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Abstract: Archaea and bacteria communities play pivotal roles in tropical forest ecosystems’ func-
tioning, especially nutrient cycling, plant phenology, and health. The objective of this study was to
explore the diversity of archaeal and bacterial communities in forest soil ecosystem of Côte d’Ivoire
and to identify abiotic factors that influence their composition. Using high-throughput amplicon
sequencing targeting the V4V5 hypervariable region of the 16S ribosomal RNA gene, we analyzed
22 soil samples taken from the 2 main forest areas of Côte d’Ivoire, namely the semi-deciduous moist
forest and the evergreen moist forest, both of which are located in the humid and sub-humid areas of
the country. The analysis revealed that the biodiversity at the phyla level was congruent with previous
studies. Richness and Shannon diversity indices revealed the dominance of bacteria over archaea in
all studied soils. Moreover, the predominant bacterial community consisted of Proteobacteria (29.8%),
Acidobacteria (15.5%), and Actinobacteria (14.2%), while the archaeal community was dominated by
Thaumarchaeota (1.93%). However, at the genus level, patterns emerged. The most abundant and
ubiquitous members at the genus level included Bradyrhizobium, Rhodoplanes, Bacillus (bacteria), and
Nitrosophaera (archaea). While bacterial core microbiome members were found in almost all soils,
Nitrososphaera genus were selective to sub-humid bioclimate and cropland land use. These patterns
were correlated to the soils’ physicochemical characteristics, bioclimate, and land use. This study
sheds light on the intricate relationships between abiotic factors and microbial communities in Côte
d’Ivoire’s forest soils and helps to identify keys species for future soil management.

Keywords: forest soil ecosystems; archaea; bacteria; abiotic factors; Côte d’Ivoire

1. Introduction

In Côte d’Ivoire, it is estimated that more than 90% of the original forest cover is lost,
mainly due to increasing land conversion from forestlands to agricultural lands [1,2]. The
loss of the natural forest ecosystems is critical for the country as it leads to the disappear-
ance of livelihoods in rural communities and land degradation. Overall, Côte d’Ivoire
is facing a serious ecosystem functioning issue since forests play a crucial role in ecosys-
tems [3]. Indeed, forests provide a wide range of essential services that are interconnected
and vital for the functioning of the overall ecosystem. Firstly, forests regulate water cycling
by capturing precipitation and releasing water vapor into the atmosphere, contributing to
the distribution of water resources [4]. Secondly, they play a fundamental role in climate
regulation by absorbing carbon dioxide through photosynthesis and releasing oxygen [5].
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This process helps to mitigate the impact of greenhouse gases and contributes to the overall
balance of the atmosphere [6]. Moreover, forests harbor a remarkable diversity of living mi-
croorganisms and support vital biological processes. Indeed, numerous studies conducted
in forest soil ecosystems have provided valuable insights into various microorganisms’
genetic diversity and vital roles. These microorganisms include fungi [7,8], bacteria, and
archaea [9–11], which play crucial roles in processes like nutrient cycling, organic matter
decomposition, and soil fertility preservation [12–14]. Particularly, arbuscular mycorrhizal
fungi are recognized for their roles in enhancing root development, stimulating nutrient
cycling, improving soil structure, increasing plant resilience to stress, facilitating the uptake
of less mobile ions, and promoting plant community diversity [15]. Since bacteria possess
genes that encode plant cell wall-degrading enzymes, they make significant contributions
to organic matter decomposition [16–19]. Forest soils act as a reservoir of nutrients that sup-
ply trees and other vegetation types with essential elements necessary for their growth and
development. They also play a significant role in the regulation of water flow, preventing
erosion, and maintaining stable moisture levels within the forest.

