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Abstract: Accurate prediction of individual tree mortality is essential for informed decision making
in forestry. In this study, we proposed machine learning models to forecast individual tree mortality
within the temperate Larix gmelinii var. principis-rupprechtii forests in Northern China. Eight distinct
machine learning techniques including random forest, logistic regression, artificial neural network,
generalized additive model, support vector machine, gradient boosting machine, k-nearest neigh-
bors, and naive Bayes models were employed, to construct an ensemble learning model based on
comprehensive dataset from this specific ecosystem. The random forest model emerged as the most
accurate, demonstrating 92.9% accuracy and 92.8% sensitivity, making it the best model among those
tested. We identified key variables impacting tree mortality, and the results showed that a basal area
larger than the target trees (BAL), a diameter at 130 cm (DBH), a basal area (BA), an elevation, a slope,
NH4-N, soil moisture, crown density, and the soil’s available phosphorus are important variables in
the Larix Principis-rupprechtii individual mortality model. The variable importance calculation results
showed that BAL is the most important variable with an importance value of 1.0 in a random forest
individual tree mortality model. By analyzing the complex relationships of individual tree factors,
stand factors, environmental, and soil factors, our model aids in decision making for temperate Larix
gmelinii var. principis-rupprechtii forest conservation.

Keywords: Prince Rupprecht larch; soil properties; machine learning; tree mortality prediction

1. Introduction

Forests, which cover approximately 31% of the world’s terrestrial ecosystems [1]
and constitute about 80% of the global vegetation mass, play a crucial role as essential
ecosystems on Earth. Forests serve multiple vital functions, such as in timber production,
hydrological regulation, soil conservation, climate change mitigation, and air quality
regulation [2,3].

Accurate assessment and monitoring of forest dynamics are of paramount importance.
Currently, dynamic monitoring of forests mainly includes monitoring of forest stand
dynamics, forest climate, and forest fire prevention, among which forest stand dynamics
is a key link in the monitoring process. Determination of forest stock volume, biomass,
and carbon storage are largely based on the forest dynamics, such as tree growth, tree
mortality, and human influences, such as thinning [4]. The integration of tree mortality into
the study of forest stand quantity dynamics is vital, as it is a fundamental process within
forest dynamics [5]. Additionally, tree mortality, productivity, and biodiversity play crucial
roles in shaping forest ecosystem dynamics and, consequently, influencing forest carbon
sequestration [6,7]
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Tree mortality is a crucial ecological process in forest development, as dead and
decaying trees play vital roles in maintaining a healthy forest ecosystem [8]. Tree mortality
encompasses the entire process from the initial decline in vitality to the eventual death of
a tree, influenced by both its intrinsic ecological characteristics and external conditions.
Forest mortality drives changes in species composition and stand density [9,10], and plays
a significant role in the coexistence of different communities [11]. Elevated tree mortality
levels can significantly impact ecosystem structure and function, affecting the services
that forests provide to people [12]. Even minor changes in the mortality rates can have
profound effects on tree lifespan, biodiversity, and the cycling of carbon and nutrients. In
fact, tree mortality rates are key drivers of forest community changes, leading to notable
alterations in composition and structure [13].

Moreover, an increase in mortality rates reduces the residence time of carbon in
both forests and soil [14,15] and may affect the carbon storage potential of forests [16].
Consequently, conducting mortality research can enhance the understanding of mortality
causes [13], contribute to a deeper comprehension of the succession and diversity dynamics
in future forest communities [17], facilitate precise evaluation and estimation of forest
carbon storage [18], support sustainable forest resource management, and enable accurate
monitoring of forest carbon sinks [19].

Predicting tree mortality requires classification from 0 to 1. Therefore, most of the
research on an individual tree mortality model was developed using logistic regression [20].
Some researchers used generalized mixed-effect model [21,22]. Additionally, other mod-
eling methods, such as classification regression trees [23], non-parametric Bayesian esti-
mation [24], compound Poisson models [25], semi-parametric regression [26], multilevel
logistic regression [27], and Cox proportional hazard models [28] have been attempted in
individual tree-mortality-model research.

