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Abstract: As an important component of forest parameters, forest canopy height is of great signif-
icance to the study of forest carbon stocks and carbon cycle status. There is an increasing interest
in obtaining large-scale forest canopy height quickly and accurately. Therefore, many studies have
aimed to address this issue by proposing machine learning models that accurately invert forest
canopy height. However, most of the these approaches feature PolSAR observations from a data-
driven viewpoint in the feature selection part of the machine learning model, without taking into
account the intrinsic mechanisms of PolSAR polarization observation variables. In this work, we eval-
uated the correlations between eight polarization observation variables, namely, T11, T22, T33, total
backscattered power (SPAN), radar vegetation index (RVI), the surface scattering component (Ps),
dihedral angle scattering component (Pd), and body scattering component (Pv) of Freeman-Durden
three-component decomposition, and the height of the forest canopy. On this basis, a weighted inver-
sion method for determining forest canopy height under the view of structural equation modeling
was proposed. In this study, the direct and indirect contributions of the above eight polarization
observation variables to the forest canopy height inversion task were estimated based on structural
equation modeling. Among them, the indirect contributions were generated by the interactions
between the variables and ultimately had an impact on the forest canopy height inversion. In this
study, the covariance matrix between polarization variables and forest canopy height was calculated
based on structural equation modeling, the weights of the variables were calculated by combining
with the Mahalanobis distance, and the weighted inversion of forest canopy height was carried out
using PSO-SVR. In this study, some experiments were carried out using three Gaofen-3 satellite
(GF-3) images and ICESat-2 forest canopy height data for some forest areas of Gaofeng Ridge, Baisha
Lizu Autonomous County, Hainan Province, China. The results showed that T11, T33, and total
backscattered power (SPAN) are highly correlated with forest canopy height. In addition, this study
showed that determining the weights of different polarization observation variables contributes
positively to the accurate estimation of forest canopy height. The forest canopy height-weighted
inversion method proposed in this paper was shown to be superior to the multiple regression model,
with a 26% improvement in r and a 0.88 m reduction in the root-mean-square error (RMSE).

Keywords: forest canopy height; GF-3; ICESat-2; structural equation modeling; PSO-SVR

1. Introduction

Forest canopy height is the basic data for carbon stock and carbon cycle analysis of
terrestrial ecosystems and one of the important components of global ecological environ-
mental change research. Rapid and accurate acquisition of forest canopy height over a
wide area is of great significance when determining the carbon stock and carbon cycle
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status of terrestrial forests in a timely and dynamic manner [1–6]. The traditional method of
obtaining forest canopy height, as represented by manual forest surveying, is characterized
by point-based measurement, which is both time-consuming and laborious. As such, it is
difficult to meet the requirement of obtaining forest canopy height data over a wide area
with manual forest surveying [7–9].

LiDAR is one of the best data sources for obtaining forest parameter information, as
represented by forest canopy height, because of its ability to provide effective observation
of the height and spatial distribution of targets on the ground [4,10–12]. In particular,
satellite-mounted LiDAR systems are an important data source for the study of global
ecological environmental change because of their ability to measure forest structure within
the radar footprint at a wide range of scales [13,14]. However, since satellite-based LiDAR
systems acquire mostly discontinuous height data, it is still not easy to meet the requirement
of acquiring forest canopy height data over a wide range of surface areas [6]. The existing
studies have mostly utilized multi-source LiDAR data or methods such as interpolation
to meet the needs of acquiring forest canopy height data over a wide range of surface
areas [15].

Synthetic aperture radar (SAR) has become an effective remote sensing tool for obtain-
ing the biophysical parameters of forests at regional and global scales due to its all-weather
imaging capability and its sensitivity to the physical and geometric properties of the objects
of interest. The combination of SAR and LiDAR offers the possibility of accurately detecting
the height of forest canopies over a wide area. Forest canopy height estimation methods
based on SAR observations can be broadly classified into backscatter model–based meth-
ods, interferometric synthetic aperture radar (InSAR)–based methods, polarimetric InSAR
(PolInSAR)–based methods, and data-driven empirical modeling–based methods [16–20].

SAR systems mainly estimate forest biomass based on the backward scattering coeffi-
cients, but the backward scattering coefficients of different wavelengths and polarization
modes are obtained from different parts of the tree, which makes the estimation of forest
canopy height difficult [21,22]. A number of backscatter modeling methods have been
developed [23,24], most of which are based on first-order or second-order solutions for
the radiative transfer equation [25]. These models perform better in the estimation of
forest canopy height in the co-polarization mode, but the accuracy of cross-polarized forest
canopy height estimation tends to be reduced because these models ignore the higher-order
solution for the radiative transfer equation [26,27].

