsat 8 image.

3.4.3. k Nearest Neightbors

The kNN is a simple, intuitive, and nonparametric method in statistical discrimi-
nation, used for classification or regression. It predicts unknown attributes based on the
observed learning set and relies on distance measures. Formally, the model can be described
as follows:

Let L = {(yi, xi), i = 1, 2, 3, . . . , nL)} be observed data and used as training dataset,
yi denotes class membership, and xi represents the predictor variables. For a new observa-
tion (y, x), the nearest neighbor (y(1), x1) is determined by an arbitrary distance function as
Equation (16):

d
(

x, x(1)
)

= mini(d(x, xi)) (16)

And ŷ = y(1), the nearest neighbor is selected as prediction for y. Classically, distance
functions are Euclidean distance or absolute distance.

The idea of using multiple closest observations within the learning set was extended,
leading to the k-nearest neighbors method (kNN). Users can set the number of nearest
neighbors, k, and consider distance weight in the model. The kNN model assumes that
closer neighbors have higher influence on the decision. However, in this study, all k nearest
neighbors were assumed to have equal influence. Before searching for the nearest neighbors,
similarity measures needed to be standardized for use as weights.

The kNN model is widely used for predicting forest attributes, biomass, and carbon
density. It estimates the values of an interest variable based on the similarity of predictor
variables with k nearest neighbors or selected plots. In this research, the urban vegetation
carbon density at each location was estimated by weighting the carbon density values of the
nearest plots using the inverses of Euclidean distances. The variable distance was weighted
by triangular, rectangular, Epanechnikov, Gaussian, rank, and optimal kernel functions.

Rectangular k

ernel : 1
2 ∗ I(|d| ≤ 1)

Triangular kernel : |(1 − (d)) ∗ I(|d|≤ 1)

Epanechnikov kernel : 3
4
(
1 − d2) ∗ I(|d|≤ 1)

Gaussian kernel : 1√
2π

exp
(
− d2

2

)
Rank kernel : 1/d

Optimal kernel : 35
32
(
1 − d2)3 ∗ I(|d| ≤ 1)

where d is distance, I(.) is indicator function: if defined condition in brackets is true,
I(.) = 1 and otherwise, I(.) = 0. The window width of kernel function was determined by
a certain distance from maximum value. The Euclidean distances were standardized by
dividing itself using the closest neighbor (k + 1) that was not used for predication.

The used significant spectral variables were derived from both LSR and LMSR. As
a first step, the spectral variables were standardized by dividing themselves using their
standard deviation.

3.4.4. Decision Trees

The DT, introduced by Breiman (1984), is employed for classification or regression
predictive analysis. Also known as “decision trees” or CART in some contexts, this algo-
rithm forms the basis for important algorithms like Random Forests [58]. Constructing a
DT involves selecting input variables and split points using a greedy algorithm to minimize
a cost function. A predefined stopping criterion is essential to avoid an infinite model run.
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In regression predictive modeling, the cost function minimization determines split points
using the sum squared error calculated from training samples, Equation (17)

SQE = sum
(

y − ŷ)2 (17)

where SQE is sum squared error, y is output of the training sample, and ŷ is predicted output.
The stopping criterion is crucial in DT, commonly set as a minimum count based on the

number of training instances for each leaf node. When the count falls below this minimum,
the split stops, and the node becomes a final leaf node. This criterion significantly impacts
DT performance. The complexity of DT is linked to the number of splits; simpler trees
are preferred to prevent overfitting. Pruning the tree to minimize cross-validation error is
necessary for avoiding overfitting issues.

3.4.5. Random Forests

RF was developed by Breiman (2001), enhances categorical variable-based classifica-
tion and continuous variable-based regression trees (CART) by amalgamating multiple
sets of decision trees [59]. As an effective ensemble machine learning model, RF is adept at
classification or regression predictive analytics, employing an additive model to combine
decisions from a sequence of base models, Equation (18)

g(x) = f0(x) + f1(x) + f2(x) + f3(x) + · · · (18)

where g(x) is the sum of simple based models fi, in this study, each base classifier is a
simple decision tree used for regression prediction. For Random Forest regression, all the
base models are trained independently using different subsamples of observations. Each
tree node splitting is based on a deterministic algorithm by randomly selecting a sub-set of
variables and a sample from the training data [59]. In this study, RF begins with randomly
drawing many bootstrap sub-samples with replacement form the field plot observations.
A regression tree was constructed for each sub-sample. For nodes of each tree, a small
part of input variables was selected from the total inputs used for binary partition. For the
tree splitting criterion, it was based on the lowest Gini Index (Equation (19)) of the chosen
input variable.

