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Abstract: Forest roads are a common land use feature with a significant impact on sediment yield
and the water sediment transport processes within a watershed, seriously disrupting the safety and
stability of the watershed. Previous studies have focused on the sediment production processes
within the road prism. However, there has been limited attention given to the transport processes
of road-eroded sediment at various scales, which is crucial for understanding the off-site effects
of road erosion. This paper reviews research conducted on forest road erosion over the past two
decades. It summarizes the mechanisms of sediment production from road erosion and provides
a detailed analysis of the transport mechanisms of eroded sediments from roads to streams at the
watershed scale. The paper also examines the ecological and hydrological effects, research methods,
and control measures related to sediment transport caused by forest road erosion. It identifies current
research limitations and outlines future research directions. The findings of this review highlight
several key points: (1) Most research on forest road erosion tends to be specific and unilateral, often
neglecting the broader interaction between roads and the watershed in terms of water–sediment
dynamics. (2) Various research methods are employed in the study of forest road erosion, including
field monitoring, artificial simulation experiments, and road erosion prediction models. Each method
has its advantages and disadvantages, but the integration of emerging technologies like laser scan-
ning and fingerprint recognition remains underutilized, hindering the simultaneous achievement of
convenience and accuracy. (3) The transport processes of forest road-eroded sediment, particularly
on road–stream slopes, are influenced by numerous factors, including terrain, soil, and vegetation.
These processes exhibit significant spatial and temporal variability, and the precise quantification of
sediment transport efficiency to the stream remains challenging due to a lack of long-term and stable
investigation and monitoring methods. The establishment and operation of runoff plots and sedimen-
tation basins may help offer a solution to this challenge. (4) Both biological and engineering measures
have proven effective in reducing and limiting sediment erosion and transport. However, the costs
and economic benefits associated with these regulation measures require further investigation. This
review provides a comprehensive summary of relevant research on sediment erosion and transport
processes on unpaved forest roads, enhancing our understanding of sediment yield in watersheds
and offering valuable insights for reducing sediment production and transport to streams.

Keywords: forest roads; erosion units; sediment transport; road–stream slope; flow paths; connectivity;
eco-hydrological effects

1. Introduction

As a distinctive form of land use, forest roads significantly disrupt sediment sources
and ecological hydrological processes within watersheds [1,2]. Forest roads play a dual
role in this context.
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Firstly, they act as significant sources of eroded sediment within watersheds. During
rainfall events, specific sections of the road prism, including cut slopes, fill slopes, and
road surfaces, are particularly vulnerable to erosion caused by rainfall splash and runoff
scouring. This results in the detachment of surface soil particles and, consequently, road
erosion [3]. In comparison to natural slopes, road surfaces exhibit lower infiltration rates
and higher surface runoff coefficients due to the removal of vegetation and compaction [4].
Previous research has demonstrated that compacted forest roads exhibit significantly higher
average runoff coefficients (65%) than undisturbed forested areas (7%) [5]. This leads to
extreme soil erosion rates ranging from 20 to 500 tons per hectare per year in the short term,
markedly surpassing the rates observed in undisturbed mountainous forested watersheds
(approximately 1 to 5 tons per hectare per year) [6].

Secondly, forest roads serve as conduits for the transport of runoff and sediment, fun-
damentally altering water sediment transport processes within watersheds by intensifying
channelized flow and enhancing sediment transport efficiency [7]. The increased hydro-
logical connectivity due to roads impacts the response time and intensity of runoff during
rainfall events, resulting in an elevated frequency and intensity of flooding events [8]. Sedi-
ments stemming from road erosion are transported and deposited under the driving force
of rainfall–runoff [9]. Consequently, they influence the sediment budget within the water-
shed [2,10] and expedite the transport of runoff, sediment, and pollutants into streams [11],
ultimately causing the degradation of water quality [12], reservoir siltation [13], reduced
biomass of aquatic organisms, and the deterioration of aquatic habitats [11]. As a result,
forest road-induced soil erosion poses a substantial threat to the ecological functionality of
watersheds, garnering significant attention on a global scale [14].

Road erosion encompasses various erosion processes occurring within the road prism,
involving sediment detachment and deposition on cut slopes, road surfaces, side ditches,
and fill slopes [15]. Substantial research efforts have been devoted to comprehending
the mechanisms of sediment production through forest road erosion, the processes and
mechanisms of sediment transport, and management measures for erosion control aimed
at protecting soil resources and mitigating forest road erosion [16,17].

Within the road prism, studies on road erosion focus on the similarities, differences,
and interactions of sediment production processes in different erosion units [18,19]. On
a watershed scale, research on forest road erosion examines the alterations in sediment
transport efficiency caused by changes in natural water–sediment processes due to road net-
works [11]. Additionally, some researchers have synthesized the progress and achievements
of forest road erosion research at different stages from various perspectives. For instance,
Seutloali and Reinhard Beckedahl [20], Croke and Hairsine [21], and Mahoney et al. [22]
have reviewed sediment production and deposition processes in forest roads, along with
the transport processes and pathways of eroded sediment. Fu et al. [15] provided an
overview of models used to estimate sediment production from forest unpaved roads and
sediment transport to streams under various scenarios. MacDonald and Coe [23] reviewed
the threats of forest road erosion to forest and watershed health and proposed optimal
management measures for erosion control. These reviews comprehensively summarized
the main topics and methods of forest road erosion research, offering valuable references
for a clearer understanding of the mechanisms and influencing factors of road erosion.