The data-driven empirical modeling approach is a method that can be used for large-
scale vegetation height estimation based on the use of machine learning regression to train
an estimation model between the PolSAR observations and canopy height. The trained
regression model is then used to estimate the forest height in the study area with the
corresponding PolSAR observations [28,29]. Since this method uses polarization obser-
vation information, its accuracy is usually superior to forest height estimation based on
backscatter coefficients. Currently, there are more studies using PolSAR observations to
invert forest canopy height based on data-driven ideas. However, most of these studies
are based on the linear correlation between PolSAR observations and forest canopy height,
a priori knowledge, or multiple adjustments of parameters to select the optimal combi-
nation of features [30–34]. In addition, empirical relational models or linear/polynomial
regression models are typically chosen because of the limited number and type of Pol-
SAR observations [16,35]. However, the above methods only perform feature selection
of PolSAR observations from a data-driven perspective and do not take into account the
intrinsic mechanisms between the PolSAR polarimetric decomposition features and the
backscattering coefficients.

Structural equation modeling (SEM) is an analytical method that empirically deter-
mines causality based on correlation [36,37]. Using SEM, the composite causal relationship
between PolSAR decomposition features, backscattering coefficients, and forest canopy
height can be analyzed. Therefore, in this paper, we propose a method for the weighted
estimation of forest canopy height based on the above composite causality, combined with
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a machine learning regression model. Thus, to analyze the contribution of the different vari-
ables to the estimation of forest canopy height, a machine learning model was constructed
to accurately estimate the forest canopy height. Then, based on the multiple weighted
regression method, the forest canopy height estimation was conducted.

To solve the problem of the feature selection in the current PolSAR forest canopy height
estimation task combined with machine learning being data-driven and the fact that it does
not take into account the intrinsic mechanism between polarimetric observation variables,
we propose a forest canopy height estimation method based on SEM that takes into account
the relationship between polarimetric observation variables. The objectives of this study
were: (1) to analyze the contribution of the different polarimetric observation variables to
forest canopy height estimation; (2) to evaluate the effectiveness of the contribution of the
different variables to forest canopy height estimation from various perspectives, including
individual effectiveness and interactions; and (3) to construct a machine learning model for
accurately estimating the height of forest canopies over a wide range of scales.

The remainder of this paper is organized as follows. Section 2 describes the study area
and data preparation. Section 3 explains the research methodology, including the forest
canopy height estimation weight calculation method combining SEM with the Mahalanobis
distance, and the support vector regression model based on particle swarm optimization
(PSO-SVR). Section 4 presents the experimental results. Section 5 discusses the validity of
single polarimetric observation variables in the estimation of forest canopy height, provides
an analysis of the coupled contribution of multiple polarimetric observation variables, and
discusses the limitations of the proposed approach and potential future research. Section 6
concludes and summarizes the current work.

2. Materials and Methods
2.1. Study Area and Data

As shown in Figure 1, we selected a part of the forested area of Gaofeng Ridge in
Baisha Lizu Autonomous County, Hainan Province, China, which is suitable for forest
growth due to the abundant precipitation and high temperature occurring in the same
season [38]. The topography of the study area is predominantly mountainous and hilly,
with a variety of land-cover types, including forest, water bodies, and buildings. The
vegetation in the study area is mostly tropical or subtropical trees, and the height of the
vegetation is about 0–40 m [39]. It is noteworthy that the typical range of forest canopy
height in the study area is 10–25 m [39]. The area delineated by the red rectangle in
Figure 1a is the extent of the three Gaofen-3 (GF-3) fully polarized SAR images covering
the study area acquired on 5 January 2021, and the blue dots mark all the experimental
data used for the estimation of forest canopy height. We performed the validation of the
inversion method proposed in this paper in the region marked by the blue box. Figure 1b
shows the Sentinel-2 image obtained in this region on 2 January 2021. Sentinel-2 is a
multispectral imaging sensor operated by the European Space Agency and provides open,
freely accessible data (https://dataspace.copernicus.eu/, accessed on 28 June 2023). We
divided the training and test sets randomly in the ratio of 0.9:0.1 for the training and
accuracy evaluation of the forest canopy height estimation [40]. The land and vegetation
height (ATL08) product is derived from publicly available data from the National Snow
and Ice Data Center (https://nsidc.org/data, accessed on 17 April 2023) [41–43]. The data
were obtained from a 17-m diameter footprint acquired by a laser pulse. The sampling
density of neighboring spots was 0.7 m [44,45]. In this study, the relative canopy height
was chosen as the reference value of forest canopy height [46–48].

https://dataspace.copernicus.eu/
https://nsidc.org/data
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The ICESat-2 LiDAR satellite measurements used for the ALT08 canopy height infor-
mation and the GF-3 data were not acquired at the same time due to the different satellite
sampling times. However, since the maximum time offset was 263 days (occurring on 25
September 2021), it is reasonable to assume that forest heights in the study area have not
changed significantly over this time period.