Ig = 1 − ∑m
j = 1 f

(
tX(xi)

, j)2 (19)

where, f
(

tX(xi)
, j

)
is the section of samples which the value xi belongs to the leave j as

node t. The predicted carbon density at a location without observance was calculated by
averaging the bootstrap selected sub-samples constructing trees.

In the construction of the RF, two parameters must be optimized: the number of
trees (ntree) and the optimal minimal size of the terminal nodes of the trees. The optimal
numbers of trees and nodes for predicting vegetation carbon density were determined
based on the root mean square error (RMSE) of calibration.

3.5. Accuracy Assessment

In comparison, all models employed were combined with LSUA to validate our
hypothesis: whether the addition of the vegetation fraction image from LSUA improves the
models’ performance in predicting carbon density. The accuracy assessment of vegetation
carbon density estimates utilized a cross-validation method. In this procedure, a random
sample of plot vegetation carbon density was first removed from the field plots, with the
remaining plots utilized to train the models. The estimate of vegetation carbon density
for the removed sample was calculated, and the deviation between the estimated and
observed values was obtained. Another sample was then randomly removed, and the
previously removed one was reintroduced into the dataset. The corresponding modeling
and estimation were conducted for this sample. This process was repeated until all samples
were estimated. Based on the predictions and their comparison with field measurements,
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the coefficient of determination R2 and root mean square error (RMSE) were derived to
assess the goodness-of-fit and prediction performance of the models.

4. Results
4.1. Statistics of Field Data

Table 3 presents a statistical summary of the observed plot data employed in mapping
urban vegetation carbon density in Shenzhen. The sample mean and standard deviation
at the plot level were estimated using simple random sampling estimators. The plot
vegetation carbon density values exhibited a substantial coefficient of variation, with a
confidence interval ranging from 12.66 Mg/ha to 17.32 Mg/ha at a significance level of 0.05.

Table 3. Statistical summary of sample plot data utilized for urban vegetation carbon density mapping.

Number
of Plots

Minimum
(Mg/ha)

Maximum
(Mg/ha)

Sample Mean
(Mg/ha)

Standard Deviation
(Mg/ha)

Coefficient of
Variation (%)

188 0 73.550 14.99 16.3 108.87

4.2. Correlation of Vegetation Carbon Density with Spectral Variables

The Pearson product–moment correlation coefficients between observed plot vegeta-
tion carbon density and 648 spectral variables were calculated. Prior to shadow removal,
523 spectral variables exhibited coefficients ranging from 0.142 to 0.667, significantly differ-
ent from zero at a 0.05 significance level. After shadow removal, the number of significant
variables increased to 534, with coefficients ranging from 0.146 to 0.688. Shadow removal
positively impacted the correlation coefficient between field observations and spectral
variables. The band-ratio TR536 showed the highest correlation with vegetation carbon
density both before and after shadow removal of Landsat 8 imagery. Following shadow
removal, Table 4 lists the original Landsat 8 image bands and 45 other spectral variables
with the highest correlations to plot carbon density observations. In comparison to vegeta-
tion indices and band ratios, PCAs and matrix-based texture variables exhibited smaller
correlation coefficients.

Table 4. Pearson correlation coefficients (r) were calculated between field-measured carbon density
and spectral variables (top 45 highest correlated variables and 9 original Landsat bands) after shadow
removal (n = 188; veg-fraction: vegetation fraction obtained using LSUA).

Spectral Variables
Correlation

Spectral Variables
Correlation

r P r P

B1 −0.593 0 TR415 −0.661 0
B2 −0.596 0 TR416 −0.608 0
B3 −0.597 0 TR425 −0.660 0
B4 −0.586 0 TR426 −0.596 0
B5 0.293 4.44 × 10−5 TR435 −0.650 0
B6 −0.394 2.23 × 10−8 TR436 −0.574 0
B7 −0.529 5.77 × 10−15 TR458 −0.580 0
B9 −0.554 0 TR459 −0.570 0

B10 −0.435 4.42 × 10−10 TR516 0.658 0
DVI56 0.642 0 TR517 0.612 0
DVI57 0.617 0 TR526 0.669 0
ARVI 0.626 0 TR527 0.631 0

MNDVI 0.630 0 TR534 0.581 0
SAVI0.1 0.631 0 TR536 0.688 0
SAVI0.25 0.629 0 TR537 0.660 0
SAVI0.5 0.627 0 TR546 0.685 0
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Table 4. Cont.