Vanclay (1994) [29] classified tree mortality into two categories: natural and non-
natural mortality. Natural mortality occurs during the developmental stages of trees,
arising from variations in maturity among tree species and differences in individual genetic
factors. This leads to varying competitive abilities for nutrients, water, and sunlight
among different tree species and between larger and smaller trees. Consequently, trees
in a weaker competitive position gradually die off. Non-natural mortality refers to tree
mortality caused by improper afforestation techniques or external disturbances such as fires,
droughts, flash floods, windstorms, and snow disasters [30]. In our study, we only focus on
natural mortality. In recent tree-mortality-modelling research, the relationship between soil
characteristics, topography, and tree mortality were often neglected [31]. Soil characteristics
(e.g., moisture content, pH, texture, nutrients, and their availability) also affect plant
growth and death. Studies have shown that tree mortality rates in China’s forest–grassland
ecotone are significantly influenced by soil properties, topography, and tree size [32,33].
Furthermore, some research proved a strong correlation exists between soil moisture content
and tree mortality [23]. Existing tree mortality modeling has mainly focused on predictor
variables related to tree size, such as diameter at breast height or tree height [8,34]; growth-
related variables, such as DBH increment, annual ring width, or basal area increment [24];
crown-related variables, such as leaf area index and crown shedding [35,36]; ratios of
crown-related variables to growth-related variables [37]; competition variables, divided
into distance-related competition and distance-independent competition [38,39]; climate
variables [40]; and site quality [35].

The Larix gmelinii var. principis-rupprechtii tree-mortality-modeling studies have not yet
explored the impact of soil nutrients on tree mortality. Soil, as a key habitat factor for tree
regeneration and survival, possesses numerous physical and chemical properties. Various
soil factors are interconnected, and they exhibit significant scale effects, even showing
noticeable spatial variations on a small scale [41]. We consider the main soil nutrient factors
affecting tree mortality, including total soil moisture, pH value, soil carbon (Organic C),
nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), and available potassium (available
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K), available phosphorus (available P). Carbon, nitrogen, potassium, and phosphorus are
closely related to plant growth, thereby affecting plant regeneration and survival [42,43].

The prediction of tree mortality is a complex task due to the multitude of factors that
can influence a tree’s health and survival. Traditional statistical models often struggle with
this complexity, as they are limited in their ability to handle non-linear relationships and
interactions between variables. Machine learning models, on the other hand, excel in these
situations. They can learn from the data, identifying complex patterns and relationships
that can improve prediction accuracy.

In recent years, machine learning has emerged as a powerful tool in various fields,
including forestry. Machine learning algorithms can learn from data and improve their
performance with experience, which make them particularly useful for tasks where explicit
programming is difficult [44]. In the context of forestry, machine learning can be used to
predict tree mortality, growth, and other key forest dynamics. These predictions can be
based on a variety of factors, including climate, soil nutrients [45], and other individual or
stand-level variables. Machine learning models, such as logistic regression [46], support
vector machines [47], random forests [48] gradient boosting [49], and naive Bayes [50], have
been successfully applied in this field. These models can handle complex interactions and
non-linear relationships between variables, making them more flexible and accurate than
traditional statistical models.

To our knowledge, no tree-mortality-modeling studies has been carried out on the
comparisons of different machine learning models. In this study, we applied several
machine learning models, including logistic regression, support vector machines, random
forests, gradient boosting, and naive Bayes, to predict tree mortality based on a variety
of environmental factors. Our main aim is to develop a model to predict tree mortality,
essentially a binary classification problem. This model categorizes the trees into two
distinct classes: alive (0) and dead (1). Given the either live or dead nature of this problem,
machine learning techniques are particularly well-suited for this task. Therefore, our
main aim of this study is to (i) establish a prediction model of individual tree mortality
prediction with machine learning methods; (ii) compare eight machine learning models
and figure out the most suitable prediction model for individual tree mortality of the larch
forests; (iii) analyze the effects of different factors and determine which ones have strong
influence on individual tree mortality and to provide a scientific foundation for larch forest
sustainable development.

2. Materials and Methods
2.1. Study Area

Data from 49 permanent sample plots (PSPs) were collected, which are located in
natural stands of Prince Rupprecht larch in the state-owned Boqiang forest (49 PSPs) in
northern Shanxi, northern China. Western and northern Shanxi are the principal regions
where this species is found in China. Each PSP is square (20 m × 20 m), encompassing an
area of 0.04 hectares, and was established in 2015, nested within a total of eight different
blocks. The 49 PSPs in northern Shanxi were each allocated across four blocks. The
sampling design provided representative information concerning various stand structures,
tree heights, ages, site productivity, and density. As in this study, soil nutrients were
regarded as an important variable. Our study was based on the data of 20 sample plots
and a total of 1301 trees (Figure 1) which were allocated across two blocks with detailed
soil nutrients data. Within each sample plot, five 1 m2 subplots were evenly set along the
diagonal, and one soil sample was taken from each. The soil samples were collected for
analyses of some important physical and chemical indicators.
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Figure 1. Study area with sample plots’ location (dots represent sample plot positions).