At the same time, a total of three consecutive Gaofen-3 satellite (GF-3) QPS1 fully
polarized data scenes acquired in 2021 were used in this study. Table 1 lists the acquisition
date, center latitude and longitude, resolution, and imaging mode information for the three
GF-3 images.

Table 1. Details of the GF-3 images acquired in 2021.

Date Mode Center Longitude Center Latitude Resolution

05 January 2021 QPS1 109.3◦ E 19.0◦ N 8.0 m × 8.0 m
05 January 2021 QPS1 109.4◦ E 19.3◦ N 8.0 m × 8.0 m
05 January 2021 QPS1 109.5◦ E 19.6◦ N 8.0 m × 8.0 m

The ICESat-2 LiDAR satellite measurements used for the ALT08 canopy height infor-
mation and the GF-3 data were not acquired at the same time, due to the different satellite
overpass times. However, since the maximum time offset was 263 days (occurring on
25 September 2021), it is reasonable to assume that there was no significant change in
forest canopy height and its trend in the study area between the date of acquisition of the
GF-3 microwave radar imagery and the date of the ICESat-2 acquisition of the ground
canopy height.

We performed a series of pre-processing operations on each GF-3 image, including
calibration, filtering, and geocoding. The 30-m spatial resolution provincial digital elevation
model (PDEM) of Hainan Province, China, was used to geocode each scene image into
the Universal Transverse Mercator (UTM) coordinate system. The final pixel width of the
geocoded product was 10 m. Due to the complex and varied topography of the study area,
the relief of the terrain can have an impact on the polarization observations. In order to
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eliminate the polarization observation errors caused by the terrain, we performed terrain
radiometric correction on the three GF-3 images.

2.2. Polarimetric Synthetic Aperture Radar Observations

The second-order scattering matrix (S-matrix), which is the most commonly used
data representation in PolSAR systems, contains the energy features, phase features, and
polarimetric features of the feature target, as shown in Equation (1) [49,50]:

S =

[
SHH SHV
SVH SVV

]
(1)

where the SHV element represents the information of the scattered echo in the vertical
direction acquired by the satellite antenna after the fully polarized SAR radar wave is
emitted horizontally and polarized with the ground object. H and V represent the horizontal
and vertical directions, respectively. This can be understood in the same way as the physical
significance of the other parameters in Equation (1). The second-order scattering matrix
SHH , SHV , SVH , SVV elements are complex scattering parameters, where each element is
in the form of a complex number and contains the amplitude and phase information of the
scattering information. In the process of PolSAR data processing, Sinclair scattering matrix
vectorization is typically used to obtain the scattering vector k of the target, as shown in
Equation (2), where the superscript T is the matrix transpose symbol. In addition, according
to the reciprocity theorem [45,46], for the backward scattering of PolSAR data, where the
scattering matrix is a symmetric matrix, the three-dimensional Pauli basis vector kp and
lexicographic basis vector kl are as shown in Equations (3) and (4).

k = [SHH , SHV , SVH , SVV ]
T (2)

kp =
1√
2
[SHH + SVV , SHH − SVV , 2SHV ]

T (3)

kl =
[
SHH ,

√
2SHV , SVV

]T
(4)

The third-order Pauli basis coherence matrix T can be obtained by multiplying the
three-dimensional Pauli basis vector kp and the target scattering vector of the lexicographic
target basis vector with their own conjugate transpose in an outer product, as shown in
Equation (5) [51,52], where (.)∗ is the conjugate complex number.

T =
〈

kp·kT
p

〉
=

T11 T12 T13
T21 T22 T23
T31 T32 T33

= 1
2


〈
|SHH + SVV |2

〉 〈
(SHH + SVV)(SHH − SVV)

∗〉 2⟨(SHH + SVV)S∗
HV⟩〈

(SHH − SVV)(SHH + SVV)
∗〉 〈

|SHH − SVV |2
〉

2⟨(SHH − SVV)S∗
HV⟩

2
〈
SHV(SHH + SVV)

∗〉 2
〈
SHV(SHH − SVV)

∗〉 4
〈
|SHV |2

〉
 (5)

Based on the above polarimetric observation matrix, it is possible to obtain multi-
ple types of polarimetric parameters for forest canopy height estimation [51–54]. Eight
polarimetric observation variables were selected in this study (see Table 2).

Table 2. List of the eight polarimetric observables selected in this study.