Spectral Variables
Correlation

Spectral Variables
Correlation

r P r P

SR57 0.686 0 TR547 0.654 0
SR67 0.639 0 TR567 0.684 0

TR125 −0.584 0 TR637 0.583 0
TR135 −0.543 8.88 × 10−16 TR647 0.592 0
TR215 −0.621 0 TR715 −0.531 4.88 × 10−15

TR235 −0.569 0 TR725 −0.531 4.44 × 10−15

TR258 −0.511 6.33 × 10−14 TR735 −0.527 8.44 × 10−15

TR315 −0.650 0 TR745 −0.526 8.88 × 10−15

TR325 −0.641 0 TR758 −0.510 7.82 × 10−14

TR345 −0.561 0 TR759 −0.524 1.24 × 10−14

TR358 −0.516 3.46 × 10−14 Veg_fraction 0.595 0

4.3. Spectral Unmixng Analysis

For spectral unmixing analysis, two endmember selection methods were compared:
spectral characteristics-based automatic selection and operator’s knowledge-based manual
selection. Additionally, three sets of endmembers (2, 3, and 4) were evaluated: vegetation,
urban; vegetation, urban, water; and vegetation, urban, water, bare soil. Results demon-
strated that, after shadow removal, the 4-endmember configuration, whether automatically
or manually selected, produced the highest correlation coefficient of 0.595 between the veg-
etation fractional images and field plot carbon density (Table 5). The correlation coefficient
increased with the number of endmembers, reaching a peak at 4 endmembers, after which
it began to decrease.

Table 5. Summary statistics of correlation coefficients between vegetation fractional images and
field-measured carbon density for different endmember configurations (2 endmembers: vegetation,
urban; 3 endmembers: vegetation, urban, water; and 4 endmembers: vegetation, urban, water, bare
soil) both before and after shadow removal.

Method 2-Endmember 3-Endmember 4-Endmember

Automatical selection (Before) 0.491 0.554 0.589
Manual selection (Before) 0.492 0.555 0.59

Automatical selection (After) 0.495 0.563 0.595
Manual selection (After) 0.498 0.564 0.595

Given the superior performance of the automatic endmember selection method over
manual selection, the study employed the results from decomposing mixed pixels using
4 endmembers with automatic pure pixel selection for model development (Figure 4).

Figure 4 illustrates the predominant distribution of vegetation in Shenzhen city’s
southeast, southwest central, northeast, and northwest regions, where urban fraction
estimates were relatively smaller. The linear model effectively identified water bodies,
discerning their vegetation and urban fractions approaching zero. This model exhibited a
notable correlation coefficient of 0.595 with plot vegetation carbon density.

Validation of the vegetation fraction image was conducted using a visual interpretation
map of Land Use and Land Cover (LULC) derived from Pleiades 1A and 1B images with a
spatial resolution of 0.5 m. When compared with the vegetation fraction image (Figure 4a),
spectral unmixing analysis successfully extracted detailed vegetation cover information.
The fully constrained linear spectral unmixing analysis accurately estimated both the
spatial pattern and specific coverage rate of urban vegetation. The resulting vegetation
cover percentage for the entire study area was 44.2% based on Pleiades image visual
interpretation and 41.7% for the fully constrained linear spectral unmixing analysis using
Landsat 8 imagery. The pixel-based Root Mean Square Error (RMSE) was 0.16.
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4.4. De-Shadow Results of Landsat 8 Image

Shadow removal, facilitated by LSUA, involved selecting pure endmembers for
shadow, vegetation, urban, water, and bare soil in the spectral unmixing analysis. A
shadow fraction image served as a mask layer for shadow removal based on each pixel’s
shadow contribution. Figure 5 displays the image before shadow removal, revealing iden-
tifiable mountain shadows. Given the Landsat 8 image’s 30 m × 30 m spatial resolution,
building shadows were challenging to discern, making it difficult to assess the shadow
removal effect. The accuracy assessment utilized 300 random sample points, categorizing
them as poor, average, or good based on their visual representation of original land cover
types compared with the pre-shadow removal Landsat 8 image, with assistance from
Pleiades 1A and 1B images as a reference.

Among the 300 pixels, 29 were located in mountain-shadowed areas, where shadows
were successfully removed or alleviated, leading to a significant recovery of LULC infor-
mation. However, in urban areas, only a few pixels could be clearly identified as shadows
with the assistance of Pleiades 1A and 1B. The method performed well in shadow removal
in mountainous areas but faced challenges in urban areas due to coarse resolution.