However, as road erosion research has progressed, there has been a shift in the research
focus towards understanding the ecological effects of road erosion. This transition is
gradually moving from investigating the erosion mechanisms of different erosion units
within the road prism to studying the transport mechanisms of road-eroded sediment
on-site and off-site of the road prism [24]. In comparison to the research on the erosion
mechanisms of different erosion units within the road domain, there remains a lack of
comprehensive summaries on the mechanisms and advancements of sediment transport
associated with road erosion on- and off-site of the road prism. This limitation significantly
impedes our understanding of the transport mechanisms of forest road-eroded sediment
and its ecological and hydrological effects.
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Therefore, to enhance our understanding of the mechanisms governing sediment
production and transport in forest road erosion and its ecological and hydrological effects,
this article provides a comprehensive review of relevant research conducted globally over
the past two decades. Building upon the established knowledge of sediment production
mechanisms in road erosion, this review systematically summarizes the sediment transport
processes associated with road erosion at varying scales, explores its ecological and hydro-
logical consequences, and evaluates the mitigation measures employed. Furthermore, the
review highlights that, compared to road erosion research, there is insufficient attention
paid to the transport of eroded sediment, but it is still on the rise. The focus of future
research should shift from the on-site effects to the off-site effects of road erosion, which
encompass the more serious and broader threats of road erosion. Our research establishes
a foundational resource for the prevention and management of forest road erosion and the
preservation of ecological and hydrological stability.

2. Mechanisms of Sediment Production from Forest Road Erosion
2.1. Road Erosion Units

Forest road prism refers to the cross-section of road structure, which typically consists
of several key components, including cut slopes, road surfaces, fill slopes, side ditches, and
culverts [14]. Among them, the road surface is a compacted area used to support traffic,
the side ditch is a drainage structure along one side of the road, and the culvert is a conduit
constructed under the road surface that delivers runoff from ditches on the upper hillslope
side of a road [15,25].

Of these units, the road surface is a primary focus of forest road erosion research.
Based on search results, there were 334 studies on ‘forest road surface erosion’ from 2000
to 2023 (Figure 1). Due to the compaction and fragmentation caused by pedestrian and
vehicular traffic, the soil bulk density of road surfaces increases by 500–1000 kg m−3,
while the porosity decreases by 10%–30%, especially with unpaved ones [26]. During
rainfall, the road surface is susceptible to experiencing infiltration excess (Horton) runoff
and generating concentrated runoff with high energy, which exacerbates the erosion of the
road surface [27]. As a consequence, a significant amount of loose soil on road surfaces
can be detached and transported by rapidly generated runoff, facilitated by extremely low
infiltration rates (≤5 mm h−1) [28]. This can occur even under moderate rainfall intensities
(2.5–7.6 mm h−1) [29]. In addition, a longer road surface can collect more rainfall and
increase the likelihood of runoff production, while roads with larger slopes can increase
the runoff hydrodynamic force, enabling runoff to erode and carry soil particles more
effectively [30].

Road cut slopes are created through the excavation of slopes during road construc-
tion [31]. There were 165 studies on ‘forest road cut slope erosion’ from 2000 to 2023
(Figure 1). Researchers generally concur that cut slopes represent significant sources of
sediment in road erosion [32,33]. Exposed to raindrops, runoff, and gravity, cut slopes
undergo splash erosion, gully erosion, collapse, and landslides, resulting in substantial
runoff and sediment erosion [31,32]. On the other hand, cut slopes notably augment surface
runoff by intercepting overland flow and subsurface flow from the upper hillslope [34,35].

Road fill slopes are commonly constructed on the sides of road embankments with spe-
cific slopes to ensure roadbed stability [36]. However, the loose nature of the materials used
in embankments makes them susceptible to soil erosion and landslides, which contribute
significantly to sediment in road erosion [37]. As erosion progresses and gullies form,
road fill slopes or the lower hillslopes may directly or indirectly connect to streams [38],
intensifying the transport of eroded sediment from the road surface or cut slope to the
stream [10,39].

Among the various units of the forest road prism, cut slopes consistently stand out
as the major contributors to sediment yield [40,41], accounting for 70%–90% of total soil
loss, followed by road surfaces, while fill slopes consistently exhibit the lowest sediment
yield (as shown in Tables 1 and 2). Consequently, current research on forest road erosion
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has displayed a distinct bias, predominantly emphasizing road surfaces and cut slopes
while largely overlooking fill slopes and lower hillslopes. There were only 105 studies on
‘forest road fill slope erosion’ from 2000 to 2023, which is less than research on ‘forest road
surface erosion’ (334) and ‘forest road cut slope erosion’ (165) (Figure 1). This imbalance can
be attributed to two principal factors. Firstly, cut slopes consistently experience the most
severe erosion intensity and soil degradation in comparison to other road erosion units [40].
Secondly, the sediments deposited on the fill slope mainly originate from the cut slope,
road surface, and ditch, resulting in sediment that is predominantly heterogeneous [18].
Moreover, because fill slopes are connected to the lower hillslopes or the riparian zone, they
are often considered part of the sediment transport pathways between roads and streams
rather than being recognized as focal points for road erosion [18].
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Table 1. Annual erosion intensity of different erosion units in various types of roads.