Polarimetric Observation Variable Description

T11, T22, T33 Backscattering coefficients in the Pauli
polarization channels

SPAN Total backscattered power

Ps, Pd, Pv
Scattering power from the different

scattering mechanisms derived from
Freeman-Durden decomposition

RVI Radar vegetation index
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Firstly, we considered the diagonal elements T11, T22, and T33 in the matrix of polari-
metric observation variables. Secondly, we selected the total backscatter power (i.e., the
SPAN), which can be extracted based on the diagonal elements in the sum of the coherence
matrix. The common method of obtaining polarimetric features is the use of polarimetric
target decomposition. This, in turn, can be classified into coherent polarimetric decomposi-
tion and non-coherent decomposition [49,50]. Non-coherent polarimetric decomposition
is more suitable for use with natural targets, due to its ability to provide a distributed
description of the target features [49,50]. Non-coherent polarimetric decomposition can be
further classified into model-based decomposition and decomposition based on eigenvec-
tor/eigenvalue analysis. Freeman-Durden three-component decomposition is one of the
earliest and most popular of the model-based decomposition methods and produces three
scattering power parameters representing the mechanisms of surface scattering, dihedral
angle scattering, and body scattering (Freeman and Durden, 1998) [55]. These parameters
are the three scattering power parameters selected in this study.

The radar vegetation index (RVI) [56] is sensitive to forest morphological characteris-
tics, so it was also considered in this study, as shown in Equation (6), where σHV is the
cross-polarized backward scattering coefficient, and σHH and σVV are the co-polarized
backward scattering coefficients expressed in power units.

RVI =
8σHV

σHH + σVV + 2σHV
(6)

Moreover, we obtained a total of 553 LiDAR altimetry sampling points within the
coverage of the GF-3 imagery in the study area, based on the geographic location records
of the sampling points of the ALT08 land and vegetation height product of ICESat-2. We
then combined the eight polarimetric observation variables to construct a forest canopy
height estimation dataset for the training of the forest canopy height estimation models
and the accuracy validation.

3. Research Methodology

The PolSAR forest canopy height estimation method based on the structural equation
model (SEM) proposed in this paper consists of a weight calculation module that combines
the structural equation model (SEM) with the Mahalanobis distance and a forest height
estimation module, as shown in Figure 2. The weight calculation module based on SEM
calculates the contribution of each polarimetric observation variable to the forest canopy
height estimation from the input PolSAR data and calculates the weight of each polarimetric
observation variable using the Mahalanobis distance. The forest height estimation module
is an SVR model based on PSO (PSO-SVR), which is used to perform multivariate weighted
estimation of the forest canopy height and derive the optimal parameters.

3.1. Weight Calculation Based on Structural Equation Modeling (SEM)

SEM is a multivariate statistical technique method used to explain the causal and cor-
relational relationships between variables [57–59]. Compared with traditional multivariate
statistical methods, SEM allows the measurement of latent variables and the construction
of path diagram models, which provides the possibility of analyzing the complex coupled
relationships between multiple independent variables and the target dependent variable.
As a result, SEM has been widely used in the fields of ecology [60–62] and forestry [63].

The PolSAR-based forest canopy height estimation mechanism we developed is com-
plex and is in the presence of multiple causal and correlational relationships, such as
different polarization modes and polarimetric decompositions. Therefore, in addition to
considering the direct contribution of each of the multiple polarimetric parameters to the
forest canopy height estimation, we also needed to consider the indirect contribution of
the interactions among the variables to forest canopy height estimation. The core of SEM
analysis is that it allows all the parameters in the model to be estimated simultaneously
by the maximum likelihood estimation method. It also allows the degree of model fit as
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a whole to be determined through the difference between the theoretical and the actual
measured covariance. The structural equation model obtains the path coefficients of the
model by calculating the covariance matrices between the polarization mode, polarimetric
decomposition, and forest canopy height. These can then be used to quantitatively charac-
terize the mechanism of the interaction between the multiple parameters and forest canopy
height. The path coefficients derived from the model results are used to characterize the
contribution of the different polarimetric observation variables to the estimation of the
forest canopy height and are used for determining the weights of the forest canopy height
estimation model.
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Variables in SEM can be divided into observed variants and latent variables, where the
observed variants are variables that can be directly obtained and measured, and the latent
variables are variables that cannot be directly obtained or characterized. The polarization mode
and polarimetric decomposition parameters described in Sections 2.1 and 2.2 of this paper can
be directly obtained and characterized, so the structural equation model used in this study
uses only the observed variables as model inputs to explore the relationships between
the eight parameters and forest canopy height. In forest canopy height estimation, since
the different variables contribute to the estimation results to different degrees, applying
different weights to them can highlight the data characteristics and improve the estimation
accuracy, to some extent [64]. Based on this, we propose to determine the weights between
the different polarimetric observation variables and forest canopy height based on SEM,
while taking into account both the direct and indirect contributions of the different variables
to the estimation of forest canopy height, and combining the path coefficients of SEM.
Aiming at the characteristics of the polarimetric observation variables, such as the large-
scale difference and complex correlation, the Mahalanobis distance is used to calculate the
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above weights. The Mahalanobis distance is not affected by the spatial dimension of the
data features and can effectively eliminate the interference of correlation between variables.
Therefore, in this study, we used the Mahalanobis distance between each polarimetric
observation variable and the ICESat-2 forest canopy height [65] as the basis for the weight
calculation.