2.2. Data Collection

All 1222 standing, living trees with a diameter at breast height (DBH) equal to or
exceeding 5 cm underwent comprehensive measurements, encompassing total tree height
(H), height to live crown base (HCB), and the determination of four crown radii. The DBHs
of the 79 dead trees were also measured. The distribution of DBH based on mortality
status is available in the supplementary materials, depicted in Figure S1. The positioning
of these four crown radii for each tree was established using two azimuths. Crown width
was subsequently computed as the half sum of the measured values for the four crown
radii. In accordance with the methodology outlined in reference [51], four trees with the
largest DBH were identified as dominant trees in each plot. To ascertain the age of the
selected trees, growth rings were meticulously counted on increment cores extracted from
the stems, specifically at a point 0.1 m above the ground, following the procedure detailed
in reference [52]. Dead trees were assigned a code value of 1, while live trees were assigned
a code value of 0. For each PSP, the dominant diameter, dominant tree height (DH), and
the age of the dominant tree (DA) were obtained from the averages of these attributes [53].
Within each PSP, five 1 m2 subplots were evenly set along the diagonal, and one soil sample
was taken from each. The soil samples were analyzed for the following characteristics: soil
moisture, soil thickness, pH value, nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N),
available potassium (available K), available phosphorus (available P), and total carbon
content (TC). Other data were also measured for each PSP including canopy density (CD),
elevation, slope degree, and slope aspect. Three subplots (1 m × 1 m) were set up within
each PSP, and grass species, numbers, mean height, and coverage rate were measured and
recorded to signify the bio-diversity of this plot. Summary statistics of the measurements
of individual tree characteristics and relevant stand characteristics are presented in Table 1.

Table 1. Summary statistics of measurements for individual, stand-level variables and soil characters
variables.

Variable Min Max Mean Std

DBH (cm) 0.90 44.50 13.1910 8.7541
BA (cm2) 0.64 1554.50 196.6600 226.2700

BAL (cm2) 0.00 19,543.61 9698.3700 4396.1000
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Table 1. Cont.

Variable Min Max Mean Std

Thickness (cm) 1.80 12.00 5.8732 2.8754
CD 0.54 0.92 0.7678 0.1200

Elevation (m) 2079 2438 2239 97.4420
DA 26.00 71.00 53.0115 14.3212

Slope (degree) 8.00 38.50 22.9313 6.8836
Moisture (%) 12.38 37.46 26.0389 6.5818

Density (g/m3) 0.72 1.71 1.0107 0.2129
PH 6.40 6.77 6.6103 0.1012

TC (g/kg) 1.29 4.25 2.5476 0.8757
NO3-N (mg/kg) 6.81 18.98 10.5527 3.7009
NH4-N (mg/kg) 9.92 64.67 21.6761 10.9171

Available K (mg/kg) 48.35 90.62 65.9163 9.4617
Available P (mg/kg) 3.31 10.88 5.5186 1.9669

Age 16 70 39.7297 16.4208
Note: DBH: diameter at breast height, BA: basal area; BAL: basal area larger than the target trees; Thickness:
soil thickness; CD: crown density; Elevation: the elevation at which the trees are located; DA: average age of
dominant trees; Slope: slope degree; Moisture: water content of soil; Density: The ratio of the mass of a certain
volume of soil after drying to the volume before drying; PH: the PH value of soil; TC: total carbon content of soil;
NO3-N: nitrate nitrogen; NH4-N: ammonium nitrogen; Available K: available potassium content of soil; Available
P: available phosphorus content of soil; Age: average age of the average trees in a certain plot.

2.3. Mortality Data Pre-Processing

In our research, the forest stand dataset presents an imbalanced distribution, par-
ticularly with the scarcity of data for the deceased tree class (class 1) due to its natural
rarity. To address this issue, we proactively employed oversampling techniques, such
as the synthetic minority oversampling (SMOTE) [54]. Due to the fact that the random
oversampling method directly reuses a few classes, there are many duplicate samples in
the training set, which can easily lead to model overfitting problems. The basic idea of the
SMOTE algorithm is to handle each minority class sample, randomly select a sample from
its nearest neighbors and then randomly select a point on the connecting line as the newly
synthesized minority class sample. SMOTE enhances the ability of our machine learning
models to capture the distinct features of the less-frequent class, ultimately improving
their predictive accuracy. Through strategic oversampling, we intend to counteract the
bias towards the majority class, resulting in more reliable and generalizable outcomes
for our study conducted in a real-world natural setting. We utilized the “smotefamily”
package in R 4.3.1 [55] for conducting the data pre-process. The dataset was partitioned
into two distinct subsets: 70% was allocated for training the models, and the remaining
30% was reserved for testing.