Due to their essential roles in ecosystem services, it becomes urgent to explore micro-
bial diversity and structure in the threatened forest environment of Côte d’Ivoire. Indeed,
historically, the original forest biome was important and covered more than 45% of the
total area of Côte d’Ivoire. It was located mainly in the south and west parts of the country
where the climate has an equatorial/subequatorial type with a long rainy season [20]. Un-
fortunately, these two areas have been intensively converted into cash crop fields, including
cocoa and coffee, without appropriate measures of forest conservation. Consequently,
today, the forest biome is dominated by degraded forests. This continuous degradation
of forest vegetation in Côte d’Ivoire may cause the loss of important ecosystem services.
Indeed, it has been evidenced recently that there is a straight link between plant diversity,
soil microbial diversity, and the complexity of microbial networks in a tropical rainfor-
est [21]. It means that ecological studies that aim at deciphering the communities of forest
soil microorganisms could help to formulate effective policies and strategies for forest
conservation and/or restoration, reforestation, and sustainable agriculture in Côte d’Ivoire.
Of such services, carbon and nitrogen cycling are important in forest ecosystems [22]. Both
archaea and bacteria are key players in carbon and nitrogen cycles [23]. Such studies need
not only to focus on the structure, function, and diversity of the microbial communities but
also to define the core microbiome which is known to be dependent on environmental fac-
tors [24]. The identification of the core microbiome is important since its persistent presence
in particular habitats/niches is likely to be essential for their functioning [25,26]. Moreover,
recent studies have revealed that the core microbiome is essential for the maintenance of
the functional stability of soil microbiomes in reforestation ecosystems [27].

Hence, this study aims to explore (1) the diversity of archaeal and bacterial commu-
nities in the soils of Côte d’Ivoire’s forest areas, (2) identify the core bacteriobiome and
archaeome, and (3) determine the major abiotic drivers influencing archaeal and bacterial
richness in the forest biome.

2. Materials and Methods
2.1. Study Sites and Soil Sampling

The study area was located in the Côte d’Ivoire forestry region, which is divided into
two parts: the evergreen moist forest and the semi-deciduous moist forest (Figure 1).

The Côte d’Ivoire evergreen moist forest consists of trees and shrubs, ranging in
height from 5 to 50 m. The semi-deciduous moist forest formations have been affected
by degradation and maintain coverage of only 22% [28]. Most of the country’s cash crops
are produced in these forest areas, owing to the good fertility of the soils. The main cash
crops are cocoa (Theobroma cacao), coffee (Coffea sp.), hevea (Hevea brasiliensis), palm groves
(Elaeis guineensis), and coconut groves (Cocos nucifera). The sampled soils belong to the
rhizosphere of all the vegetation types of the forest biome (the evergreen moist and the
semi-deciduous moist forests) and either cropland or forestland (Table 1).
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Figure 1. Côte d’Ivoire map with the two forest areas and sampling localities. The evergreen region
is in dark green while the semi-deciduous region is in green. The savannah, sub-savannah, and
preforest areas are also shown.

Table 1. Forest zones and main characteristics of sampling soils.

Soil ID Locality (City) Geographic
Position Forest Zone Bioclimate Land Use

CI01 Anyama 5◦31′07.2′′ N
4◦03′33.8′′ W Evergreen Humid Cropland

CI02 Adzopé 5◦54′49.5′′ N,
3◦56′24.4′′ W Semi-deciduous Humid Cropland

CI03 Akoupé 6◦18′46.7′′ N,
3◦49′51.1′′ W Semi-deciduous Sub-humid Cropland

CI04 Anuassué 6◦39′29.5′′ N,
3◦42′00.2′′ W Semi-deciduous Sub-humid Cropland

CI05 Zamaka 6◦54′02.0′′ N,
3◦25′23.7′′ W Semi-deciduous Sub-humid Forest land

CI06 Koun-Fao 7◦39′55.9′′ N,
3◦13′03.4′′ W Semi-deciduous Sub-humid Forest land

CI07 Tanda 7◦39′55.9′′ N,
3◦13′03.4′′ W Semi-deciduous Sub-humid Cropland

CI08 Siago 7◦56′22.0′′ N,
2◦56′57.6′′ W Semi-deciduous Sub-humid Forest land

CI24 Kononfla 6◦38′38.8′′ N,
5◦41′02.0′′ W Semi-deciduous Sub-humid Cropland

CI25 Ouragahio 6◦25′23.1′′ N,
5◦57′43.3′′ W Semi-deciduous Sub-humid Cropland

CI26 Gagnoa 6◦05′12.9′′ N,
6◦02′30.7′′ W Semi-deciduous Sub-humid Cropland

CI29 Meagui 5◦37′04.3′′ N,
6◦36′28.7′′ W Evergreen Sub-humid Cropland

CI27 San Pedro 5◦05′13.1′′ N
6◦02′30.7′′ W Evergreen Humid Cropland

CI28 Touih 5◦13′12.8′′ N
6◦32′43.4′′ W Evergreen Humid Cropland

CI30 Yabayo 5◦37′04.3′′ N,
6◦36′28.6′′ W Evergreen Sub-humid Cropland

CI31 Issia 6◦24′01.3′′ N,
6◦31′46.3′′ W Semi-deciduous Sub-humid Cropland
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Table 1. Cont.