DM(x, y) =

√
(x − y)T

−1

∑(x − y) (7)

The Mahalanobis distance is calculated as shown in Equation (7), where ∑−1 is the
inverse matrix of the covariance matrix between the variables, which is calculated by
SEM, as shown in Equation (8), where y is the forest canopy height, xn is the polarimetric
observation variables, var is the variance of the variables, and cov is the covariance between
the variables. The weight calculation module first calculates the Mahalanobis distance of
each variable from the ICESat-2 forest canopy height based on the covariance matrix of
SEM and then calculates the weights.

∑ =



var(y)
cov(x1, y) var(x1)
cov(x2, y) cov(x2, x1) var(x2)

cov(x3, y) cov(x3, x1) cov(x3, x2)
. . .

...
...

... var(xn−1)
cov(xn, y) cov(xn, x1) cov(xn, x2) cov(xn, xn−1) var(xn)


(8)

3.2. Support Vector Regression Model Based on Particle Swarm Optimization (PSO-SVR)

Machine learning–based methods are commonly used for classification and regression
problems in remote sensing due to their strong predictive ability [66,67]. Among the
different methods, SVR is a supervised machine learning algorithm based on the kernel
function, which takes into account the global nature of parameters. SVR and its improved
versions are commonly used in parameter estimation based on remote sensing imagery
because of the fast convergence, few parameters, and high reliability [68–70]. Due to the
complex and nonlinear relationship between the polarimetric observation variables and the
forest canopy height, we adopted PSO to automatically search for the key hyperparameters
in the SVR model, which can effectively avoid the occurrence of overfitting and underfitting.
This method is similar to the genetic algorithms, which use the population fitness to
determine the optimal solution for a problem, and it can be used for the optimization of
nonlinear problems [71,72]. The PSO algorithm was a new method for providing optimal
solutions [73]. This approach avoids repetitive parameter adjustments and enables fast
access to combinations of hyperparameters with global optimization as well as estimation
results. Notably, it also prevents the results from falling into local optimality. In PSO, each
particle records and updates its velocity, position, and the optimal distance between itself
and the swarm. For an optimization problem in an n-dimensional space with m particles
forming the population, the position of the ith particle is denoted as xi = (x1, x2, . . ., xn)
and the velocity is denoted as vi = (v1, v2, . . ., vn). The formula for updating the velocity
and position of each particle is as follows:

vi(t + 1) = ωvi(t) + c1r1(pi(t)− xi(t)) + c2r2(pg(t)− xi(t)) (9)

xi(t + 1) = xi(t) + vi(t + 1) (10)

where i = 1, 2, 3, . . ., m; pi is the location of the individual extreme point; pg is the location
of the global extreme point; ω is the initial value of the inertia weight; c1 and c2 are the
acceleration coefficients; and r1 and r2 are random numbers between 0 and 1. For the
random forest regression model, the inclusion of a PSO algorithm can help to ensure the
rationality of the parameter optimization [74]. The PSO algorithm is used to find the
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optimal parameters that allow the SVR model to converge and avoid model overfitting
and underfitting.