2.4. Model Selection

We employed eight distinct machine learning models to analyze and predict tree
mortality. These models encompass random forest (RF), logistic regression (LR), artificial
neural network (ANN), generalized additive model (GAM), support vector machine (SVM),
gradient boosting machine (GBM), k-nearest neighbors (KNN), and naive Bayes (NB). Each
model was carefully selected based on its ability to handle the complexity of the data and
its relevance to the problem at hand. The eight machine learning algorithms selected for
predicting single-tree mortality offer a well-rounded portfolio of benefits. They span a wide
spectrum of approaches, from linear models like logistic regression to non-linear ensemble
methods like random forest [56] and gradient boosting machine, allowing for the finding of
diverse relationships within the data. Most are computationally efficient at handling large
datasets, although some, like k-nearest neighbors [50,57] may require more computational
resources. The list strikes a balance between algorithms that are easily interpretable, such
as logistic regression [46,58] and naive Bayes [50], and those that prioritize predictive
power at the expense of clarity, such as artificial neural networks [59–61]. This set of
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algorithms is robust to outliers and irrelevant features, particularly the ensemble methods
like random forest and gradient boosting machine, making them well-suited for complex,
real-world datasets. They are also relatively easy to use and tune, thanks to their extensive
implementation in various software packages. Employing a range of algorithms facilitates
robust bench marking and validation, helping to discern whether good performance is
due to the algorithm’s fit to the problem or whether it is merely an artifact of overfitting.
Additionally, these algorithms are commonly employed in both academic and industrial
settings for binary classification, providing a level of familiarity and trust. Lastly, several
algorithms in the list offer built-in feature importance evaluation, crucial for understanding
the impact of environmental factors on tree mortality.

2.4.1. Random Forest

Random forest constitutes an ensemble learning approach that operates by generating
a multitude of decision trees during the training phase and determining the class output as
the mode of the classes predicted using individual trees. This methodology addresses the
tendency of decision trees to overfit to their training dataset [62].

The basic principle of random forest is to generate a set of independent decision
trees that are trained on different subsets of the original dataset. Each individual tree
within the random forest provides a classification, and it is characterized as “voting” for a
specific class. The collective decision of the random forest is determined by selecting the
classification with the highest number of votes across all trees in the ensemble. Parameters
governing the random forest model, such as the quantity of trees (n_estimators) and the
maximum depth of the trees (max_depth), are commonly optimized through the utilization
of cross-validation techniques. Another crucial parameter open to adjustment is the number
of features considered during the search for the optimal split (max_features).

2.4.2. Logistic Regression

Logistic regression serves as a statistical model employed to predict the likelihood of
an event’s occurrence through fitting data to a logistic function. It represents a generalized
linear model specifically applied in the context of binomial regression [63]. Given a set of
predictor variables, the model allows us to estimate the probability of the binary response
variable, which in our case is tree mortality.

The determination of coefficients involves the application of maximum likelihood
estimation (MLE). MLE serves as a statistical technique for estimating the parameters within
a statistical model based on the observed data. The derived estimates represent the values
that optimize the likelihood function, taking into account the provided observational data.

2.4.3. Support Vector Machines

Support vector machines (SVM) constitute a collection of supervised learning tech-
niques employed for both classification and regression purposes. SVM exhibits notable
efficacy when confronted with intricate datasets of a modest or intermediate scale [64].
The fundamental tenet of SVM involves the creation of a hyperplane serving as the de-
cision boundary, with the specific aim of maximizing the margin that separates positive
and negative instances. In a two-dimensional context, this hyperplane manifests as a line
partitioning a plane into two regions, with each class situated on opposing sides.

The parameters of the SVM are estimated using quadratic programming. The objective
of the quadratic programming problem is to minimize the norm of the weight vector
subject to some constraints, which ensures that the samples are correctly classified. The
kernel function serves the purpose of mapping input data into a higher-dimensional
space, facilitating the identification of a hyperplane that effectively separates the data.
Popular selections for the kernel function encompass linear, polynomial, and radial basis
function transformations.
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2.4.4. Generalized Additive Models

Generalized additive models (GAM) represent a category of statistical models that
permit the modeling of non-linear relationships between predictors and the response vari-
able. Extending beyond GLM, GAM substitutes the linear predictor with a summation
of smooth functions of predictors [65]. The GAM model allows for flexible modeling of
complex ecological relationships and can handle non-linear and non-monotonic relation-
ships between the predictors and responses, making it a suitable choice for our study on
tree mortality.

2.4.5. K-Nearest Neighbors

K-nearest neighbors (KNN) constitutes an instance-based learning algorithm applica-
ble to both classification and regression challenges. The essence of KNN lies in identifying
a predetermined number of training samples in close proximity to a new data point, and
subsequently predicting the label based on the nearest neighbors [66].

2.4.6. Naive Bayes

Naive Bayes is a classification method grounded in Bayes’ Theorem, operating under
the assumption of predictor independence. Put succinctly, a naive Bayes classifier posits
that the occurrence of a specific feature within a class is unrelated to the occurrence of any
other feature. This assumption is termed class-conditional independence [67].