Soil ID Locality
(City)

Geographic
Position Forest Zone Bioclimate Land Use

CI32 Daloa 6◦47′39.5′′ N,
6◦27′57.8′′ W Semi-deciduous Sub-humid Cropland

CI37 Zoukougbeu 6◦45′08.0′′ N,
6◦54′51.3′′ W Semi-deciduous Humid Cropland

CI38 Duekoue 6◦45′16.7′′ N,
7◦22′30.7′′ W Semi-deciduous Humid Forest land

CI39 Logouale 7◦07′31.6′′ N,
7◦33′24.3′′ W Semi-deciduous Humid Cropland

CI40 Biankouma 7◦30′38.1′′ N,
7◦37′14.4′′ W Semi-deciduous Humid Forest land

CI41 Foungbego 7◦52′50.5′′ N,
7◦40′09.7′′ W Evergreen Humid Forest land

Soil samples were collected in August–September 2017. A total of 22 soils were
obtained of which >70% were located in the semi-deciduous ecosystems. The sampling
was carried out following the guidelines of the African Soil Microbiome Project [29]. Briefly,
soil samples were collected from 22 sites along national roads. The sampling sites were
spread across distances of 50–300 km. Each sampling site covered an area of approximately
100 m × 50 m, with four independent sample locations at the corners of the rectangular area
(Supplementary Figure S1) [30]. At each independent sample location, four topsoil cores
(2 cm in diameter and 5 cm in depth) were collected as pseudo-replicate samples. These
samples were pooled together and homogenized into a composite sample of approximately
25 g (replicate sample). Four independent replicate samples (4 × 25 g) obtained from four
sample locations at each sampling site were stored in labeled sterile plastic bags as an
independent soil sample. This process was repeated for all twenty-two sites. The resulting
samples collected from the forest biome of Côte d’Ivoire (CI) are referred to by the soil
numbers CI01 to CI41 (Table 1). After collection, the soil samples were stored at 4 ◦C in the
laboratory before being shipped to South Africa for further analysis.

Land use classification used the categories recognized in FAO’s World Census of Agri-
culture (www.grid.no/climate/ipcc/land_use/045.htm, accessed on 30 November 2023).
Bioclimate classification was performed using the Thornthwaite climatogram based on the
precipitation effectiveness and temperature efficiency [31,32], as computed in the CHELSA
database [33], as follows: humid (Anyama, Adzopé, San Pedro, Touih, Zoukougbeu, Biank-
ouma, Duekoué, Foungbego, Logoualé) and sub-humid (Akoupé, Anuassué, Zamaka,
Koun-Fao, Tanda, Siago, Kononfla, Ouragahio, Gagnoa, Meagui, Yabayo, Issia, Daloa).
Detailed information about the sampled sites and their geographical positions is reported
in Table 1.

2.2. Soil Physicochemical Analyses

All physicochemical analyses were carried out by Bemlab (Strand, Cape Province,
South Africa) using standard methods and 10 g sieved air-dried soil as in Cowan et al. [29].
The soil pH (aqueous) was measured according to the Thomas method [34], and the
oxidizable carbon was analyzed using the Walkley–Black method [35]. Soil exchangeable
and soluble Na, K, C, Mg, Al, Fe, Mn, and P were analyzed using the Mehlich No. 3 soil
test extractant with the inductively coupled atomic emission spectrometry method [36].
The extractable ion concentration was quantified using inductively coupled plasma optical
emission spectrometry (Spectro Genesis, SPECTRO Analytical Instruments GmbH & Co.
KG, Kleve, Germany). The soil particle size distribution (sand/silt/clay percentage) was
measured using the Bouyoucos method [37]. The total nitrogen (TN) and soil organic
carbon (SOC) (as a percentage) were measured using the catalyzed high-temperature
combustion method [38].

www.grid.no/climate/ipcc/land_use/045.htm
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2.3. Molecular Methods and Bioinformatics

