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Abstract: Soil microbes are the primary drivers of the material cycling of the forest ecosystem,
and understanding how microbial structure and composition change across succession assists in
clarifying the mechanisms behind succession dynamics. However, the response of soil microbial
communities and assembly processes to succession is poorly understood in subtropical forests. Thus,
through the “space instead of time” and high throughput sequencing method, the dynamics of the
soil bacterial and fungal communities and assembly process along the succession were studied,
where five succession stages, including Abandoned lands (AL), Deciduous broad-leaved forests (DB),
Coniferous forests (CF), Coniferous broad-leaved mixed forests (CB), and Evergreen broad-leaved
forests (EB), were selected in a subtropical forest on the western slope of Wuyi Mountain, southern
China. The results demonstrated that succession significantly decreased soil bacterial α-diversity
but had little effect on fungal α-diversity. The composition of soil bacterial and fungal communities
shifted along with the succession stages. LEfSe analysis showed the transition from initial succession
microbial communities dominated by Firmicutes, Bacteroidota, Ascomycota, and Chytridiomycota to
terminal succession communities dominated by Actinobacteriota and Basidiomycota. Distance-based
redundancy analysis (db-RDA) revealed that soil total organic carbon (TOC) was the main factor
explaining variability in the structure of soil bacterial communities, and multiple soil environmental
factors such as the TOC, soil total nitrogen (TN), C:N ratio, and pH co-regulated the structure of
fungi. The null models illustrated that deterministic processes were dominant in the soil bacterial
communities, while the stochastic processes contributed significantly to the soil fungal communities
during succession. Collectively, our results suggest that different patterns are displayed by the soil
bacterial and fungal communities during the succession. These findings enhance our comprehension
of the processes that drive the formation and maintenance of soil microbial diversity throughout
forest succession.

Keywords: soil microbes; microbial community; assembly process; high throughput sequencing;
vegetation succession

1. Introduction

Forest succession is a continuous change in the species composition, structure, and
function of a forest through time following disturbance. In general, vegetation succession
could alter the functioning of forest ecosystems, affecting both above-ground ecological
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functions and below-ground material cycling processes [1–4]. Soil microorganisms are
the main drivers of underground material cycling along the succession stages [5,6]. The
diversity of soil microorganisms is an important foundation for driving material cycling,
and it is mainly determined by multiple factors such as environmental factors, community
structure, and community assembly [7,8]. Investigating how soil microbial community
composition and assembly processes respond to forest succession helps to reveal the
mechanisms driving below-ground material cycling.

Forest succession can affect soil microorganisms by changing vegetation and altering
soil physicochemical properties [9,10]. In terms of soil physicochemical properties, sub-
strates may be the most important factor regulating soil microbial communities [11,12]. The
effects of substrates on soil microorganisms can change based on the species of trees present
in a given forest succession [13]. Previous research has shown that soil pH tends to be more
acidic with the progression of forest succession, and that soil pH also significantly affects
microbial communities [14,15]. In the meanwhile, there are variations in soil background
values in different regions, and whether succession series may cause soil acidity and alter
the soil microbial communities is still up for debate. As the main distribution area of
forests, the shift of soil microbial communities along with the forest succession through
the impact on the soil’s physical and chemical factors still needs further exploration in
subtropical forests.

The establishment and maintenance of soil microbial communities are the core issues
of microbial ecology [16]. Forest succession is typical environmental filtering, influencing
the soil microbial communities through altering soil properties and vegetation [17,18].
However, there are currently two mainstream theories to explain microbial community
structure, which are the niche theory and the neutral theory [19,20]. The niche theory
emphasizes deterministic processes and holds that the succession of microbial communities
is the consequence of selection and screening by biotic (e.g., competition, mutualism, and
commensalism) and abiotic factors (e.g., pH and substrate) [21,22]. In contrast to the niche
theory, the neutral theory emphasizes stochastic processes and asserts that community as-
sembly is determined by stochastic processes (e.g., dispersal and drift) [22,23]. After a long
debate, it is more widely acknowledged that microbial community assembly involves both
stochastic and deterministic processes [23,24]. The majority of research on the influence of
forest succession on soil microorganisms primarily examines the diversity and composition
of the soil microbial communities [25,26]. Apart from the deterministic influence of forest
succession, the neutral theory is also crucial for maintaining soil microbial diversity along
the succession stages. However, the relative importance of the two processes during forest
succession needs to be further studied, especially in subtropical forests.