4. Experiments and Results
4.1. Results of the Weighting Calculations

We combined SEM to construct the Mahalanobis distance between the forest canopy
height and polarimetric observation variables, so as to calculate the weights of the obser-
vations for the forest canopy height estimation. The input variables to the model are the
eight polarized observations described previously. We constructed a path diagram model
between the forest canopy height (H) and the eight polarimetric observation variables,
based on SEM, as shown in Figure 3. In the path diagram, the polarimetric observation
variables are represented by the rectangular boxes, and two variables are connected with a
solid line with a single arrow to indicate a causal relationship. Two variables are connected
with a dashed line with an arrow to indicate a small causal relationship. In addition, a
red line is used to connect the forest canopy height (H) with the polarimetric observation
variable, so as to indicate that this variable makes a direct contribution to the forest canopy
height estimation. A blue line is used to connect two variables to indicate that they do
not make a direct contribution to the forest canopy height estimation but can make an
indirect contribution in the forest canopy height estimation through the other polarimetric
observation variables. The structural equation model was fitted with a total of 553 sampling
points, and the fitted model had a chi-squared value of 0.347 and degrees of freedom (df)
of 7. The model fit was evaluated, and the identified model structure was used to reflect
the complex relationships between the eight polarimetric observation variables and forest
canopy height. The structural equation model is based on the partial least squares (PLS)
method for calculating path coefficients, as shown in Figure 3. The high path coefficients
between the SPAN and forest canopy height imply that this contributes the most in the
forest canopy height estimation. The integrated path coefficients from each polarimetric
observation variable to the forest canopy height were calculated from their direct and
indirect path coefficients. The results are listed in Table 3. In terms of the integrated path
coefficients, T11, T33, and the SPAN are the factors that make a major contribution to the
forest canopy height estimation. The weight of each variable was calculated based on the
contribution of the polarimetric observation variable to the forest canopy height estimation
based on the Mahalanobis distance as depicted in Table 3.

4.2. Forest Canopy Height-Weighted Estimation Results

In this study, we input the weights of eight polarization observation variables into
the PSO-SVR model based on the weighting method of SEM and used the PSO algorithm
to adaptively search for the optimal hyperparameter combinations of the SVR model for
the estimation of forest canopy height. For the model parameters, the penalty factor (C)
was 2.81, the fault tolerance factor (epsilon) was 0.01, and the coefficient of the kernel
function (gamma) was 0.9486. The PSO-SVR model contributed to the forest canopy height
estimation by considering the low-correlation variables in addition to the polarimetric
observation variables with a high correlation. Compared with the data-driven estimation
method that selects polarimetric observation variables with a high correlation, the method
proposed in this paper is based on the relevant physical a priori information. This approach
is closer to the perception of forest canopy height by PolSAR in the natural environment
and integrates a variety of polarimetric observation variables to accurately invert the forest
canopy height. From the results, the forest height-weighted estimation results show a lower
root-mean-square error (RMSE) and a higher Pearson correlation coefficient (r). Compared
with the PSO-SVR model, the r-value of the forest height-weighted estimation model
based on the proposed structural equation model shows an improvement of 26%, with the
RMSE reduced by 0.88 m. Figures 4 and 5 show the scatter plots of the forest canopy height
estimation results obtained with and without the weighting, where the weighted estimation
has the best overall accuracy and a higher correlation compared to the unweighted model.
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As expected, the higher accuracy of the weighted forest canopy height estimation results
can be attributed to the more reasonable input variable weights.

Forests 2023, 14, x FOR PEER REVIEW 10 of 18 
 

 

T11 T22 T33

SPAN RVI

Ps Pd Pv

H
-0.105 0.133

0.106

0.49

-0.1160.0540.143

0.393 0.114

0.069

-0.064

0.13 0.464

0.058-0.109

0.08
-0.069

0.093

 
Figure 3. Path diagram of the polarimetric observation variables and forest canopy height structural 
equation modeling. 

Table 3. Weights of the eight polarimetric observation variables related to forest canopy height. 

Polarimetric 
Observation Variable Path Coefficient Weight 

T11 0.163 1.144 
T22 0.101 0.581 
T33 0.11 3.766 

SPAN 0.109 2.067 
RVI 0.058 2.774 
Ps 0.08 1.306 
Pd −0.069 2.111 
Pv 0.093 1 

4.2. Forest Canopy Height-Weighted Estimation Results 
In this study, we input the weights of eight polarization observation variables into 

the PSO-SVR model based on the weighting method of SEM and used the PSO algorithm 
to adaptively search for the optimal hyperparameter combinations of the SVR model for 
the estimation of forest canopy height. For the model parameters, the penalty factor (C) 
was 2.81, the fault tolerance factor (epsilon) was 0.01, and the coefficient of the kernel 
function (gamma) was 0.9486. The PSO-SVR model contributed to the forest canopy height 
estimation by considering the low-correlation variables in addition to the polarimetric ob-
servation variables with a high correlation. Compared with the data-driven estimation 
method that selects polarimetric observation variables with a high correlation, the method 
proposed in this paper is based on the relevant physical a priori information. This ap-
proach is closer to the perception of forest canopy height by PolSAR in the natural envi-
ronment and integrates a variety of polarimetric observation variables to accurately invert 
the forest canopy height. From the results, the forest height-weighted estimation results 
show a lower root-mean-square error (RMSE) and a higher Pearson correlation coefficient 
(r). Compared with the PSO-SVR model, the r-value of the forest height-weighted estima-
tion model based on the proposed structural equation model shows an improvement of 
26%, with the RMSE reduced by 0.88 m. Figure 4 and Figure 5 show the scatter plots of 
the forest canopy height estimation results obtained with and without the weighting, 

Figure 3. Path diagram of the polarimetric observation variables and forest canopy height structural
equation modeling.