DNA was extracted from 0.25 g of lyzed and homogenized soil using the DNeasy Pow-
erSoil DNA isolation kit (QIAGEN GmbH, Hilden, Germany) at the Centre for Microbial
Ecology and Genomics (University of Pretoria, Pretoria, South Africa). Archaeal and bacterial
sequences were amplified from soil DNA extracts using the 16S ribosomal RNA V4-V5 hyper-
variable region-specific alternative primer 515F-Y (5′-GTGYCAGCMGCCGCGGTAA-3′; [39])
and the universal reverse primer 909–928 (5′-CCCCGYCAATTCMTTTRAGT-3′; [40]). PCR
and sequencing were conducted following the process described in Gnangui et al. [30] and
Cowan et al. [29]. Raw reads were demultiplexed using Sabreur v0.4.1 (https://github.com/
Ebedthan/sabreur, accessed on 1 August 2022). Primer sequences were removed using cu-
tadapt v2.10 [41]. After the removal of barcode and primer sequences, the trimmed sequences
were denoised using the DADA2 algorithm [42] that resolves Illumina sequencing amplicon
errors to generate amplicon sequence variants (ASVs). Obtained ASVs were subjected to a
taxonomic classification using the trained naive Bayes RDP classifier v2.13 [43].

2.4. Statistical Analysis

All statistical analyses were conducted in R v4.3.2 [44]. The vegan package v2.6.4 [45]
and phyloseq package v1.44 [46] were utilized to generate the ASV table. Alpha diversity
and beta diversity analyses involved multiple rarefaction and estimation of average diver-
sity using the metagMisc package v0.5 (https://github.com/vmikk/metagMisc, accessed
on 1 March 2023). Taxa abundance differences were computed using the non-parametric
Kruskal–Wallis test and pairwise Wilcoxon rank-sum test, with p-value correction using
the Benjamini and Hochberg method (False Discovery Rate, FDR) [47]. Core microbiome
analysis was performed by selecting the 1% most abundant ASVs and most ubiquitous of
100% across the entire dataset, following standard recommendations [48–50]. The relative
abundance is expressed as a percentage of the total number of sequences in each soil sample
or locality. Tests for association between genus abundance, using Spearman’s rho, were
conducted using the R function cor.test. Abundance was first centered log ratio transformed
using the propr package [51]. Results were considered significant at p < 0.05.

3. Results
3.1. Characteristics of Sampling Sites and Soil Physicochemical Properties

The soil sampling data indicated that nearly 73% of the 22 soil samples were located
in the semi-deciduous ecosystems, while 60% of them were located in the sub-humid areas
as for the bioclimates. Additionally, a significant proportion (16 out 22) of the sampled
sites were primarily used as cropland, with only 6 sites used as forest land (Table 1).
Consequently, variations in physicochemical properties were evident across the sampled
sites (see Table S1). Principal component analysis of the environmental variables unveiled
distinct environmental conditions corresponding to different land uses and bioclimates.
The forest land soils were split into two groups differentiated mainly by mean annual
precipitation (MAP) influence, while all the cropland soils showed similar environmental
conditions (Figure 2).

Forest soils exhibited higher pH levels, ranging from 5.43 to 7.78 (mean = 6.44,
sd = 0.923), in contrast to cropland soils that ranged from 4.94 to 6.93 (mean = 5.77,
sd = 0.55). A similar trend was observed for soil organic carbon (SOC), which varied
from 1.15 to 2.5% in forest soils compared to cropland soils, where the range was from 0.69
to 2.04%. The variation extended to total nitrogen (TN), soluble and exchangeable sodium
(Na), phosphorus (P), silt percent (silt), clay percent (clay), and sand percent (sand).

Regarding climatic variables, forest soils exhibited two subgroups. The first subgroup
(Koun-Fao, Siago, Zamaka), located in the eastern part of the country, was characterized
by a higher mean annual temperature (MAT) ranging from 26.4 to 26.8 ◦C and a lower
mean annual precipitation (MAP) ranging from 1113 to 1175 mm. The second subgroup
(Biankouma, Foungbego, Logoualé), located in the western part of the country, displayed

https://github.com/Ebedthan/sabreur
https://github.com/Ebedthan/sabreur
https://github.com/vmikk/metagMisc
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an inverse pattern with MAT ranging from 24.1 to 25.5 ◦C and MAP ranging from 1517 to
1675 mm.
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Similarly, soils mapped into the different bioclimates also showed a distinct pattern.
Indeed, the soil from the sub-humid area was characterized by higher levels of pH, MAT,
Na, P, Mg, silt, SOC, K, TN, and clay, while the soils from the humid area were mostly
influenced by MAP and sand percentage (Figure S2).