2.4.7. Gradient Boosting Machine

A gradient boosting machine (GBM) method is a potent ensemble technique that amal-
gamates the predictive capabilities of multiple weak learners—typically decision trees—to
create a stronger predictive model. By repeatedly refining predictions and addressing
errors from previous models, GBM enhances accuracy progressively [68]. This approach is
adept at capturing intricate data relationships and handling diverse features.

The GBM’s decision function aggregates the predictions of individual decision trees.
In classification, it sums weighted class probabilities to generate the final prediction. For re-
gression, it combines individual tree predictions to yield the ultimate regression prediction.

2.4.8. Artificial Neural Networks

Artificial neural networks (ANNs) are a class of computational models inspired by
the intricate neural networks found in the human brain. These networks consist of inter-
connected processing units, or “neurons”, that work collaboratively to process and learn
from data. ANNs are renowned for their remarkable ability to solve complex problems,
especially those that involve pattern recognition, data classification, regression, and even
tasks involving unstructured data, like images and texts [69].

In our study, we employed a variety of machine learning algorithms to predict tree
mortality, including RF using the “randomForest” package, LR through the “glm” function,
SVM via the “e1071” package’s “svm” function, GAM through the “mgcv” package’s “gam”
function, K-NN using “class”package through “knn” function, NB using the “naiveBayes”
function, GBM using “gbm”package via “gbm” function and ANN via R’s “nnet” package.
These models utilized both individual-level and stand-level factors as predictor variables
and single-tree mortality as the response variable. To ensure a robust evaluation of the
model performance, we implemented 10-fold cross-validation using the “trainControl()”
function in R, specifying the “cv” method. This cross-validation approach mitigates the
risk of model overfitting and provides a more accurate estimate of the model’s generaliza-
tion capabilities.

2.5. Model Validation

In the evaluation phase of the study, predictions were made using the optimized
models on the reserved 30% test dataset. This subset of data, independent from the training
process, allowed for an unbiased assessment of the models’ predictive precision. The
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hyper parameters were meticulously tuned to ensure that the models were well-fitted to
the underlying patterns within the training data. The evaluation was further conducted
using the confusion matrix’s statistical metrics, providing critical insights into the models’
true-positive, false-positive, true-negative, and false-negative rates. This comprehensive ap-
proach, encompassing both evaluation of the test dataset and analysis through the confusion
matrix, offered a rigorous and robust measure of the models’ generalization capabilities,
reflecting their potential effectiveness in predicting tree mortality in unseen data.

2.6. Feature Importance

Understanding the importance of different features in the model can provide valuable
insights into the relationships between predictors and the response variable. We used
feature importance to analyze its impact on the predictive outcomes. Feature importance
serves to elucidate the influence of each feature on the model’s predictions. Generally,
features with high importance denote their pivotal role in predictions, while features with
lower importance may have a relatively minor impact on the predictive outcomes. They
were calculated for each model using the varImp() function in R.

2.7. Model Evaluation

In this study, we used several metrics (confusion Matrix) to evaluate the performance
of our models. Below are brief introductions to each statistical metric you employ, along
with their respective calculation formulas:

(1) Accuracy: represents the proportion of correctly predicted samples to the total number
of samples. It gauges the overall correctness of the model’s classifications. It can be
calculated as follows:

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)

where TP represents true positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives.

(2) Sensitivity: Referred to as the recall or true-positive rate, quantifies the proportion of
accurately predicted positive samples relative to the total actual positive samples. It
provides insight into the model’s capacity to correctly identify instances belonging to
the positive class. It can be calculated as follows:

Sensitivity = TP/(FN + TP) (2)

(3) Specificity: Specificity denotes the proportion of correctly predicted negative samples
to the total actual negative samples. It underscores the model’s capacity to differentiate
negative class samples. It can be calculated as follows:

Specificity = TN/(FP + TN) (3)

(4) Cohen’s Kappa: Cohen’s Kappa is a statistic that quantifies the agreement between
predicted and actual results, while considering the difference between classification
outcomes and random chance.

It can be calculated as follows:

Kappa = (p0 − pe)/
(
1 − pe

)
(4)

Here, p0 represents the observed agreement proportion, and pe signifies the expected
agreement proportion.

(5) Precision: Precision denotes the ratio of correctly predicted positive samples to the
total samples predicted as positive. It assesses the accuracy of the model’s positive
class predictions. It can be calculated as follows:
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Precision = TP/(FP + TP) (5)

(6) F1 Score: The F1 score is the harmonic mean of precision and recall, offering a balanced
assessment of the model’s accuracy and coverage. It can be calculated as

F1 =
2 × Precision × Sensitivity

Precision + Sensitivity
(6)

(7) Area under the ROC curve (AUC-ROC): The ROC curve is a graphical representa-
tion of the true-positive rate plotted against the false-positive rate. It illustrates the
balance between sensitivity and specificity. AUC-ROC serves as a metric indicating
the effectiveness of a parameter in discriminating between two diagnostic groups
(diseased/normal). A higher AUC value corresponds to a superior ability of the
model to distinguish between trees that perished and those that endured.