Table 3. Weights of the eight polarimetric observation variables related to forest canopy height.

Polarimetric
Observation Variable Path Coefficient Weight

T11 0.163 1.144
T22 0.101 0.581
T33 0.11 3.766

SPAN 0.109 2.067
RVI 0.058 2.774
Ps 0.08 1.306
Pd −0.069 2.111
Pv 0.093 1

We used the three GF-3 images and the 553 forest canopy sample points to weight the
inversion of forest canopy height in the study area within the scope of Figure 1b, as shown
in Figure 6. The black part of the figure shows the non-forested areas consisting of towns,
water bodies, and farmland, which we classified as non-forested areas not participating in
the forest canopy height inversion, based on expert visual interpretation. From Figure 6,
it is apparent that the areas with higher forest canopy heights are mostly concentrated in
the densely forested mountainous areas. This is due to the fact that mountainous areas
are basically unaffected by anthropogenic activities, and the vegetation is better protected.
The height of the forest in the figure is mostly in the range of 16–30 m, and the height of
the forest is staggered, which is more in line with the actual structure of forested areas.
Low-vegetation areas are mostly located near towns and cities, where human activities are
more frequent and vegetation heights are low.
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5. Discussion
5.1. Validity of Single Polarimetric Observation Variables

The Pearson correlation coefficient (r) is commonly used to measure the correlation
between two variables and has been widely used in various research fields [75]. Therefore,
the r-value was used as an evaluation index to analyze the correlation between each
polarimetric observation variable and the forest canopy height obtained from ICESat-
2. In this study, eight input polarimetric observation variables were selected, and their
correlations with forest canopy height are shown in Figure 7.
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Figure 7. Correlations between the polarimetric observation variables and forest canopy height.
The different types of polarimetric observation variables are depicted as follows: backscattering
coefficients and SPAN (blue), Freeman-Durden decomposition (orange), and RVI (green).

In Figure 7, for a better visual effect, the variables belonging to the same or similar
groups are marked with the same color. The correlation between the three scattering com-
ponents of Freeman-Durden decomposition and forest canopy height is relatively strong
compared to the other polarimetric observation variables. Among the different variables,
the contribution of the dihedral angle scattering component (Pd) of Freeman-Durden de-
composition is the greatest, and the results show a strong correlation between this variable
and forest canopy height. The surface scattering component (Ps) of Freeman-Durden de-
composition takes second place in the variable importance ranking after Pd. T11 is the
fourth most important variable and is highly correlated with the body scattering component
(Pv), which ranks third. The SPAN ranks below T11, but is still important, and the radar
vegetation index (RVI), T33, and T22 are located at the bottom of the importance list. It is
clear from the above analysis that the SAR parameters associated with Freeman-Durden
decomposition are highly sensitive to forest canopy height. In addition, in the case of some
of these factors not being available, these results provide guidance for the selection and
ranking of variables for forest canopy height estimation models. The Pearson correlation
coefficient (r) only illustrates the correlation between each polarimetric observation variable
and the forest canopy height, and it is difficult to differentiate whether this correlation is
due to the direct contribution of the observed variable to the forest canopy height or the
interaction among variables.

5.2. Analysis of the Coupled Contribution of Multiple Polarimetric Observation Variables

The Pearson correlation coefficient (r) only describes the linear correlation between the
forest canopy height obtained by ICESat-2 and any of the eight polarimetric observation
variables, while ignoring the coupled contribution of two or more polarimetric observation
variables to the forest canopy height estimation. To quantitatively evaluate the coupling
between the multivariate variables and forest canopy height, we constructed a path diagram
model between the forest canopy height and the eight different polarimetric observation
variables, as shown in Figure 3. Each polarimetric observation variable has a direct effect
on the forest canopy height. Since the SPAN is obtained by summing the three diagonal
elements (T11, T22, and T33) in the polarimetric observation matrix, T11, T22, and T33 have
a direct effect on the SPAN. Moreover, Freeman-Durden three-component decomposition
is conducted based on the polarimetric observation matrix (T), so that T11, T22, and T33
have a direct effect on the surface scattering component (Ps), dihedral angle scattering
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component (Pd), and body scattering component (Pv). Of particular note, the RVI is shown
in Equation (6). The radar vegetation index (RVI) ranges from 0 to 1 and is a measure of the
randomness of the scattering. For smooth and light surfaces, the RVI will be close to zero
and will increase with increased vegetation growth. Therefore, we consider that T11, T22,
and T33 all have an effect on the RVI.