3.2. Proteobacteria and Thaumarchaeota Dominate Bacteria and Archaea Communities in Forest
Soil Ecosystems of Côte d’Ivoire

After sequencing, a total of 1,815,112 barcoded sequences were obtained. Following
the filtering step, 1,626,802 sequences were retained, resulting in 12,752 amplicon sequence
variants (ASVs). A subsequent taxonomic classification revealed that 97.94% of all ASVs
belonged to bacteria, while only 2.06% were identified as archaea. The analysis of all
ASVs revealed the presence of 43 archaeal and bacterial phyla in total, of which 11 could
be considered major taxa based on criteria of a relative abundance of at least 1% and a
prevalence of 100%. These major phyla could be divided into two groups, namely major
phyla group 1 (relative abundance > 6.47%)—which included Proteobacteria, Acidobacteria,
Actinobacteria, Bacteroidetes, Planctomycetes, and Chloroflexi (Figure 3)—and major phyla
group 2 (relative abundance > 1.0%)—which included Verrumicrobia, candidate division
WPS-1, Firmicutes, Thaumarchaeota, and Gemmatimonadetes (Supplementary Table S1).
Specifically, the Proteobacteria phylum was the most abundant group, at 29.8%, followed
by Acidobacteria at 15.4%, and Actinobacteria at 14.2%, while Thaumarchaeota represented
the only archaeal phylum in this group at 1.93% (Figure 3).

At the genus level, Gp6, Gaiella, and Zavazinella were the most abundant in terms of
the average relative abundance of ASVs for bacteria (respectively 4.75%, 3.75%, and 2.83%)
and were found in all bioclimates and soils. Nitrososphaera was the most abundant archaea,
with an average relative abundance of 1.90% and a prevalence of 100%.

Richness indices and alpha diversity analyses confirmed the highest diversity of
bacteria compared to archaea in the Ivorian forest soil ecosystem with a Shannon index of
6.72 and 2.67 for bacteria and archaea, respectively (Figure 4).
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When examining the alpha diversity differences between archaea and bacteria, no
consistent patterns emerged across land uses. However, variations were observed between
bioclimates. Specifically, the mean bacterial Shannon index was 6.73 in sub-humid areas
and 6.70 in humid areas. In comparison, the mean archaeal Shannon index across bio-
climates was 2.81 in sub-humid areas and 2.48 in humid areas. The Kruskal–Wallis test,
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comparing archaeal and bacterial abundance between bioclimates, revealed that archaeal
communities exhibited differential abundance between bioclimates based on their richness
and Shannon index (FDR-corrected p < 0.05). Further confirmation was provided with
pairwise comparisons using the Wilcoxon test, indicating that the archaeal abundance and
Shannon index were lower (FDR-corrected p > 0.05) in humid bioclimates compared to
sub-humid bioclimates (Figure S3).

3.3. Bradyrhizobium and Nitrososphaera Dominate the Core Bacteriobiome and Archaeome in
Forest Soil Ecosystems of Côte d’Ivoire

By selecting the 1% most abundant ASVs across all samples, the relative abundance of
the core microbiome ranged from 0.12% to 1.17%.

The core microbiome consisted of eighteen ASVs representing thirteen different bac-
terial genera (core bacteriobiome) dominated by the nitrogen-fixing bacterium genus
Bradyrhizobium (3 ASVs), the genus Rhodoplanes (3 ASVs), and the genus Bacillus (2 ASVs).
The core archaeome consists of the ammonia-oxidizing archaea genus Nitrososphaera with
one ASV (Table 2).

Table 2. List of core microbiome found in the soil of forestry areas of Côte d’Ivoire. This list contains
information on the relative abundance (rounded at two decimals after comma) and taxonomic identity
of each taxon. Each ASV is present in 100% of soils.

Taxa Relative Abundance (%) Genus Phylum

ASV_1 1.17 Bradyrhizobium Proteobacteria
ASV_2 0.94 Spartobacteria Verrucomicrobia

ASV_4 1 0.53 Nitrososphaera Thaumarchaeota
ASV_5 0.51 Rhodoplanes Proteobacteria
ASV_9 0.40 Bradyrhizobium Proteobacteria
ASV_10 0.40 Gaiella Actinobacteria
ASV_15 0.34 Tepidimonas Proteobacteria
ASV_17 0.34 Bacillus Firmicutes
ASV_22 0.32 Terrimonas Bacteroidetes
ASV_32 0.25 Burkholderia Proteobacteria
ASV_33 0.25 Gp6 Acidobacteria
ASV_34 0.25 Sphingomonas Proteobacteria
ASV_36 0.23 Rhodoplanes Proteobacteria
ASV_37 0.23 Sphaerobacter Chloroflexi
ASV_41 0.21 Bradyrhizobium Proteobacteria
ASV_44 0.21 Rhodoplanes Proteobacteria
ASV_46 0.21 Mycobacterium Actinobacteria
ASV_53 0.20 Flavobacterium Bacteroidetes

ASV_105 0.12 Bacillus Firmicutes
1 In bold: only this single ASV out of the eighteen ASVs forming the Ivorian forest soil core microbiome belongs
to the core archaeome.