Road Type Erosion Units Annual Erosion Intensity
(t ha−1 yr−1) Study Area and Data Sources

Forest logging road
Gravel road surface 10~16 Piedmont, Virginia, USA [42]

Soil road surface 34~87 Piedmont, Virginia, USA [42]
Soil road surface 272~275 Peninsular Malaysia [43]

Forest pathway

Soil road surface 204 Southwest Puerto Rico [6]
Soil road surface 170 Central Spain [44]
Soil road surface 54 United States Virgin Islands [2]

Cut slope 20~70 United States Virgin Islands [2]

Forest unpaved road

Soil road surface + Cut slope 5258 Shandong, China [3]
Soil road surface + Cut slope 2773 Shandong, China [3]
Soil road surface + Cut slope 670 Shandong, China [3]

Cut slope + Ditch 5290 United States Virgin Islands [19]
Cut slope + Ditch 2670 Victoria, Australia [45]

Gravel road surface + Ditch 513 Victoria, Australia [45]
Cut slope 220 Palencia, Spain [46]

Road surface 247 South Africa [20]
Fill slope 3~44 Hahn Province, Spain [47]
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Table 2. The erosion intensity of different erosion units of soil roads during rainfall events.

Erosion Units Erosion Intensity per Event
(g m−2) Study Area

Cut slope 160 Northeast Spain [32]
Road surface 14 Northeast Spain [32]

Fill slope 10 Northeast Spain [32]
Cut slope 486 Mediterranean [48]

Road surface 162 Mediterranean [48]
Fill slope 27 Mediterranean [48]
Cut slope 106 Southern Spain [40]
Fill slope 17 Southern Spain [40]

Additionally, as evident in Tables 1 and 2, most existing studies tend to quantify
erosion in specific sections or units of the road prism without considering the road erosion
units as an integrated whole. For instance, Cerdà [31] found that there is a close relationship
between cut slopes and road surfaces. The large amount of runoff intercepted by the cut
slope will flow into the road surface, accelerating road erosion, and then the large amount
of sediment generated by cut slope erosion will also deposit on the road surface. Based on
element tracing, Muñoz-Arcos et al. [49] found that most of the eroded sediment on the
fill slope after wildfires comes from the cut slope. In addition, Farias et al. [10] found that
the concentrated high-speed runoff on the road surface can erode the fill slope, leading to
an increase in the erosion intensity of the fill slope. Given the vital interplay among cut
slopes, road surfaces, and fill slopes [37], it is essential to acknowledge that investigating
each component in isolation falls short of providing a comprehensive understanding of
road erosion mechanisms.

2.2. Factors Affecting Sediment Production of Forest Road Erosion

The process of forest road erosion is a complex spatiotemporal dynamic phenomenon.
It is influenced by a combination of natural, road-related, and anthropogenic factors.
Natural factors encompass rainfall and wildfires. Rainfall, in particular, is commonly
regarded as a fundamental catalyst for road erosion [4,14]. Raindrops and the subsequent
concentrated runoff provide the primary energy responsible for detaching and transporting
soil particles [33]. It has been reported that as the rainfall intensity increased from 2.2 to
10.8 mm h−1, the average sediment concentration increased from 14.9 to 74.1 g L−1 [41].
Consequently, the sediment yield of road erosion tends to increase with higher rainfall
intensity, although sediment concentration is typically highest at the onset of a rainfall
event and gradually decreases thereafter [50]. Moreover, other natural elements such as
wildfires have also been demonstrated to impact road erosion and sediment yield. Research
has shown that road-eroded sediment yield increases by 2–15 times after wildfires [49,51].
The higher the severity of wildfires, the higher the eroded sediment yield.

Furthermore, when considering road-related factors, certain intrinsic characteristics
are recognized for their influence on sediment yield across various erosion units of the
road prism [52]. These factors encompass the length, slope, and surface area of roads,
vegetation coverage, and soil texture. Among these factors, the catchment area defines
the upper and lower bounds of runoff and sediment yield in each erosion unit, while
slope and length govern the variability within these bounds [53]. Generally, the larger the
catchment area or the greater the road slope, the higher the eroded sediment yield. For
every 1 ha increase in the catchment area, the average eroded sediment yield increases by
40 kg ha−1 [28,36]. For every 1◦ increase in road slope, the eroded sediment yield increases
by 0.28 kg m−2 [47]. Vegetation is expected to enhance surface soil roughness, intercept
runoff, and reduce runoff energy, thereby augmenting soil cohesion and shear strength
while mitigating the detachment and scouring of soil particles [31]. When the vegetation
coverage is greater than 50%, the eroded sediment yield may decrease to 0 [54]. Soil texture
determines the propensity for soil particles to be detached and transported, with sandy
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soils being more susceptible to detachment and clay soils more predisposed to transport
following detachment [55,56].

Anthropogenic factors, such as traffic and production activities, tend to impede soil
infiltration rates, facilitate runoff collection [30,47], and promote the development of rills
and gullies [43]. However, routine road maintenance practices, including rut repair, gully
clearance, gravel application, and vegetation planting, are deemed beneficial as they
play a pivotal role in erosion control, effectively retarding or preventing road erosion
occurrences [57].

2.3. Assessing Sediment Production of Forest Road Erosion

Forest roads, being significant contributors of sediment in watersheds, exert substan-
tial adverse effects on the eco-hydrological processes within the watershed. In order to
evaluate these eco-hydrological impacts of road erosion and provide guidance for the
adoption of erosion control measures, it is imperative to precisely assess and forecast
sediment production resulting from road erosion [58,59]. Typically, established methods
for quantifying road erosion encompass field monitoring, artificial simulation experiments,
and model simulations [60].