Wuyi Mountain is one of the main distribution areas for subtropical forests in southern
China [27]. It underwent deforestation during the early stages of its reform and opening
up, and is currently in a period of forest vegetation recovery [28,29]. Therefore, this
region will help us to understand microbial community succession patterns along forest
succession. Previous studies have shown the direction of succession from conifer forests
to evergreen broad-leaved forests in subtropical forests [30]. Evergreen broad-leaved
forests are the most structurally derived, occurring at various elevations in subtropical
forests [31]. According to the types of vegetation and leaves, we selected five succession
stages: Abandoned lands (AL), Deciduous broad-leaved forests (DB), Coniferous forests
(CF), Coniferous broad-leaved mixed forests (CB), and Evergreen broad-leaved forests
(EB), to evaluate the impact of forest succession on soil microorganisms. The soil microbial
communities can be impacted along forest succession by altering the input amount and
types of substrates [17,32]. Increasing substrate input may increase microbial competition
and select for specific microbial communities. Given this knowledge, we propose the
following hypothesis: (i) the soil bacterial and fungal diversity and composition decreased
along with the succession stages; (ii) the relative importance of deterministic and stochastic
processes in soil bacterial and fungal assembly processes varies during the succession; and
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(iii) the soil pH and total organic carbon (TOC) may be the key soil environmental factors
regulating the structure of the soil bacterial and fungal communities.

2. Materials and Methods
2.1. Study Area and Soil Sampling

This study was conducted in a subtropical forest in Jiangxi Province, southern China
(27◦40′50′′ N, 117◦09′11′′ E), within the Matoushan National Nature Reserve on the west-
ern slope of the Wuyi Mountains. The climate in the study area is classified as a hu-
mid subtropical monsoon climate, and average annual temperature was ranging from 16
to 18 ◦C. The temperature may drop as low as −5 ◦C in January and reach as high as
27.2 ◦C in July. The average annual precipitation is 1930 mm, with around 47% of it falling
in the months of April and June. The main biome of this study site is primarily dominated
by Evergreen broad-leaved forests and Coniferous broad-leaved mixed forests. The soil
composition comprises mountain red, yellow-red, and yellow soil, which is a consequence
of the weathering of granite [27].

In October 2020, we selected each stage of forest succession in Matoushan National
Nature Reserve. The Abandoned lands (AL) are covered with herbaceous plants dominated
by species such as Euphorbia latiris, Echinochloa crus galli, Cyperus rotundis, and Equisetum
ramosissimum. Liquidambar formosana and Cunninghamia lanceolata are dominant tree species
in Deciduous broad-leaved forests (DB) and Coniferous forests (CF), respectively. The
Coniferous broad-leaved mixed forests (CB) are dominated by C. lanceolata, Alniphyllum
fortunei, Sassafras tzumu, Syzygium buxifolium., etc. The Evergreen broad-leaved forests (EB)
are dominated by that of evergreen and deciduous trees such as Castanopsis eyrei, Castanop-
sis nigrescens, Cyclobalanopsis glauca, Syzygium buxifolium., etc. [33]. Specific information
about the sampling sites can be found in Table 1. A total of 30 composite soil samples were
collected from five stages of succession, with three replicates and two depths (5 succession
stages × 2 depths × 3 replicates). For each succession stage, three 40 m × 40 m plots were
established, from which five soil cores (5 cm in diameter) were collected from each plot,
encompassing the 0–10 cm and 10–30 cm layers. The soil samples, totaling 30, were trans-
ported to the laboratory packed with dry ice, and were subsequently sieved to eliminate
rocks and visible roots. Soil samples were then stored at 4 ◦C for chemical analysis, or at
−80 ◦C for DNA extraction.