Comparing Figure 5 results with Pleiades 1A and 1B as a reference, mountain shadows
were effectively removed, while shadows induced by buildings showed a fair improvement
in image quality. Table 6 presents a correlation coefficient comparison between plot vegeta-
tion carbon density and spectral variables using pre- and post-shadow-removed Landsat
8 images. After shadow removal, correlation coefficients increased by 1.28% to 2.59% across
different bands. Given the positive impact of the shadow removal algorithm on all bands,
all models were constructed using the post-shadow-removed Landsat 8 image.
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Figure 5. Comparison between pre- and post-shadow removal of Landsat 8: (a) Landsat 8 image
before shadow removal displayed in natural color; (b) Landsat 8 image after shadow removal
displayed in natural color. The red highlighted area is enlarged to illustrate the differences before
and after shadow removal.

Table 6. Correlation coefficients between vegetation carbon density and spectral variables using
Landsat 8 images before and after shadow removal.

Landsat 8. B1 B2 B3 B4 B5 B6 B7 B9 B10

Before −0.578 −0.581 −0.587 −0.571 0.283 −0.389 −0.518 −0.546 −0.423
After −0.593 −0.596 −0.597 −0.586 0.294 −0.394 −0.529 −0.554 −0.435

4.5. Vegetation Carbon Density Mapping

The performance of LSR models with and without the vegetation fraction image was
compared (Figure 6a,b). Four stepwise-selected spectral variables (excluding the vegetation
fraction variable) were used as independent variables to fit the LSR model for estimating
vegetation carbon density (Equation (20)). The variable TR536, which exhibited the highest
correlation with plot vegetation carbon density, was excluded by stepwise regression due
to its high collinearity with other selected variables.

Ŷ = 24.976 − 14.968 ∗ B9 + 44.513 ∗ TR567 − 25.550 ∗ SR67 − 3.753 ∗ B2_mean (20)

Vegetation carbon density estimates using Equation (20) ranged from −77.283 Mg/ha
to 454.69 Mg/ha, with a mean estimate of 15.332 Mg/ha, slightly overestimating the
observed mean of 14.999 Mg/ha. Leave-one-out cross-validation resulted in an R2 of 0.5451
and RMSE of 10.852 Mg/ha (Table 7).

Upon integrating the vegetation fractional image into the LSR model, the selected
variables changed, and the model was expressed as Equation (21). This integration led to
a slight improvement, with R2 increasing to 0.5453, RMSE decreasing to 10.812, and the
mean estimation closer to field measurement compared to the LSR model alone (Table 7).
Figure 6 illustrates the enhanced estimation of sub-pixel carbon density in the east urban
areas along the roads when combining LSR and LSUA, reducing the absolute values of
negative estimates from LSR.
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Table 7. The accuracy assessment of vegetation carbon density estimates from LSR, LMSR, kNN,
DT, RF models and these models integrated with LSUA. In the table, Mean indicates observed and
model predication mean of vegetation carbon density, R2 is the coefficient of determination and
RMSE is mean square error. µ̂ is map mean estimate and Varmap is the variance of the map based on
model-assisted regression estimators.

Approach Mean R2 RMSE
^
µ

(Mg/ha)
Varmap

Observed 14.99 - - - -
LSR 15.07 0.5451 10.852 15.332 1.68

LSR integrated with LSUA 15.05 0.5453 10.812 15.26 1.61
LMSR 14.91 0.5621 9.153 14.091 1.38

LMSR integrated with LSUA 14.94 0.5712 9.046 14.256 1.34
kNN 14.75 0.4620 10.561 14.483 1.89

kNN integrated with LSUA 14.86 0.4641 9.682 14.518 1.77
DT 15.00 0.8171 6.952 14.501 1.26

DT integrated with LSUS 15.00 0.8205 6.888 14.501 1.24
RF 15.33 0.7630 8.741 15.419 1.16

RF integrated with LSUA 15.20 0.7800 8.651 15.136 1.09

Ŷ = 33.274 − 17.406 ∗ B9 − 14.294 ∗ TR426 + 42.448 ∗ TR567 − 27.295 ∗ SR67 + 2.280 ∗ Veg_ f raction (21)

The non-linear LMSR model, utilizing two significant spectral variables (B9 and TR567)
selected by stepwise regression (Equation (22)), demonstrated a more reasonable estimate
range from 0 Mg/ha to 73.555 Mg/ha compared to the LSR model. The LMSR achieved an
R2 of 0.5621, surpassing both LSR models with and without LSUA integration (Table 7).
Additionally, the RMSE was reduced to 9.153 Mg/ha, smaller than those obtained with
LSR alone or with LSUA integration.

Ŷ =
73.555 ∗ exp(−2.6678 − 1.3674 ∗ B9 + 1.9713 ∗ TR567)

1 + exp(−2.6678 − 1.3674 ∗ B9 + 1.9713 ∗ TR567)
(22)

When the LMSR model integrated with LSUA (Equation (22)), the coefficient of
determination increased to 0.571, surpassing the LMSR model without the inclusion of
the vegetation fraction variable. Simultaneously, the RMSE decreased to 9.046 Mg/ha,
representing a 1.2% reduction compared to LMSR without the vegetation fraction variable
integration (Table 7).