These metrics were calculated for each model using the ‘pROC’ and ‘caret’ pack-
ages in R. The models were then compared based on these metrics to determine the best
performing model.

3. Results
3.1. Model Fitting Accuracy

Using the SMOTE method, 1185 dead trees’ data were produced. Based on the
dataset of 1222 living trees and 1185 dead trees, the modeling work was carried out.
The distribution of DBH based on mortality status after oversampling is available in the
supplementary materials, depicted in Figure S2. In this study, we evaluated eight distinct
machine learning models to understand their fitting accuracy to the training dataset. The
detailed evaluation of each model is as follows and is also shown in Table 2.

Table 2. Fitting statistics of the eight models on fitting dataset.

Model Accuracy Sensitivity Specificity Kappa Precision F1 Score

RF 0.9793 0.9623 0.9975 0.9585 0.9976 0.9796
LR 0.8488 0.8039 0.8969 0.6984 0.8930 0.8461

ANN 0.8660 0.8179 0.9176 0.7326 0.9142 0.8634
GAM 0.8946 0.8510 0.9355 0.7884 0.9252 0.8866
SVM 0.9028 0.8681 0.9399 0.8059 0.9392 0.9023
GBM 0.9455 0.9339 0.9576 0.8909 0.9583 0.9459
K-NN 0.9052 0.8601 0.9526 0.8107 0.9502 0.9029

NB 0.8399 0.7979 0.8852 0.6805 0.8826 0.8381

The RF model exhibits exceptional performance, marked by near-perfect precision
(99.76%) and very high levels of accuracy (97.93%), sensitivity (96.23%), and an F1 score
(97.96%), underscoring its superior predictive capability and reliability in accurately classi-
fying tree mortality. Its high Kappa value (0.9585) further indicates a significant agreement
beyond chance, making it a robust choice for complex ecological predictions.

3.2. Model Prediction Accuracy Evaluation on Test Dataset

The performance of the eight machine learning models was further validated on the
test dataset. The evaluation metrics for each model are detailed below and are also shown
in Table 3:
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Table 3. Prediction statistics of the eight models for test dataset.

Model Accuracy Sensitivity Specificity Kappa Precision F1 Score

RF 0.9291 0.9277 0.9303 0.8580 0.9251 0.9259
LR 0.8472 0.8143 0.8784 0.6937 0.8636 0.8386

ANN 0.8599 0.7908 0.9247 0.7184 0.9079 0.8459
GAM 0.8946 0.8510 0.9355 0.7884 0.9252 0.8867
SVM 0.8972 0.8657 0.9270 0.7940 0.9182 0.8916
GBM 0.9042 0.8861 0.9222 0.8083 0.9193 0.9033
K-NN 0.8653 0.8207 0.9091 0.7303 0.8988 0.8588

NB 0.8391 0.8150 0.8613 0.6773 0.8443 0.8294

The prediction statistics of the eight machine learning models on the test dataset are
analyzed, focusing on the relative performance and effectiveness of each model across
various metrics such as accuracy, sensitivity, specificity, Kappa, precision, and F1 score.
Based on the results of the model performance metrics, it can be observed that the random
forest (RF) model excels, demonstrating the highest accuracy (0.9291) and a Kappa statistic
of 0.8580. It achieves commendable scores in both sensitivity (0.9277) and specificity
(0.9303). The naive Bayes (NB) model exhibits worst performance compared to random
forest, with accuracy and Kappa statistics reaching the same levels (0.8391 and 0.6773,
respectively). Other models, such as logistic regression (LR), artificial neural network
(ANN), generalized additive model (GAM), support vector machine (SVM), gradient
boosting machine (GBM), and k-nearest neighbors (K-NN), also perform well, albeit with
slight variations in certain metrics.