Table 1. Detailed successional information on dominant tree species, soil types, and altitude in the
subtropical forests on the western slope of the Wuyi Mountains. Abandoned lands (AL), Deciduous
broad-leaved forests (DB), Coniferous forests (CF), Coniferous broad-leaved mixed forests (CB), and
Evergreen broad-leaved forests (EB).

Successional Stages Dominant Tree Species Soil Types Altitude (m)

AL Euphorbia latiris and Echinochloa crus galli yellow-red soil 250–318
DB Liquidambar formosana yellow-red soil 273–488
CF Cunninghamia lanceolata and Pinus massoniana yellow-red soil 452–501

CB Cunninghamia lanceolata, Alniphyllum fortunei,
Sassafras tzumu, Syzygium buxifolium yellow-red soil 297–453

EB Castanopsis eyrei, Castanopsis nigrescens,
Cyclobalanopsis glauca and Syzygium buxifolium yellow-red soil 287–454

2.2. Determination of Soil Physicochemical Properties

Soil pH was analyzed in a 1:5 (soil/water, w/v) ratio with a bench-top electrode pH
meter. The oven-drying method was used to measure soil water content. In order to
determine soil nutrient contents, air-dried soil samples were milled and passed through a
0.15 mm sieve. The concentrations of soil total organic C (TOC) and total N concentrations
(TN) were measured using an elemental analyzer (Flash 2000 HT, Thermo Fisher Scientific,
Bremen, Germany).
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2.3. DNA Extraction, Amplicon Library Preparation, and Sequencing

Total microbial genomic DNA was extracted from 0.5 g of soil samples using the
E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) according to manufac-
turer instructions. The hypervariable region V3–V4 region for the bacterial 16S rRNA
and the broad-spectrum primers for fungi were amplified with the primer pairs 338F
(5′-ACTCCTACGGGAGGCAGCA-3′), 806R (5′-GGACTACHVGGGTWTCTAAT-3′) and
ITS1 (5′-CTTGGTCATTTAGAGGAAGTAA-3′), ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′),
respectively [34]. All samples were amplified in triplicate. The amplified and purified am-
plicons were pooled in equimolar amounts and paired-end sequenced on an Illumina MiSeq
PE300 platform (Illumina, San Diego, CA, USA) using the standard methods provided by
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).

2.4. Sequence Data Processing

Paired-end sequences were demultiplexed using QIIME 2 [35], followed by further
processing of the raw sequences with DADA2. The default settings were used, with the
exception of trimming the forward and reverse reads to 240 bases for the 16S rRNA gene.
No length filtering was carried out for the ITS region. Following the removal of low-quality
reads and the merging of paired reads, operational taxonomic units (OTUs) clustering was
conducted based on a 97% similarity threshold using non-redundant sequences (excluding
single sequences) based on the SILVA r138 database [36] and the UNITE v8.0 database [37]
for prokaryotes and fungi, respectively, through naïve Bayes classifier [38]. Singletons and
16S rRNA sequences identified as belonging to the Eukaryota were discarded. In total,
1,831,407 high-quality sequences for prokaryotes and 2,569,298 high-quality sequences for
fungi were obtained.