Figure 6c,d illustrates the ability of the LMSR model, with and without the vegetation
fraction variable, to capture the spatial patterns of vegetation carbon density across the
study area. Areas marked in grey signify low vegetation carbon density, predominantly
in developed urban regions. The LMSR model, combined with LSUA, produces a more
reasonable sub-pixel vegetation carbon density map compared to the LSR model. In moun-
tainous and urban park areas, carbon density falls within the 20 Mg/ha to 30 Mg/ha range,
while values of 30 Mg/ha to 80 Mg/ha are primarily found in low-elevation mountainous
areas with favorable soil conditions, lower slopes, and more suitable temperatures than
high-elevation counterparts.

For the kNN model, optimal parameters such as the number of nearest neighbors (k),
spectral distance parameter, weighting kernel function, and predictor set were determined
through iterative kNN imputation and mean square error analysis. The plot vegetation
carbon density served as the dependent variable, while the significant variables selected for
LSR and LMSR were used as independent variables. For kNN without LSUA, the optimal
k was 12, and the best distance weighting kernel function was rectangular, resulting in
the smallest mean squared error of 0.0247. With the integration of LSUA, the optimal k
remained 10, and the best distance weighting kernel function was also rectangular, resulting
in the smallest mean squared error of 0.0244.
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For kNN integrated with LSUA, the coefficient of determination was 0.4641, surpassing
that of kNN without the vegetation fraction variable. The RMSE decreased to 9.682 Mg/ha,
showing an 8.79% reduction compared to kNN without the vegetation fraction variable
(Table 7). The map variance decreased by 6.34%, and the estimated sample mean and map
mean increased, aligning more closely with the field measurement mean compared to kNN
without the vegetation fraction variable. However, both models exhibited overestimation
in areas with low values and underestimation in areas with high vegetation carbon density.

Both kNN and kNN with LSUA tended to underestimate vegetation carbon density
in areas with values exceeding 30 Mg/ha and overestimate it in areas with values below
20 Mg/ha, Figure 6e,f. Both models effectively captured the overall patterns of vegeta-
tion carbon density in the urban area. The integration of kNN with LSUA performed
significantly better in urban areas, particularly in extracting subpixel vegetation carbon
information for roadside trees.

The DT is commonly employed for classification and regression tasks. Figure 6g,h
depict the DT model’s estimation of vegetation carbon density. For both the DT and the
DT integrated with LSUA, the flowcharts progress downward from the top, starting with
predictor TR567, which exhibits the highest correlation with plot vegetation carbon density
among all independent variables in the DT model. Based on the criterion of a TR567 value
less than 0.8 or not, the 188 plots are divided into two groups: 90 plots with TR567 less
than 0.8 and the remaining plots with TR567 not less than 0.8. This process continues until
reaching a final leaf node. The number of splits serves as a crucial indicator for evaluating
the effectiveness of the DT model.

With field measurements incorporated into the DT model and a minimum split number
of six, both the DT and DT integrated with LSUA achieved the highest coefficient of
determination (R2) between observed and predicted vegetation carbon density values. The
DT resulted in an R2 of 0.8171, with plot and map mean estimates of 15.00 Mg/ha and
14.501 Mg/ha, respectively, and an RMSE of 6.952 Mg/ha. Comparatively, the integration
of DT with LSUA showed slight improvement, with an R2 of 0.8205, plot and map mean of
15.00 Mg/ha and 14.501 Mg/ha, respectively, and an RMSE of 6.888 Mg/ha (Table 7).

Both the DT model and the DT integrated with LSUA demonstrated significant predic-
tive capability for urban vegetation carbon density. Given the potential overfitting concern
associated with decision trees, the absence of end nodes with n values of 1 or 2 in this study
(Figure 6g,h) suggests reliable model performance.

For the optimal number of trees in RF, RMSE showed a decreasing trend with an
increasing number of trees (Figure 7, left). Before integrating RF with LSUA, the error
stabilized after the number of trees exceeded 500. Upon integration with LSUA, the error
stabilized when the number of trees exceeded 800 (Figure 7, right).
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Incorporating field measurements of carbon density as the dependent variable and us-
ing variables selected by LSR and LMSR as independent variables, RF achieved a coefficient
of determination (R2) of 0.7630, with plot mean and map mean estimates of 15.326 Mg/ha
and 15.419 Mg/ha, respectively, and an RMSE of 8.741 Mg/ha. Integration of RF with
LSUA improved performance, resulting in an R2 of 0.7800, plot mean estimate and map
mean of 15.207 Mg/ha and 15.136 Mg/ha, respectively, bringing them closer to the field
measurement mean.