3.4. Archaeal and Bacterial Communities in Soils Forest Ecosystems Are Shaped by Bioclimates

In terms of relative abundance per sampling site of the core microbiome, the analysis
showed the dominance of Bradyrhizobium, Rhodoplanes, and Spartobacteria (bacteria), as
well as Nitrososphaera (archaea) (Figure 5). However, while the three bacterial genera
co-dominate in the humid bioclimate, they are joined by the Nitrososphaera genus in the
sub-humid bioclimate. Indeed, Nitrososphaera is very poorly present in soils collected in
the humid area, except for the soil of Duekoué. Thus, the presence of the archaeal genus
Nitrososphaera could be seen as a signature associated with the sub-humid climatic area in
the forest zone of Côte d’Ivoire.

In addition, when analyzing the transformed abundance correlation using the centered
log ratio, an inverse correlation was observed between Bradyrhizobium and Nitrososphaera.
Spearman’s rank correlation applied to the transformed abundance values indicated a
value of −0.73.
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Figure 5. The relative abundance of the core microbiome across geographical sampling sites in the
forestry area of Côte d’Ivoire.

Moreover, the two bioclimates shared 30.16% ASVs, while the humid area specifically
had 34.83% ASVs and the sub-humid area had specifically 34.99% ASVs. The shared ASVs
primarily belonged to the Proteobacteria phylum.

The Bray–Curtis dissimilarity index between bioclimates was statistically significant
(FDR-corrected p < 0.01) and relatively significant differences in bacterial and archaeal
community composition were found. However, no significant beta diversity was observed
between land use (FDR, p > 0.05) and between bioclimates separated into cropland and
forest land (FDR, p > 0.05) (Figures S3 and 6).
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3.5. Total Nitrogen, Soil Organic Carbon, and Magnesium Are the Main Drivers of Microbial
Community Diversity

The range of total explained variance in major phyla diversity varied from 40.04%
(Firmicutes) to 77.25% (Thaumarchaeota) (Figure 7, Supplementary Table S2). The total
variance consisted of three sets of explanatory factors: soil properties, climate properties,
and land management. Across all considered phyla, the influence impact of soil properties
outweighed that of land management and climate properties. Specifically, soil properties
emerged as the main driver in the selection process, explaining 40.04% to 64.28% of the
total variance, whereas land management accounted for 0% to 21.79% of the total variance.
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Figure 7. Variance partitioning of major microbial phyla across forest soil ecosystem. (A) Total
variance for each phylum is partitioned into the fraction due to environmental properties. (B) Violin
and box plot of percent variation in phylum diversity explained by each variable.

When examining the impact of each environmental parameter, it was observed that
the distribution of each major phylum was influenced by three to six parameters. Based
on their cumulative influence on major phyla, the drivers can be ranked as follows: total
nitrogen (TN) > soil organic carbon (SOC) > magnesium (Mg) > clay > pH > potassium (K).
Thus, total nitrogen appeared as the main driver, explaining the diversity variation in six
out of eight phyla, closely followed by SOC and Mg. However, land management was also
a strong explainer of the diversity variation of Bacteroidetes (21.79%) and Thaumarchaeota
(21.72%).

At the genus level, considering the core microbiome, the total explained variance in
taxa diversity ranged from 25.56% to 94.6% (Figure S4) and the major drivers were ranked
as follows: SOC > MAT > Mg > clay > TN > pH. Thus, the soil organic carbon was the
main driver for Gp6 (34.28%), Flavobacterium (33.78%), and Terrimonas (25.22%), while mean
annual temperature drove Burkholderia (15.96%), Bacillus (11.16%), and Bradyrhizobium
(10.06%) diversity. The remaining genera were influenced by a multifactorial effect of the
different variables included in the analysis.
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4. Discussion

In this study, we used the sequencing of the V4-V5 16S rRNA gene hypervariable
region of soil DNA collected in 22 localities to analyze the diversity and structure of the
archaeal and bacterial communities present in the forest soil ecosystems in Côte d’Ivoire.
Indeed, this region of the 16S rRNA gene is recognized as a discriminant region for the joint
study of bacteria and archaea microbial communities although it can influence the internal
diversity of certain bacterial taxonomic groups [52]. Our analysis revealed a significant
difference in microbial diversity between bacteria and archaea as well as their main drivers
in the soils.