2.5. Statistical Analysis

All statistical analyses were conducted using the vegan package in R (Version 4.0.2),
unless specifically mentioned. The Chao1 and Shannon index for both bacterial and fungal
communities was computed to assess the changes in soil microbial species richness and
diversity. To evaluate the significance of differences along successional stages at the p < 0.05
level, such as soil properties and microbial diversity indices, one-way analysis of variance
(ANOVA) or the Kruskal–Wallis rank-sum test were performed employing the Pgirmess
packages. The linear discriminant analysis (LDA) effect size (LEfSe) was used to detect
significant variations in the phyla of bacteria and fungi (LDA score > 2.0, p < 0.05) [38]. The
principal coordinate analysis (PCoA) based on Bray–Curtis dissimilarity was applied to
examine the differences in community composition during the succession. The analysis
of similarity (ANOSIM) and (Adonis) was performed based on the Bray–Curtis distance.
Distance-based redundancy analysis (db-RDA) was performed to investigate the effect of
soil physicochemical properties on soil bacterial and fungal community structure. The
visualizations were finished using the ggplot2 package.

To understand the microbial community assembly, the Null model-based approach
was applied to calculate the weighted β nearest taxon index (βNTI) and Bray–Curtis-based
Raup-Crick (RCbray) values [39,40]. Based on the βNTI and RCbray indices, the relative
importance of the deterministic and stochastic processes in soil microbial community
assembly was determined [40]. The “iCAMP” package in R was used to calculate the
βNTI by comparing the standard deviation of observed data with the null distribution of
phylogenetic β-diversity metrics [20]. When the absolute value of βNTI is greater than
2, it means that the assembly of the community is dominated by deterministic processes.
In a more specific categorization, the heterogeneous selection is represented by βNTI > 2,
whereas the homogeneous selection is represented by βNTI < −2. In addition, the absolute
value of βNTI is less than 2, indicating the dominance of stochastic processes. RCbray was
calculated by estimating the standard deviation between the empirical data and the null
distribution of taxonomic β-diversity metrics [20]. Three types of random processes may
be classified using βNTI and RC coupling. (1) |βNTI| < 2 and RCbray > 0.95: dispersal
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limitation; (2) |βNTI| < 2 and RCbray < −0.95: homogenizing dispersal; (3) |βNTI| < 2
and RCbray < −0.95: drift [41].

3. Results
3.1. Soil Physicochemical Properties along the Succession Stages

Regarding soil characteristics, soil TOC ranged from 18.04 g kg−1 in the Abandoned
lands (AL), 57.80 g kg−1 in the Coniferous forests (CF), and 79.14 g kg−1 in the Ever-
green broad-leaved forests (EB) at 0–10 cm soil depths (Table S1). Soil TOC ranged from
16.33 g kg−1 in the Abandoned lands (AL) and 55.73 g kg−1 in the Evergreen broad-leaved
forests (EB) at 10–30 cm soil depths (Table S1). Soil TOC showed a notable increasing trend
from the initial to the terminal phases of succession (p < 0.05). pH decreased significantly
from 5.33 in the AL to 4.96 in the EB at 10–30 cm soil depths (p < 0.05), and there were
no dramatic changes in pH at 0–10 cm soil depths among succession stages (Table S1).
However, there were no significant differences in TN, C:N ratio, and moisture among
succession stages (Table S1).

3.2. The Diversity and Composition of Soil Microbial Communities along the Succession Stages

During the succession stages, 1,402,689 and 2,001,323 high-quality effective sequences
of bacteria and fungi, respectively, were obtained. The sequences were resampled to 33,560
and 49,363 OTUs for bacteria and fungi, respectively. The six main phyla of bacteria along
the succession stages were Proteobacteria (10.41%~51.41%), Acidobacteria (7.18%~34.22%),
Actinobacteria (5.69%~28.71%), Chloroflexi (2.90%~20.85%), Planctomycetota (0.59%~9.88%),
and Firmicutes (0.92%~10.28%) (Figure 1A). For fungi, Ascomycota (22.74%~90.28%) and
Basidiomycota (2.99%~61.08%) were the dominant fungal phyla, whereas Mortierellomycota
(0.37%~44.72%) and Rozellomycota (0.07%~13.10%) were the main fungal phyla (Figure 1B).
There was similarity in the relative abundances of bacteria and fungi phyla at 0–10 cm and
10–30 cm soil depths.
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Figure 1. The relative abundances of the major soil bacterial (A) and fungal (B) phyla at different soil
depths along the succession. The relative abundance of phyla less than 1% are merged into “Others”.
Abandoned lands (AL), Deciduous broad-leaved forests (DB), Coniferous forests (CF), Coniferous
broad-leaved mixed forests (CB), and Evergreen broad-leaved forests (EB).