Both the RF model and the integration of RF with LSUA effectively depicted the spatial
distribution of vegetation carbon density across the study area (Figure 6i,j). Both models
tended to overestimate areas with 0 Mg/ha and underestimate regions with very high
vegetation carbon density. The RF model combined with LSUA demonstrated improved
stability and provided more detailed information on vegetation carbon in mixed pixels,
requiring a greater number of trees for enhanced performance compared to the RF model
without vegetation fraction from LSUA.

5. Discussion

Urban vegetation, comprising forests, shrubs, and grass, plays a vital role in mitigating
atmospheric carbon concentration through processes such as photosynthesis. It contributes
to air purification, noise reduction, and climate change impact mitigation [60–67]. The
accurate mapping of urban vegetation carbon density is critical for governmental planning
and residents’ well-being. Our study presents a methodological framework for mapping
vegetation carbon density in urban areas, utilizing a combination of field plot measure-
ments, Landsat 8 imagery, and Pleiades 1A and 1B imagery data. While the integration
of diverse data sources for mapping biomass or carbon density is not new in forested ar-
eas [68–70], our research addresses unique challenges in the urban environment. Shadows
from buildings and mountains pose difficulties in accurately extracting vegetation informa-
tion, compounded by the complex and fragmented urban landscape, leading to numerous
mixed pixels that complicate the precise mapping of urban vegetation carbon density.

In this study, we employed LSUA to remove shadows induced by buildings and
mountains from Landsat 8 images before spatial modeling. The method was evaluated
using a random sample of 300 pixels across the study area, including 29 pixels located in
mountain-induced shadow areas. While LSUA proved effective in mountainous regions, its
performance was somewhat limited in urban areas due to the coarse spatial resolution of
Landsat 8. After shadow removal, correlation coefficients between plot vegetation carbon
density and shadow-removed Landsat 8 bands increased by 1.28% to 2.59% across different
bands compared to the unprocessed Landsat 8 image. Our results align with findings
from other studies employing LSUA for shadow removal and vegetation analysis [71,72].
Furthermore, our study validated LSUA by decomposing mixed pixels and extracting vege-
tation fractional information, achieving the highest correlation coefficient of 0.595 between
the vegetation fractional image and plot carbon density when using four endmembers with
automatic selection after shadow removal. This surpasses results obtained through manual
selection, highlighting the effectiveness of LSUA in improving the accuracy of vegetation
information extraction.

Spatial interpolation methods, including parametric (LSR, LMSR) and non-parametric
(kNN, DT, RF) models, were utilized for mapping urban vegetation carbon density. The
utilization of parametric and non-parametric models allows for a nuanced exploration of
the complex relationships governing urban vegetation carbon density. While parametric
models provide straightforward insights into linear relationships, non-parametric models,
especially Decision Trees and Random Forests, offer a more flexible and adaptive approach,
crucial for capturing the heterogeneity inherent in urban landscapes. The integration of
diverse models aims to capitalize on their respective strengths, compensating for limitations
in individual approaches. It is important to note that the selection of these models is not
arbitrary but based on their suitability for addressing the specific challenges outlined in
the study, emphasizing the need for a versatile and robust methodology in urban carbon
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mapping. The ensuing comparative analysis of these models provides a comprehensive
understanding of their performance, contributing valuable insights to the field of remote
sensing and urban ecology.

The study employed R2 and RMSE as performance metrics, revealing that Decision
Trees consistently outperformed other models with the highest R2 and the lowest RMSE,
indicative of superior accuracy. The integration of LSUA enhanced prediction accuracies
across models, although the improvements were not statistically significant, suggesting
LSUA’s role in refining models without a substantial boost in accuracy. Relative errors were
compared among models, with Decision Trees and Random Forests consistently demon-
strating lower errors, underscoring their reliability in capturing the complexities of the
urban landscape. In the comparison between Decision Trees and Random Forests, Decision
Trees, especially when integrated with LSUA, exhibited superior performance, addressing
overfitting concerns and resulting in a slight improvement in correlation. Integration of
these models with vegetation fractional images from LSUA improved mapping accuracy by
0.20% to 2.70%, depending on the model used. This enhancement, though relatively modest
compared to some studies, signifies the potential for increased accuracy in mapping urban
vegetation carbon density, especially in mixed environments with varying land features.
The R2 and RMSE results revealed that the DT model exhibited the best performance,
demonstrating the highest R2 and lowest RMSE among all models, whether integrated
with vegetation fraction images from LSUA or not. LSR, regardless of LSUA integration,
yielded extremely large and illogically negative estimates. Both LMSR and its integration
with LSUA produced consistent estimates within the range of field plot values. kNN and
kNN with LSUA tended to underestimate carbon density for large values and overestimate
for small values. Relative RMSE values for urban vegetation carbon density estimates were
72.4% and 72.1% for LSR and LSR with LSUA, 61.4% and 60.3% for LMSR and LMSR with
LSUA, 70.5% and 64.5% for kNN and kNN with LSUA, 58.3% and 57.7% for RF and RF
with LSUA, and 46.35% and 45.87% for DT and DT with LSUA, respectively. The DT and
DT with LSUA demonstrated the best performance, followed by RF and RF with LSUA,
LMSR and LMSR with LSUA, and kNN and kNN with LSUA. LSUA integration improved
prediction accuracies, albeit not significantly.