4.1. Environmental Conditions in Forest Soil Ecosystems

The analyzed soils exhibited distinct conditions with respect to bioclimates and land
uses. Notably, several physicochemical parameters such as pH, soil organic carbon, total
nitrogen, sodium, potassium, phosphorus, and magnesium displayed variations regarding
both bioclimate (humid vs. sub-humid) and land use settings. This finding is congruent
with numerous studies on forest soil ecosystems, which consistently demonstrate the
impact of bioclimates [53] and land uses [54] on the creation of distinct environmental
conditions. The influence of bioclimate and land use on soil physicochemical properties is
due to various complex factors, including biogeochemical cycles, microbial and macrofauna
taxa, as well as interactions with plants [55–57].

4.2. Distribution of Bacterial and Archaeal Taxa

Concerning the prevalence of detected phyla in forest soil ecosystems in Côte d’Ivoire,
the most widespread phyla (Proteobacteria and Actinobacteria for bacteria, and Thaumar-
chaeota for archaea) were generally the most abundant, being consistent with previous
findings [11,58]. Examining the bacterial community at the genus level revealed several
dominant taxa, including Rhodoplanes, Spartobacteria, Gaiella, and Bradyrhizobium, all of
which have been consistently identified as significant components of soil microbial commu-
nities in previous studies [9,29], including in Côte d’Ivoire [26]. Similarly, Nitrososphaera
emerged as the predominant genus within the archaeal community, a finding which is in
line with other reports [59,60].

Two hypotheses could explain these observations: (i) the easy detection of these taxa
with the current high-throughput amplicon sequencing procedure, as suggested by pre-
vious studies [52,61], or (ii) a potential correlation between microorganisms with larger
population sizes and greater dispersal capabilities. These phyla, with a relative abundance
higher than 1%, have been identified as dominant in several environments, including in
temperate zone soils [9], marine sediments and oceans [62], and mammalian gut micro-
biota [63]. The observed dominance might also be related to the sampling strategy, which,
by collecting soils at 0 to 15 cm depth, selectively favored cosmopolitan microorganisms
capable of colonizing multiple soil horizons and adapting to diverse environmental condi-
tions. For instance, Actinobacteria and Firmicutes thrive in hostile environments by forming
resistant physiological stages, making them generalists for habitat and substrate [64,65].
In contrast, less abundant taxa appear associated with more restricted ecological niches,
potentially limiting their ability to colonize or adapt to new environments [66].

The predominant bacterial composition across various studies consistently highlights
the prevalence of Acidobacteria, Actinobacteria, Proteobacteria, and Bacteroidetes within
microbial communities, showcasing a stable pattern across different biomes. For instance, a
study by Onyango et al. [67] in Kenya’s forest soil ecosystem revealed the dominance of
Proteobacteria and Acidobacteria. A similar trend was observed in the bacteriobiome of
Côte d’Ivoire, where Proteobacteria and Actinobacteria stood out as the most abundant
phyla [26]. In the Songshan Forest Reserve area of China, Liu et al. [68] reported that
Proteobacteria, Acidobacteria, Actinobacteria, and Verrucomicrobia collectively constituted
over 70% of the soil bacterial sequences. This consistent observation suggests that Pro-
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teobacteria, Acidobacteria, and Verrucomicrobia may play pivotal roles in responding to
variations in plant population richness.

Turning to archaeal communities, our study aligns with others by emphasizing the
dominance of the Thaumarchaeota phylum. This finding echoes similar trends documented
in various studies. Truu et al. [23], for instance, reported the prevalence of Thaumarchaeota
over Euryarchaeota and Nanoarchaeota in the forest soils of Järvselja in Estonia. How-
ever, it is noteworthy that contrasting results exist; Onyango et al. [67] found that the
forest soil archaeal community was primarily dominated by the Crenarchaeota phylum.
These variations underscore the complexity of archaeal community structures in different
environments.