Field monitoring is a common practice used to observe sediment yield from road
surfaces, slopes, and outlets under natural rainfall conditions [20]. In the past 24 years,
354 studies have been conducted on the field monitoring of road-eroded sediment produc-
tion (Figure 2). However, field monitoring is susceptible to the uncertainties of natural
rainfall and road traffic, which makes it challenging to conduct on-site observations during
rainfall events [61]. Artificial simulation experiments, including rainfall simulation experi-
ments and erosion scour experiments, provide greater flexibility and efficiency in terms of
experimental settings, rainfall conditions, and road characteristics [40,62]. According to
search results, from 2000 to 2009, there were only five studies about artificial simulation
experiments, while from 2010 to 2023, there were 33 studies. These experimental methods
have experienced significant development in recent years and have gained popularity
among researchers [61] (Figure 2). Nevertheless, the accuracy of results obtained through
artificial simulation experiments often differs from field monitoring, and they are typically
limited to small-scale studies, making their application at larger scales challenging.
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The development of road erosion models has become a convenient and efficient
method for quantifying road erosion [63]. There were 55 studies about model simulation
from 2000 to 2009, while from 2010 to 2023, there were 158 studies (Figure 2). These models
can generally be categorized into empirical models and physical models. Empirical models
rely on statistical relationships between erosion quantity or intensity and contributing
factors. Notable empirical models include the Washington Road Surface Erosion Model
(WARSEM) [60], Revised Universal Soil Loss Equation (RUSLE) [22], Road Sediment Model
(ROADMOD), Sediment Model (SEDMODL) [39], St. John’s Sediment Budget Model (STJ-
EROS) [2], and Road Erosion and Delivery Index (READI) [64]. The above models can be
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used to evaluate and predict soil erosion and sediment yield. Among them, WARSEM,
ROADMOD, and READI are mainly applied to road management and environmental
protection, while RUSLE, SEDMODL, and STJ-EROS are applicable to a wider range of
land management and soil and water conservation projects. In addition, different models
have varying requirements for input data and model complexity. Some models (such as
RUSLE) may be relatively simple, while others (such as SEDMODL and STJ-EROS) may
require more input data and processing steps (as detailed in Table 3). Physical models
are based on mass or energy conservation equations that describe erosion and sediment
transport processes, derived from hydrological response models simulating infiltration and
runoff pathways [65]. Prominent physical models include the Water Erosion Prediction
Project model (WEPP) [57], the Kinematic Runoff and Erosion Model (KINEROS2) [66], and
the Distributed Hydrology Soil Vegetation Model (DHSVM) [67]. These models have been
widely applied to roads in various specific landscape contexts, particularly forest roads.
WEPP and KINEROS2 are relatively simple and require less input data. In contrast, DHSVM
requires more input data and processing steps, including terrain data, soil properties, and
vegetation types. The model complexity is relatively high and requires strong technical
support. Due to the emphasis on different structures, parameters, and applicability, these
models exhibit significant differences [58] (as detailed in Table 3). When selecting a model
for simulating forest road erosion and sediment transport, it is crucial to consider whether
the model is suitable for the forest road erosion processes and characteristics in the study
area, as well as whether the parameter values are appropriately applied in the modeling
process [68].

Table 3. Advantages and disadvantages of different road erosion models.

Empirical Model Advantage Disadvantage

WARSEM Considers various erosion units of road prism and is
applicable to watershed scale. Overestimates the sediment yield of road segments.

RUSLE Predicts sediment yield and categorizes erosion risk. Applicable to farmland rather than road.
ROADMOD Integrates GIS and network algorithms. Only considers road surface.
SEDMODL Identifies road segments with high sediment yield. Underestimates overall sediment yield.
STJ-EROS Adapts well to changes in sediment yield. Overestimates the overall sediment yield.

READI Assesses sediment yield and transport from road
to stream. Requires relatively high accuracy DEM.

Physical Model Advantage Disadvantage

WEPP Predicts sediment yield at multi-time scales. Involves excessive submodels and parameters.

KINEROS2 Predicts sediment yield and transportation of
rainfall events. Lacks consideration of traffic conditions.

DHSVM Evaluates the interaction between hydrology, soil,
and vegetation. Requires detailed input parameters.

In recent years, some emerging technologies like terrestrial laser scanning (TLS), un-
manned aerial vehicle (UAV) imaging, and fingerprint recognition have found widespread
use in both field monitoring and artificial simulation experiments [69]. There were 48 stud-
ies about emerging technologies from 2010 to 2023 (Figure 2). Among these technologies,
TLS enables the rapid and precise acquisition of soil erosion information [35], UAV im-
ages aid in generating digital road surface models (DSM) [70], and fingerprint recognition
can assess the relative importance and contribution of forest roads as a sediment source
in a watershed [71]. These innovative approaches effectively enhance work efficiency
and convenience, address the difficulties of traditional methods and tools in large-scale
applications, and gradually become effective means of accurately describing erosion pat-
terns and providing spatial representations [72]. In summary, despite being costly and
time-consuming [61], field monitoring and simulation experiments represent effective
approaches to understanding the mechanisms of road erosion, assessing erosion intensity,
and optimizing model parameters and performance [73].
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3. The Transport Mechanisms of Forest Road-Eroded Sediment

The occurrence of road erosion and the transport of eroded sediment are intimately
connected processes. When runoff erodes the road surface and produces sediment, it
invariably leads to the transportation of sediment via runoff [64]. The transport of eroded
sediment is crucial for understanding the off-site effects of road erosion and is closely
related to the aquatic ecological security of the watershed [24].