Compared to Yan et al. (2015) [73], the relative errors in this study were larger due to a
higher coefficient of variation (108.87%) in urban vegetation carbon density resulting from a
complex landscape, mixed pixels, and building-induced shadows. The dominance of built-
up areas in Shenzhen city, as opposed to the forested areas in Yan et al.’s study, contributed
to these differences. While kNN has shown effectiveness in mapping forest parameters
in other studies [54,74–77], its application to estimate urban vegetation carbon density in
this research resulted in lower accuracy compared to other methods. This discrepancy
arises from the spectral distance-based approach of kNN, which encounters challenges
in urban areas with mixed pixels exhibiting varied spectral reflectance due to diverse
structures and compositions. The DT and DT with LSUA demonstrated strong predictive
capabilities for urban vegetation carbon density, achieving high correlations of 0.8171 and
0.8205, respectively. The slight improvement in correlation with LSUA integration suggests
that the DT model effectively mitigated overfitting issues. RF and RF with LSUA also
exhibited high predictive capabilities, with RF integrated with LSUA identified as the more
promising model for accurately mapping urban vegetation carbon density. This method
holds great potential for rapid and accurate mapping with an acceptable level of error
and cost-effectiveness.

In this study, although very high spatial resolution Pleiades 1A and 1B images were
acquired, they were solely used for stratified random sampling and validating vegetation
fraction images derived from LSUA. Despite Pleiades images providing superior visual
interpretation capabilities compared to Landsat 8, their disadvantages include increased in-
ternal variability within homogeneous land cover polygons and limited spectral resolution
with only four bands. The fine spatial resolution of Pleiades images also demands exten-
sive storage and high-performance computation. Consequently, due to cost constraints,
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Pleiades 1A and 1B images were not utilized for mapping vegetation carbon density in this
study. The aim of this research was to establish a cost-efficient methodology for mapping
urban vegetation carbon density in developing countries. The high cost of Pleiades images,
amounting to $58,608 (USD) for Shenzhen city coverage, renders their use impractical
for mapping vegetation carbon density in large Chinese cities or in the regional scale.
Utilizing freely available Landsat 8 images emerges as the optimal option, significantly
reducing research costs. Future studies should investigate the impact of spatial and spectral
resolutions on the accuracy of estimating urban vegetation carbon density. Urban sprawl
induces land use and land cover (LULC) conversion, influencing total carbon stock and
carbon pools. Previous studies highlighted the proportionate increase in anthropogenic
carbon stock and decline in soil and vegetation carbon stock in populated areas [78–81].
While this study concentrated on mapping urban vegetation carbon density, future research
should address and assess the effects of urbanization on carbon pool dynamics, considering
data availability.

The study establishes a methodological framework to enhance the precision of urban
vegetation carbon density mapping through spatial modeling, spectral unmixing analysis,
and de-shadowing techniques. The validated efficacy of this framework indicates improved
accuracy. To advance the field, future studies should prioritize innovative methods for re-
fining vegetation information extraction from mixed pixels and mitigating shadow impacts.
A promising avenue for accuracy enhancement lies in exploring data fusion techniques, es-
pecially by incorporating optical imagery with LiDAR and RADAR data. Further research
directions involve exploring additional machine learning models, extending the method-
ology to diverse urban environments, and addressing challenges like spatial resolution
limitations. Insights into the effects of urbanization on carbon dynamics and anthropogenic
activities significantly contribute to a broader understanding of urban carbon mapping.