Furthermore, it is crucial to delve into the notion of the core microbiome, a term
denoting microorganisms consistently present in a specific ecological niche, playing a
pivotal role in host health and wellbeing [69]. In the context of forest soil ecosystems, the
core microbiome holds particular importance. It represents a cohort of microorganisms
widely distributed across diverse locations, contributing significantly to the overall stability,
and functioning of soil microbiomes, including their role in reforestation endeavors [27]
and other essential functions [70]. This study sheds light on the prevalent dominance of
Bradyrhizobium in the core bacteriobiome, aligning with numerous studies highlighting
its cosmopolitan nature [71,72]. Concurrently, the core archaeome was characterized by
the dominance of Nitrosophaera, echoing similar trends observed elsewhere [73,74]. Both
dominant genera play roles in the nitrogen cycle, albeit at different levels. Bradyrhizobium
includes species forming symbiosis with plants, facilitating nitrogen fixation, although
the identified genera in this study may contain non-symbiotic ecotypes [75], thus con-
tributing to the fixation level. On the other hand, Nitrososphaera is involved in ammonia
oxidation [76].

4.3. Which Drivers for Which Phyla and/or Genus?

Microbial community variations in terms of diversity and abundance in the stud-
ied soils were primarily influenced by physicochemical factors, which is consistent with
previous findings that highlighted the substantial impact of soil chemistry on microbial
abundance [9]. Among the physicochemical parameters, soil organic carbon emerged as
the main driver of major phyla diversity, a finding supported by multiple studies [77,78].

While soil pH is commonly cited as a significant contributor to phyla diversity, this
study emphasized the more influential role of soil organic carbon on phyla diversity and
total nitrogen on core taxa diversity, as reported elsewhere [79]. However, concerning core
taxa, pH emerged as the main driver of Bradyrhizobium diversity, which is consistent with
earlier reports in the soil of Côte d’Ivoire [26].

The ecological niches occupied by both bacteria and archaea are shaped also by
agricultural land use in our sampled areas. This outcome is likely associated with the
observed land use conversion from forest soils to agricultural soil in Côte d’Ivoire [1]
and is consistent with similar studies on the influence of land use changes on microbial
structure in Amazonian tropical forest soils [80]. Land use practices, characterized by
various amendments and fertilization techniques, reshape common microbial communities,
leading to alterations in soil physicochemical properties such as soil organic carbon, total
nitrogen, and pH [78,81].

A noteworthy discovery is the reciprocal relationship between the prevalence of Ni-
trososphaera and Bradyrhizobium, mirroring findings in agricultural versus non-agricultural
soils, as documented by Zhalnina et al. [82]. This implies a conversion of the sub-humid
forest areas in Côte d’Ivoire into agricultural lands. The observed distinction is likely rooted
in biochemical processes, specifically the inhibition of nitrogen fixation and nitrogenase’s
coding gene expression by elevated nitrogen levels [83,84]. In regions where a nitrogen
fertilizer is applied, the abundance of nitrogen-fixing bacteria like Bradyrhizobium may be
suppressed due to sufficient nitrogen levels. These outcomes align with recent research that
highlighted a decline in forested areas and a corresponding shift towards agricultural land
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use [1,85,86]. Furthermore, the substantial difference in Nitrososphaera abundance between
sub-humid and humid areas implies that Nitrososphaera is a potential microbial signature of
the former region.

5. Conclusions

In the threatened forest environment of Côte d’Ivoire, it becomes urgent to explore
the patterns of microbial biodiversity owing to their role in the overall ecosystem func-
tioning and putative contribution to reforestation. This study deciphered the structure
of the archaeal and bacterial diversity in forestland and cropland (degraded forest) soils
and revealed the dominancy of bacterial community, with Proteobacteria, Acidobacte-
ria, and Actinobacteria as major taxa. While the results obtained at the phylum level
were consistently congruent with previous studies, some patterns that can be correlated
to bioclimatic and land uses were found at the genus level. Indeed, while the bacterial
core microbiome members that consist of Bradyrhizobium, Rhodoplanes, and Bacillus were
detected in all soils, the ammonia-oxidizing archaea genus Nitrososphaera was generally
absent in soils collected in humid climatic area and showed an inverse correlation with an
abundance of the N-fixing bacteria genera (e.g., Bradyrhizobium) in soils of the sub-humid
areas. This latest result suggests that the presence of the archaeal genus Nitrososphaera is a
signature mark associated with the sub-humid climatic area in Côte d’Ivoire and may help
to further study the core bacteriobiome and archaeome in Côte d’Ivoire forests and their
relationship with nitrogen cycling in forest landscapes. The overall data could be valuable
in the development of effective strategies for forest management in Côte d’Ivoire.
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