3.3. AUC-ROC Curve

The ROC curves were constructed, and the area under the curve (AUC) was computed
to quantify the discriminative ability of the models (Figure 2). The RF model exhibited
an AUC of 0.966, indicating a very high level of discriminative capacity. The LR model
followed with an AUC of 0.898, and the ANN model presented an AUC of 0.894, showing
substantial predictive power. The GAM demonstrated robust discrimination with an AUC
of 0.961, whereas the SVM model achieved an AUC of 0.968, slightly surpassing the GAM.
The GBM model also showed excellent performance with an AUC of 0.967, closely matching
the SVM model. The K-NN model yielded an AUC of 0.929, indicating good classification
ability, while the NB model had an AUC of 0.893, which, despite being the lowest in this
group, still represents a good discriminative ability.
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3.4. Variables Importance

In this study, we employed eight distinct machine learning models to analyze and
predict the target variable. These models encompass the ANN, GAM, LR, RF, GBM, KNN,
NB and SVM models. The results are shown in Figure 3.
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The random forest model, prioritized BAL, DBH, BA, elevation, slope, NH4-N, mois-
ture, CD, and available P. The consistent emphasis on BAL and DBH across most models,
coupled with the varied importance of factors like elevation, slope, and soil nutrients
such as NH4-N and the available P, demonstrates the intricate interplay of physical and
environmental variables in tree ecology. Through the analysis of eight different machine
learning models, the BAL, DBH, and BA variables were found to be of high importance in
most models. Additionally, other variables such as crown density, elevation, slope, and the
available P and NH4-N also exhibited high levels of importance in certain models.
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4. Discussion

Based on the performance metrics derived from both the training and test datasets,
we observe nuanced insights into the predictive capabilities of the eight machine learning
models employed in our study on tree mortality. The RF model showcased the best perfor-
mance, with the highest precision and the highest accuracy, underscoring its robustness
across various metrics. This model also demonstrated a high Kappa score, indicating a
strong agreement beyond chance in its predictions, making it the most reliable model for
predicting outcomes accurately.

In contrast, the LR and NB models showed foundational performance with reasonable
metrics, indicating that they may struggle with complex data relationships compared to
more sophisticated models. However, GBM exhibited superior performance, particularly
in accuracy, and it had the highest F1 score, highlighting its capability in handling variable
interactions and non-linear dynamics effectively. The SVM model also performed well,
demonstrating high levels of accuracy and precision, suggesting it is effective in minimizing
false positives. The K-NN model, while not achieving the highest scores, still provided a
solid performance across all metrics, particularly in terms of its AUC-ROC curve, which
suggests good classification ability.

In conclusion, the analysis underscores the RF and GBM models as the most promising
in terms of accuracy, reliability, and overall performance. These models strike an excellent
balance between precision and sensitivity, adeptly predicting outcomes most of the time.
However, model selection should still consider specific project requirements, including
computational costs and the implications of various types of prediction errors. Conversely,
models like NB and LR, while offering solid foundational capabilities, display limitations
in their predictive performance, likely due to their simpler nature and assumptions, which
may not capture the intricate relationships within the data effectively.

The pivotal role of BAL as the most significant variable in predicting individual tree
mortality underscores the intricate dynamics of forest stand structure and competition
within ecosystems. This finding is consistent with ecological theories and empirical evi-
dence suggesting that the spatial distribution and size hierarchy within a forest significantly
affect individual tree growth, survival, and overall forest productivity [70].

The prominence of BAL within our analysis underscores the principle of competitive
exclusion, illustrating that the trees within more densely populated stands surrounded by
trees with greater basal areas, are at an increased risk of experiencing stunted growth and a
higher likelihood of mortality. This struggle for vital resources like sunlight, water, and
minerals intensifies when the basal area of neighboring trees surpasses that of the focal tree,
resulting in increased stress and a potential rise in mortality. Essentially, trees that boast a
larger basal area are better positioned to monopolize these resources, overshadowing their
smaller counterparts and outperforming them for access to water and soil nutrients.

DBH is indicative of tree size, age, growth rate, and resilience [8] and is largely
included as variable in tree mortality research [71–73] and emerged as a pivotal variable
across several models with notable importance values such as 1.0000 in GAM, around 0.7 in
the RF, SVM, KNN, and NB models. The prominence of DBH aligns with the understanding
that trees with larger diameters are typically more resilient to environmental stressors [74].
However, the models also allude to intricate interactions, implying that specific conditions
may challenge even trees with substantial DBH.

The mortality caused by competition for light, water, temperature, and nutrients is
referred to as intrinsic mortality. Intrinsic mortality is influenced over the long term by
the genetic and physiological characteristics of tree species, site conditions, and climatic
factors [75]. Site conditions form the foundation of forest productivity and are closely tied
to tree mortality. The present study primarily incorporates topography-related factors as
site variables, encompassing elevation, aspect, position on slope, gradient, and microto-
pography. These factors predominantly influence hydrothermal factors and soil conditions
directly associated with tree growth [76]. In this study, we applied slope and elevation as
factors. Elevation, a factor influencing temperature, humidity, light, and soil characteristics,
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was accentuated in various models, particularly in the ANN model. This finding resonates
with the ecological theories that particular altitudes may predispose certain tree species to
mortality, underscoring the complex equilibrium between environmental parameters and
tree vitality. In mountainous regions characterized by significant variations in elevation,
distinct vegetation-vertical-zonation profiles are formed due to the undulating topogra-
phy [77]. Slope, a determinant of soil erosion, moisture retention, and light exposure,
was emphasized in models such as ANN, KNN and RF. While its ecological relevance in
shaping tree growth and survival is recognized, slope was not uniformly significant across
all models. This discrepancy invites further exploration to elucidate slope’s multifaceted
role in forest ecology. Li Chunming et al. [78] also attempted to incorporate the influencing
factors of aspect and elevation in their study on stand mortality in Mongolian oak forests.
However, they found that the model outcomes indicated that these independent variables
did not qualify for inclusion in the model. This result is different from our result. We
attributed this outcome to the relatively low elevation (600–750 m) in their research and the
high elevation (2079–2438 m) in our research.