Current research on forest road erosion and sediment production is comprehensive
and specific, while research on eroded sediment transport is relatively lagging and lacking.
We found that there were 497 studies related to ‘forest road erosion sediment’ within
24 years, while there were only 221 studies related to ‘forest road-eroded sediment transport’
(Figure 3). The number of studies on forest road erosion is still increasing, which means that
related research is still being further improved. It is worth noting that although the number
of studies on forest road-eroded sediment transport is less than half of that on forest road
erosion, it is increasing year by year. The number of studies conducted between 2012 and
2023 (157) is 2.45 times that between 2000 and 2011 (64), indicating that the transport of
forest road-eroded sediment is receiving attention [7,14], but there is still a certain gap
compared to research on forest road erosion. Therefore, it is necessary to explore the
transport mechanism of road-eroded sediment.
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Research indicates that the conveyance of road-eroded sediment predominantly relies
on rainfall runoff as its carrier [8]. Driven by runoff forces, sediment enters the stream
network through various transport pathways, consequently disrupting the balance of the
sediment budget and impacting aquatic ecosystems [74]. It is worth noting that while
nearly all unpaved road surfaces are susceptible to erosion, not all the eroded sediment
finds its way into streams. This is because sediment and other materials may be deposited
or intercepted in their original positions or between drainage ditches and streams [2].

Previous studies have made use of the sediment delivery ratio (SDR) related to the
watershed area [74], which typically converts the estimated soil erosion quantities from the
model directly into sediment transport quantities [75]. However, due to the spatiotemporal
variability of factors governing sediment transport and storage, it is inaccurate to propor-
tionally convert forest road-induced soil erosion into watershed sediment discharge [76].
Generally, the transport processes of forest road-eroded sediment can be decomposed into
three distinct phases: the road surface transport process [77], the road–stream slope trans-
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port process [16], and the stream transport process upon entering the stream network [65].
Therefore, we delve into the specific mechanisms and inherent interconnections of these
three transport processes (Figure 4).
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3.1. Transport Process of Eroded Sediment on Forest Road Surfaces

The road surface serves not only as a source area for eroded sediment but also as a vital
pathway for transporting sediment-laden runoff [48]. The road surface transport process
generally involves the transportation of eroded sediment along the road surface to the
drainage outlet, which includes both in situ sediment and sediment from the upper hillslope
and cut slope [64]. Due to the high compaction of forest road surfaces, the infiltration rate
is mostly less than 5 mm h−1 [34]. During rainfall, only 3 to 6 mm of rainfall can generate
excessive surface runoff from forest roads [2,19]. In addition, the road surface intercepts
runoff from the upper hillslope and accelerates the generation and accumulation of runoff to
transport sediment [25,28]. An interesting study showed that runoff coefficients for gravel
road surface at 1, 3, and 7% slopes were 0.60, 0.65, and 0.68, while runoff coefficients for
cobblestone at 1, 3, and 7% slopes were 0.41, 0.45, and 0.47, respectively [78]. Consequently,
the characteristics of the road surface and the road’s morphology play a pivotal role in the
sediment transport process [79].

Concerning unpaved forest roads, studies have indicated that, under the influence of
rainfall and traffic, bare road surfaces are more prone to forming rills or gullies in compari-
son to graveled road surfaces [56]. It has been reported that the sediment delivery rate on
bare forest roads ranges from 34 to 287 t ha−1 yr−1, while that on graveled forest roads falls
within the range of 10 to 16 t ha−1 yr−1 [42]. Furthermore, research has shown that concave
road surfaces tend to concentrate runoff, thereby accelerating sediment transport to road
drainage outlets [23]. In contrast, flat road surfaces typically disperse runoff, reducing the
hydrodynamic force involved in sediment transport [50].

3.2. Transport Process of Eroded Sediments on Forest Road–Stream Slopes
3.2.1. Sediment Transport Mechanisms

Once discharged from the road surface, sediment-laden runoff proceeds downhill
toward the stream, initiating slope erosion and the creation of sediment transport routes
connecting the road to the stream [15]. Typically, these established sediment transport
pathways can be classified into three main categories: diffuse pathways, gully pathways,
and partially gullied pathways (Figure 5) [16].
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The diffuse pathways are generally found on lower hillslopes that have not been
significantly eroded by road runoff. They consist of a primary runoff plume and multiple
dendritic plumes and lack well-defined channels or gullies, but some rills smaller than
5 cm can be observed [50]. Influenced by the interception and infiltration effects of surface
soil, vegetation, and litter layers, sediment-laden runoff in the diffuse pathway is typically
dispersed with weak hydrodynamic force and sediment-laden capacity [15,16]. As a result,
the diffuse pathway is seldom observed to extend beyond 30 m on vegetated slopes [80]
(Table 4), making it challenging for sediment-laden runoff discharged from road drains to
reach streams when the distance from the road to the stream is considerable. Consequently,
diffuse pathways have the lowest sediment transport efficiency among the three categories
of pathways, and the transport process on diffuse pathways is deposition-dominated [81].

Table 4. Average sediment transport distance (a) and average volume of runoff to reach streams (b) of
different sediment transport pathways.

Gully Pathway Partially Gullied Pathway Diffuse Pathway Data Sources

Average sediment transport distance (m) 86.25 ± 6.4 a 46.25 ± 7.2 b 22.75 ± 5.6 c [15,73,80]
Average volume of runoff to reach

streams (m3) 11.50 ± 3.2 a 7.23 ± 1.5 b 2.83 ± 0.3 c [81–83]

Note: The letters “a”, “b”, and “c” represent significant differences (p < 0.05).