6. Conclusions

The study focuses on accurately mapping urban above-ground vegetation carbon
density, addressing challenges posed by complex urban landscapes, mixed pixels, and
building-induced shadows. A novel methodological framework is introduced, combining
linear spectral unmixing analysis (LSUA) for shadow removal, spatial modeling, and
integration of diverse data sources, including Landsat 8, Pleiades 1A and 1B, DEM, and
field measurements. The shadow removal algorithm effectively operates in mountainous
areas but shows limitations in urban settings due to Landsat 8’s coarse spatial resolution.
LSUA improves correlation after shadow removal, and integration with spatial models
enhances mapping accuracy, with Decision Trees exhibiting superior performance. While
relative improvements are modest, the potential for increased accuracy in mapping urban
vegetation carbon density is highlighted. Despite challenges, the DT model, especially
integrated with LSUA, demonstrates the best performance. However, relative errors are
larger compared to a similar study, attributing this to the complex urban landscape. Cost
considerations favor the use of freely available Landsat 8 images over higher-cost Pleiades
images. Future research should explore the impact of spatial and spectral resolutions,
assess urbanization effects on carbon pools, and develop novel methods for vegetation
information extraction and shadow mitigation. Overall, the study provides a cost-efficient
methodology with potential for accurate urban vegetation carbon density mapping.
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Appendix A

Table A1. Tree volume calculation equations.

Tree Species Volume Calculation Equation

Eucalypts V = 8.71419 × 10−5D1.94801H0.74929

Pinus elliottii V = 7.81515 × 10−5D1.79967H0.98178

Acacia rachii V = 7.32715 × 10−5D1.65483H1.08069

Chinese red pine V = 7.98524 × 10−5D1.74220H1.01198

Castanopsis fissa V = 6.29692 × 10−5D1.81296H1.01545

Broad-leaved V = 6.74286 × 10−5D1.87657H0.92888

Cunninghamin lanceolata V = 6.97483 × 10−5D1.81583H0.99610

Hard latissimus V = 6.01228 × 10−5D1.87550H0.98496

Note: V—tree volume, D—diameter at breast height (1.3 m), H—height of tree.

Appendix B

Table A2. Biomass and volume relationship parameter values table.

Forest Types a (Mg/m3) b (Mg) N R2

Picea asperata Mast/Abies alba 0.5519 48.861 24 0.78

Bethula 1.0687 10.237 9 0.70

Casuarinaequisetifolia 0.7441 3.2377 10 0.95

Cunninghamialanceaolata 0.4652 19.141 90 0.94

Cedarwood 0.8893 7.3965 19 0.87

Cupressusfunebris 1.1453 8.5473 12 0.98

Quercus subg Quercus sect 0.8873 4.5539 20 0.8

Eucalyptus robusta smith 0.6096 33.806 34 0.82

Larixprinchipis-rupprechtii 0.9292 6.494 24 0.83

Subtropical evergreen broad-leaved forest 0.8136 18.466 10 0.99

Theropencedrymion 0.9788 5.3764 35 0.93

Broadleaf mixed plantations 0.5856 18.744 9 0.91

Pinus armandi 0.5723 16.489 22 0.93

Pinusmassoniana 0.5034 20.547 52 0.87

Sylvestris/Pinus 1.112 2.6951 15 0.85
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Table A2. Cont.

Forest Types a (Mg/m3) b (Mg) N R2

Pinustabuliformis 0.869 9.1212 112 0.91

Others Conifer 0.5292 25.087 19 0.86

Aspen 0.4969 26.973 13 0.92

Tsugachinensis/Criptomeriafortunei 0.3491 39.816 30 0.79

Tropical forests 0.7975 0.4204 18 0.87

Appendix C

Table A3. Carbon ratio table for different tree species in China.

Trees Species Ratio Tree Species Ratio

Picea asperata Mas 0.4994 Schima 0.5115

Tsuga chinensis 0.5022 Others broad-leaved hard wood 0.4901

Larix gmelinii 0.5137 Aspen 0.4502

Pinus koraiensis Sieb 0.5113 Eucalyptus 0.4748

Pinus thunbergii Parl 0.5146 Acacia rachii 0.4666

Pinus tabulaeformis 0.5184 Others broad-leaved soft wood 0.4502

Pinus armandii Franch 0.5177 Broadleaf mixed trees 0.4796

Pinus massoniana Lamb 0.5271 Economic trees 0.4700

Pinus elliotii 0.5311 Cupressus funebris Endl 0.5088

Others Pinus 0.4963 Coniferous mixed forest 0.5168

Cunninghamia lanceolate 0.5127 * Bush 0.4672

Conifer-broadleaf forest 0.4893 * Herbal 0.3270
Note: * Bush is a joint name of all kinds of different shrub species, * Herbal is a joint name of all kinds of different
grass species.
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