Based on SEM, we quantitatively estimated the extent of the contribution of the above
eight polarimetric observation variables to the forest canopy height, which is composed
of two parts: direct contribution and indirect contribution. The direct contribution is the
value of a single polarimetric observation variable pointing directly to the forest canopy
height through a single arrow, as indicated by the red arrow in Figure 3, where all of the
eight polarimetric observation variables contribute directly to the forest canopy height
estimation task. Indirect contributions are path coefficients that indirectly contribute to the
forest canopy height estimation because one polarimetric observation variable has a direct
effect on one or more of the other polarimetric observation variables and ultimately acts
on the forest canopy height estimation. For example, the combination of blue arrows and
red arrows in Figure 3 is the indirect path of the polarimetric observation variables. For
instance, the indirect path coefficient of T22 indirectly contributing to the forest canopy
height (H) via the SPAN is 0.143 × 0.109 = 0.0156. The composite path coefficient is the
sum of all the direct and indirect path coefficients for a single polarimetric observation
variable. In terms of the combined path coefficients, T11, T33, and the SPAN are the
variables that make a major contribution to the forest canopy height estimation, as shown
in Table 1. The path coefficients listed in Table 1 differ from the results of the Pearson
correlation coefficients (r) in Figure 5, which is the result of the interactions between these
polarimetric observation variables.

5.3. Limitations and Future Research

In this study, we selected the PSO-SVR model to weight the estimation of forest canopy
height in the study area using eight polarimetric observation variables: the three diagonal
elements (T11, T22, and T33) in the PolSAR polarimetric observation matrix, the three
components of Freeman-Durden three-component decomposition (Ps, Pd, and Pv), the
SPAN, and the radar vegetation index (RVI). Since the different polarimetric observation
variables contribute differently to the forest canopy height estimation, we determined the
weights of the polarimetric observation variables for the forest canopy height by combining
SEM and the Mahalanobis distance. The results are listed in Table 1. The purpose of the
PSO-SVR model is to determine the optimal hyperplane, so that the point furthest away
from the hyperplane will have the shortest distance to the plane. In a previously reported
study, the effectiveness of the Mahalanobis distance in the PSO-SVR-weighted regression
task was demonstrated [56]. Moreover, in this paper, we have proposed a machine learning-
based weighted estimation method for the estimation of forest canopy height using GF-3
polarimetric observations, which still has some limitations. Firstly, the method relies on
a large volume of available LiDAR altimetry data and remote sensing data. However,
although the number of samples was large, there were few samples with a lower forest
canopy height. This may have affected the accuracy of both the model calibration and
estimation. In addition, the natural conditions, such as soil moisture and vegetation foliar
water content, may have affected the estimates. It is worth noting that the density of the
forest and the type of trees also have some influence on the results of the forest canopy
height estimation. In our future work, we will focus on testing the proposed approach
for the height estimation of other vegetation types, such as planted forests and crops. We
propose to use principal component analysis for height estimation with different vegetation
types and densities. The use of different radar frequencies (e.g., ALOS and LT-1 in the
L-band) as well as PolSAR data from P-band airborne radar at different locations will also
be investigated for testing and analysis in future studies.
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6. Conclusions

In this paper, we have described how eight polarimetric observation variables sen-
sitive to forest canopy height in PolSAR data can be selected to analyze their respective
and coupled contributions to forest canopy height estimation. Based on this, the PSO-SVR
model was used to realize forest canopy height estimation in the study area. The correla-
tion between individual polarimetric observation variables and forest canopy height was
first estimated by Pearson correlation analysis, and the coupling correlation between the
polarimetric observation variables and forest canopy height was quantitatively estimated
based on SEM. The results showed that the correlations between T11, T33, and the SPAN
with forest canopy height were larger than those for the other polarimetric observation
variables. Secondly, based on the degree of correlation between the eight polarimetric
observation variables and forest canopy height, the weight of each polarimetric observation
variable in the forest canopy height estimation task was calculated by introducing the
Mahalanobis distance. It was found that the weakly correlated variables are also important
for estimating forest canopy height as well as improving the estimation accuracy, and the
coupling effect of the different polarimetric observation variables can further improve the
estimation accuracy. The results showed that the proposed forest canopy height-weighted
estimation method combining SEM and the Mahalanobis distance can achieve a higher
estimation accuracy than the multiple weighted regression model. In terms of r, there was
a 26% improvement when compared with multiple weighted regression, and the RMSE
showed a 0.88 m improvement. Moreover, the forest canopy height results obtained in
the study area are similar to the results of Liu et al. [39]. Compared with previous studies
using SAR data for the estimation of forest canopy height, the proposed method represents
a promising approach for the utilization of PolSAR data.
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