The gully pathway is defined as a channelized route formed due to gully erosion
on the road–stream slopes, which is characterized by a depth greater than 30 cm or a
cross-sectional area greater than 0.09 m2 [21]. It is reported that the formation of gully
pathways is a threshold-controlled process influenced by various factors such as topog-
raphy, rainfall, hydraulic conditions, soil lithology, and land use [70]. The concept of a
threshold based on slope–area (S-A) has been widely used to explain the formation of
gully pathways [82]. Research has shown that the critical topographic thresholds for the
initiation of the gully pathways and the continued development of gullies from partial to
complete gully pathways could be expressed as Ds = 0.35Eca

−0.13 and Ds = 0.41Eca
−0.17,

respectively, where Ds represents the slope gradient of lower hillslope and Eca represents
the effective contribution area [16]. Furthermore, changes in vegetation or land use can
alter the formation threshold of gully pathways by modifying effective rainfall intensity
and runoff characteristics [16], making gully pathways more likely to occur on slopes
with roads [38]. According to MacDonald and Coe [23], 9% to 35% of roads are directly
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or indirectly connected to streams through gully pathways, with an average sediment
transport distance of 86 m [73] (Table 4). This connection not only alters hydraulic gradi-
ents, drainage density, and flow pathways but also redistributes sediment-laden runoff,
intensifying sediment transport [83]. Therefore, the gully pathway has the highest sediment
transport efficiency among the three categories of pathways [84].

The partially gullied pathway represents the intermediate stage in the transformation
from a diffuse pathway into a gully pathway. It is characterized by gullies that initially form
with rill formation and further develop on the lower slope but do not reach the streams due
to factors such as reduced hydrodynamic force or the influence of topography, soil, and
vegetation [73]. Consequently, the partially gullied pathway exhibits characteristics of both
gully pathways and diffuse pathways, which has an average sediment transport distance
between gully pathways and diffuse pathways and a moderate capacity to connect roads
and streams [15] (Table 4).

The formation of transport pathways on road–stream slopes is closely related to factors
like rainfall intensity, road drainage structures, and slope hydrodynamic force [16], which
interact in space and time, collectively determining the formation and transport efficiency
of the three types of pathways mentioned above. Furthermore, the formation of gullies is
typically irreversible, as they enhance connectivity between roads and stream networks, en-
abling more road-eroded sediment to enter stream networks along the transport pathways
on slopes [85].

3.2.2. Sediment Connectivity between Roads and Streams

The sediment connectivity quantifies the sediment transport ratio from the erosion
unit to the watershed outlet [86,87]. Currently, sediment connectivity has become a central
focus in soil erosion research, particularly concerning the source–sink relationships of
sediment within watersheds [88]. By employing the concept of sediment connectivity,
researchers can diagnose and quantify sediment transport pathways and their spatiotem-
poral variations [89]. This understanding allows for the identification of key road segments
as sediment sources and priority areas for soil and water conservation, facilitating the
prevention and control of sediment transport from roads to streams and the maintenance of
watershed ecological security [24]. Therefore, comprehending the mechanisms of sediment
connectivity between roads and streams is pivotal for mitigating the off-site effects of road
erosion [90,91].

The road–stream slope serves as the principal transport pathway for road-eroded sedi-
ment [34]. It is reported that over two-thirds of road-eroded sediment can be transported
to streams via road–stream pathways [92]. These pathways exhibit varying degrees of
sediment connectivity between roads and streams, influencing the transport efficiency of
sediment-laden runoff [24]. Generally, the connectivity of gully pathways is significantly
higher than that of partially gullied pathways and diffuse pathways [15]. This is primarily
because the development of gullies provides direct channels for the convergence of slope
runoff and sediment transport, directly connecting roads and streams [93,94].

Furthermore, research has shown that when sediment-laden runoff is transported
along diffuse pathways through road drainage outlets, the runoff and sediment load are
significantly reduced (Table 4). Compared with gully pathways, diffuse pathways disperse
concentrated runoff, increase runoff infiltration, and promote sediment deposition [95].
This is largely attributed to the disturbance of vegetation along the diffuse pathways, which
reduces road–stream connectivity [54]. A study in Thailand has proved that the natural
vegetation distributed along the stream bank blocked the connection between the road and
stream, and the sediment concentration decreased by 34%–87% during rainstorms [96].

It has been reported that rainfall intensity is the main controlling factor for road–river
connectivity [34,97]. In general, an increase in rainfall intensity or road erosion intensity
directly leads to a rise in sediment connectivity [85,87], inevitably resulting in increased
sediment transport from roads to streams. For instance, in a study by Crokea et al. [73], it
was found that the maximum travel distance of sediment-laden runoff in a diffuse pathway
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ranged from 16 to 25 m in a 10-year return rainfall event and extended to 28~42 m in a
100-year return rainfall event. Additionally, the development and expansion of road–stream
pathways have shortened the length of runoff pathways, increased the cumulative amount
of runoff, and increased the accessibility index and sediment connectivity [61], providing
more opportunities and possibilities for sediment transport.

Accurate measurement of sediment connectivity is crucial [98]. Although there have
been many studies on sediment connectivity, quantitative measurements and research
methods of sediment connectivity for different pathways between roads and streams are
still limited. In the past, the earliest indicator used to quantify the connectivity between
roads and streams was the sediment delivery ratio (SDR) [74]. Subsequently, researchers
like Burak [36] quantified the connectivity of road–stream pathways in forests using the
density and discharge of road network drainage outlets. Cavalli et al. [99] modified
the Index of Connectivity (IC) proposed by Borselli et al. [100] to assess the potential
linkages between road sediment source areas, major stream networks, and watershed
outlets. Thompson et al. [78] and Benda et al. [64] developed the Road Connectivity
Assessment Tool (RoadCAT) and Road Erosion and Delivery Index (READI) model based
on the concepts of volume breakthrough and connectivity between forest roads and streams
to determine different types of transport pathways on hillslopes and estimate the sediment
transport through these pathways, respectively.