CD, a measure of forest canopy cover, was highlighted in models like RF, SVM,
KNN and NB. Within a given species, superior tree health is commonly linked to higher
crown density values, reduced foliage transparency values, and diminished crown dieback
values [79]. The models’ focus on CD reflects its critical influence on sunlight penetration,
photosynthesis efficiency, and overall tree growth, emphasizing the intricate relationship
between canopy architecture and arboreal survival.

Soil plays a pivotal role in tree growth by providing essential nutrients, moisture,
and structural support. Among the spectrum of soil nutrients, NH4-N and available P,
assume a critical role in tree physiological processes. The soil’s NH4-N content significantly
influences plant health and growth by modifying nitrogen absorption efficiency, altering
soil pH, and impacting the root environment’s microbial ecosystem. Too much NH4-N can
cause nitrogen toxicity, negatively affecting plant growth, while too little may hinder plant
development and reduce productivity [80].

Phosphorus, being a fundamental constituent of ATP, nucleic acids, and phospho-
lipids, exerts profound influence on tree development and growth when present in the
form of available P [81]. In forest ecosystems, the concentration of available P within
the soil can emerge as a constraining factor, especially within regions characterized by
weathered or phosphorus-depleted soils [82]. The association between available P and tree
vitality is intricate and multifaceted, often interacting with various other soil attributes and
environmental variables. Grasping this relationship holds paramount importance in forest
management and conservation, as it underscores the intricate equilibrium between soil
fertility and tree well-being. The available P, denoting the available phosphorus in the soil,
was underscored in models such as RF and ANN. As an essential nutrient for plant growth,
the importance of the available P in these models suggests that phosphorus scarcity may
constrain tree development. Although not uniformly significant, its ecological relevance
merits further investigation.

In conclusion, these patterns of variable importance furnish invaluable insights into
the mechanisms governing tree mortality, unveiling the synergistic interactions between
tree attributes, soil nutrients, topographical variations, and tree mortality. The disparities
in variable importance across models illuminate the unique attributes and sensitivities of
each modeling approach, providing a road map for model selection tailored to specific
ecological inquiries and management goals. This comprehensive assessment augments
our understanding of individual tree characteristics and accentuates the significance of
judicious model selection and feature engineering in advancing ecological research.

This study integrates machine learning insights with ecological theories and offers a
multifaceted perspective on tree mortality factors. The prominence of variables such as
BAL, BA, DBH, elevation, and CD across different models underscores their importance,
while also highlighting the need for a nuanced understanding of other variables like slope,



Forests 2024, 15, 374 15 of 18

available P, and NH4-N. Future research should consider these complex interactions and
the specific context of tree species, location, and environmental conditions.

Additionally, our study has some limitations. Firstly, our dataset may have biases as it
comes from specific populations and regions. Secondly, the models might be influenced
by the lack of data on dead trees or further influenced by data pre-processing methods.
Future research can further improve model performance by using more diverse datasets
and exploring different feature engineering techniques.

5. Conclusions

In this study, eight diverse machine learning methods were harnessed to formulate a
predictive model for individual tree mortality. Our analysis revealed varying performance
across methodologies; random forest demonstrated the best prediction performance. The
significance of tree- and stand-level factors, and site and soil factors, in predicting tree
mortality was emphasized, underscoring the necessity of encompassing these multifaceted
elements within the model.

Notably, the variables significantly impacting individual tree mortality were identified
through feature importance analysis across models: BAL, DBH, BA, elevation, slope, NH4-
N, soil moisture, crown density, and the soil’s available phosphorus are important variables
in the Larix gmelinii var. principis-rupprechtii individual mortality model. This emphasizes
the role of the tree growth environment, physiological traits, and soil phosphorus content.
Although promising, challenges including data limitations and ecosystem complexity
should be considered when applying the model. This study exemplifies the potential of
machine learning for predicting tree mortality, offering insights for model enhancement,
and aiding ecosystem-management decisions.
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