To sum up, from the perspective of sediment connectivity, targeted management
measures should be considered to reduce sediment connectivity, such as restricting gully
development and adding buffer zones [21,85], to mitigate the off-site effects of road erosion,
specifically sediment transport through road–stream pathways. However, there is still a
significant research gap in this area at present.

3.3. Transport Process of Forest Road-Eroded Sediment in Streams and Its Ecological Effects

Generally, once road-eroded sediment enters the stream networks of a watershed, it
undergoes transport and deposition with stream flow, which has a detrimental impact on
the aquatic ecology of the watershed [65].

The transport of sediment in stream networks is significantly influenced by the hy-
drodynamic forces of the stream, such as the flow velocity [65]. It has been reported that
higher flow velocity or discharge makes eroded sediment more likely to undergo long-
distance transport [101], resulting in widespread distribution throughout the watershed.
Furthermore, narrower channels facilitate the rapid transport of eroded sediment under
high flow velocity and discharge conditions, while sedimentation is more likely to occur
under conditions of low flow velocity and discharge [102].

In addition to the hydrodynamic forces of the stream, the deposition and transport of
forest road-eroded sediment in the stream network are closely related to the size of sediment
particles. Generally, coarse sediments (particle size > 2 mm) tend to deposit on the stream
bed throughout the stream network [103]. This significantly raises the stream bed and alters
the composition of sediment particles, negatively impacting the spawning environment of
aquatic organisms. On the other hand, fine sediments (particle size < 2 mm) are typically
suspended in stream flow [103], leading to increased water turbidity, which in turn inhibits
the photosynthesis of aquatic plants, damages stream habitats and food web structures, and
affects the migration, survival, and species richness of aquatic organisms [104]. Therefore,
road-eroded fine sediments often pose greater harm over longer time scales compared
to coarse sediments. It is important to emphasize that natural disasters such as floods,
collapses, landslides, and debris flows often accompany road erosion [85]. These disasters
further exacerbate the harm caused by road erosion to the watershed ecosystem. Hence,
targeted control measures should be implemented to prevent such damages.

In reality, it is the complexity of the forest road–stream–watershed sediment trans-
port system that makes the estimation of sediment transport and deposition in streams
so challenging [105]. Due to the difficulty in accurately predicting the concentration of
road-eroded sediment in streams over various time scales, we still lack a comprehensive
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understanding of how the different driving factors of erosion transport interact in space
and time.

4. Regulation of Forest Road Erosion and Sediment Transport

Road-eroded sediment has been demonstrated to inflict significant harm on both
terrestrial and aquatic ecosystems [73]. To tackle this issue, various measures designed
to mitigate road erosion and sediment transport have been developed. According to
best management practices (BMPs), these measures can be categorized into engineering
measures and biological measures [57,106,107].

Engineering measures typically involve road structures and auxiliary facilities, includ-
ing cut slope intercept trenches, drainage ditches on road surface, and silt fences for cut
slope [106,107]. They also encompass gravel pavement [108], hardwood slash [107], check
dams [109], detention ponds [110], and sedimentation basins [111]. It is evident that engi-
neering measures can significantly reduce road-eroded sediment production and transport
during rainfall events (Table 5). Among them, gravel pavements help to reduce sediment
erosion, while sediment ponds are the most effective measure to reduce the transport of
sediment from roads to streams, with an average reduction rate of 92.5%. On the other hand,
biological measures involve biotechnical approaches, particularly vegetation restoration,
to enhance runoff infiltration and impede the transport of sediment [112]. Some common
biological measures currently employed include sowing grass seeds, planting shrubs [113],
mulching erosion control mats [114], and geotextiles [115], all of which have been shown to
have a significant impact on reducing sediment erosion and transport (Table 5). Among
them, erosion control mats are the most effective measure, with an average sediment reduc-
tion rate of 91.67%, while vegetation planting can not only reduce sediment erosion but can
also effectively intercept sediment and reduce its transport from roads to streams.

Table 5. The reduction rate of sediment production by different engineering measures and biologi-
cal measures.

Type Measure
Reduction Rate

of Sediment
Production (%)

Data Sources

Engineering measure

Gravel Pavement 73.18 ± 9.6 b

[108–111]
Dam and Ditch 58.76 ± 10.9 b

Hardwood Slash 90.65 ± 1.1 a
Sediment Pond 92.50 ± 3.5 a

Biological measure

Sow Grass 84.22 ± 8.5 a

[112–115]
Cover Mulch 83.93 ± 13.2 a

Erosion Control Mat 91.67 ± 5.5 a
Plant Shrub 59.65 ± 12.3 b

Note: The letters “a”, “b” represent significant differences (p < 0.05).

Both engineering measures and biological measures can effectively reduce sediment
production, with an average sediment reduction rate of 75.96% and 80.22%, respectively
(Table 5). Compared to engineering measures, biological measures are generally more
effective [116]. Furthermore, biological measures are also characterized by simplicity, lower
costs, higher landscape value, and sustainability over the long term. Therefore, when
managing and regulating forest roads, priority should be given to biological measures. Ad-
ditionally, studies have shown that a combination of engineering measures and biological
measures can achieve better effectiveness in mitigating road erosion and the transport of
road-eroded sediment [117], but the economic benefits are not yet clear.

5. Prospectives

It is evident that previous studies have made significant contributions to understand-
ing the mechanisms of road-eroded sediment production, the transport process of eroded
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sediment, and the measures for preventing and controlling sediment transport. These
studies have provided valuable insights into the understanding of sediment transport both
on-site and off-site within the forest road prism. However, we believe that several aspects
still require further research and investigation.

Firstly, with regard to the research focus on forest road erosion, most studies primarily
concentrate on either the erosion characteristics of a specific unit of the road prism or are at
the road section scale; they rarely consider the entire road prism as a whole to explore the
mechanism of eroded sediment production. Moreover, sediment production and transport
processes in road erosion are often studied and discussed separately, which limits the
in-depth understanding of the off-site effects caused by road erosion within the watershed.
Therefore, we suggest that future research should pay attention to the interrelationships
between various road erosion units by exploring the sediment production characteristics
of different erosion units on forest roads. At the same time, the road prism should be
regarded as a whole system of eroded sediment production within the watershed, and
further investigation should explore the water sediment transport from the linear road
network to the watershed based on the eroded sediment production process.

Secondly, in terms of research methods for forest road erosion, most studies rely
on artificial simulation experiments rather than field monitoring. However, simulation
experiments are often based on overly idealized or hypothetical conditions, resulting
in significant discrepancies in results compared to field monitoring. Additionally, the
emergence and development of road erosion models have opened up new possibilities.
While these models have demonstrated impressive performance at the watershed scale,
variations in modeling parameters, empirical factors, research perspectives, and regions
make different models regionally specific and challenging to apply universally. Therefore,
we recommend that field monitoring should integrate new technologies such as fingerprint
recognition and laser scanning to enhance work efficiency and accurately quantify sediment
yield and transport in road erosion. Based on a substantial amount of field monitoring data,
the setup conditions for artificial simulation experiments can be improved to better align
with natural scenarios. On this foundation, the forest road erosion prediction models can
be refined by adjusting model parameters to enhance their accuracy and applicability.

Furthermore, concerning the research on forest road-eroded sediment transport, al-
most all studies have concentrated on the transport of eroded sediment within the road
prism, neglecting the sediment transport processes taking place on the road–stream slope,
which include detachment and deposition. Nevertheless, the transport process of sediment
on the road–stream slope is crucial for exploring the off-site effects of road erosion. This
process directly influences how much road-eroded sediment can enter the stream and the
associated ecological effects. Therefore, it is essential to address the gaps and shortcomings
in the research on sediment transport at the slope scale, particularly from the perspective
of connectivity. Sufficient exploration of sediment transport and hydrological processes
between roads and streams is necessary. Specifically, field monitoring should be carried
out at road drainage outlets, transport pathways, and stream entrances to obtain accurate
and effective water sediment transport data on road–stream slopes. Additionally, the
spatiotemporal dynamics of water sediment transport and the factors influencing con-
nectivity between roads and streams should be identified through field investigations or
artificial simulation experiments. On this foundation, connectivity indices, such as IC, can
be introduced and improved to quantify the interaction between roads and streams. A
comprehensive understanding of the inherent connections of sediment transport processes
across various scales is also necessary and plays a crucial role in studying road-eroded
sediment transport and understanding and applying sediment connectivity.

Finally, regarding the regulation of forest road erosion, two aspects should be con-
sidered: one is controlling the yield of eroded sediment from road erosion sources and
the other is reducing sediment transport based on the principle of connectivity. Currently,
regulation measures for road erosion are primarily proposed and implemented to reduce
erosion and intercept sediment transport within the road prism, with limited emphasis
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on sediment connectivity between roads and streams. However, the road–stream slope
serves as not only a necessary passage in the transport of eroded sediment but also the final
link for road-eroded sediment to enter streams. Therefore, the focus on regulating forest
road erosion should be adjusted, and it is essential to implement measures such as planting
vegetation, constructing sedimentation basins, establishing buffer zones, and introducing
other regulatory measures on road–stream slopes. Furthermore, integrating road erosion
control concepts into road construction processes to proactively protect roads from erosion
and adopting a combination of engineering and biological measures could help limit or
reduce the production and transport of sediment. Moreover, the development of specific
regulatory measures based on the unique conditions of the research area not only aids
in fully utilizing road functions but also prevents soil erosion and protects the ecological
security of the watershed. Simultaneously, it is essential to further explore the economic
costs and ecological benefits of implementing these regulatory measures.

6. Conclusions

The severe environmental impact of forest road erosion is receiving increased recogni-
tion, leading to extensive research efforts in this field. Significant progress has been made in
understanding the mechanisms behind eroded sediment production, with a comprehensive
and specific grasp of the underlying processes. Furthermore, research methods continue
to evolve and advance to meet new research objectives. In comparison, there is a need for
enhanced research into the transport processes of forest road-eroded sediment. This aspect
is pivotal in uncovering the off-site effects of forest road erosion and understanding the
adverse consequences of eroded sediment transport on the ecological and hydrological
balance of watersheds. Therefore, the research on road erosion sediment transport and
regulation is the most promising. Driven by this demand, sediment transport processes
have been subject to qualitative and quantitative analysis. Notably, the introduction and
application of sediment connectivity have significantly contributed to the investigation of
sediment transport processes, offering insights into strategies for reducing and mitigating
road erosion and sediment transport. While engineering and biological regulatory mea-
sures for controlling forest road erosion and sediment transport have been proposed and
implemented, there is room for further exploration of cost-effective and efficient solutions.
The combination of engineering and biological measures is more effective in reducing the
negative impact of road erosion. This research is summarized and discussed based on
the aforementioned aspects, with the aim of providing essential knowledge for reducing
the production and transport of forest road-eroded sediment to streams. Future research
should still focus on the regulation of eroded sediment, as well as the interception of
sediment before entering rivers, which can help improve the global environmental problem
of road erosion.
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