The diversity (Shannon index) and richness (Chao1 index) of soil bacteria and fungi
changed inconsistently along the succession stages (Figure 2). The bacterial Chao1 and
Shannon index showed a notable decreasing trend from Abandoned lands (AL) to Conifer-
ous forests (CF) to Evergreen broad-leaved forests (EB) at 0–10 cm and 10–30 cm soil depths
(p < 0.05) (Figure 2A,B). The change of fungal Chao1 at 10–30 cm soil depth was opposite
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that of bacteria, and it reached the maximum value in the EB forest (Figure 2C). The Chao1
index of fungi at 0–10 cm soil depth did not show an increasing trend (Figure 2C). The
fungal Shannon indices showed no significant changes at 0–10 cm and 10–30 cm depths
along the succession stages (p > 0.05; Figure 2D).
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Figure 2. The changes in α-diversity index for both bacterial (A,B) and fungal communities (C,D)
at different soil depths across the succession stages in subtropical forests. Significant changes are
indicated by different letters (p < 0.05) among succession stages. Abandoned lands (AL), Deciduous
broad-leaved forests (DB), Coniferous forests (CF), Coniferous broad-leaved mixed forests (CB), and
Evergreen broad-leaved forests (EB).

3.3. The Beta Diversity of Soil Microbial Communities along the Succession Stages

The results of the principal coordinate analysis (PCoA) revealed that the structure of
the soil bacterial and fungal communities showed the same change along the succession
stages (Figure 3A,B). The results of Adonis tests (Bray–Curtis distance) showed no signifi-
cant disparity between CB and EB (p > 0.05; Table S2). However, a notable divergence was
observed in the bacterial and fungal community structure between AL and natural forests,
including DB, CF, CB, and EB (Adonis test, p < 0.01; Adonis test, p < 0.01; Figure 3A,B).

According to LEfSe analysis, the soil bacterial and fungal communities significantly
changed along the succession stages. Among them, 21 bacterial phyla were abundant
differently along the succession stages (Figure 4A). The most phyla (Chloroflexi, Firmicutes,
Nitrospirota, Methylomirabilota, and Bacteroidota) were mainly enriched in the Abandoned
lands (AL). Proteobacteria, Acidobacteriota, and Actinobacteriota were enriched in Coniferous
forests (CF) and Evergreen broad-leaved forests (EB), respectively. For fungi, seven fungal
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phyla were abundant differently along the succession stages (Figure 4B). Ascomycota and
Chytridiomycota were mainly enriched in the Abandoned lands (AL), and Basidiomycota was
enriched in the Evergreen broad-leaved forests (EB) (Figure 4B).
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3.4. The Changes in Microbial Assembly Processes along the Succession Stages

The β-NTI values and RCbray values were used to assess the ecological processes of
soil microorganisms along the succession stages. The median βNTI values for the AL, DB,
CB, and EB were greater than those of the CF (p < 0.05; Figure 5A). Meanwhile, the median
βNTI values for the AL, DB, CB, and EB were more than two, whereas the median βNTI
value for the CL was less than two (Figure 5A). This indicated that bacterial community
assembly shifted from deterministic processes to stochastic processes to deterministic
processes during the whole succession stages. For fungi, the community assembly processes
were different from those of bacteria. The median βNTI values of the AL, DB, CB, and EB
were higher than those of the CF (p < 0.05; Figure 5B). However, all values of the median
βNTIs were less than two, indicating that stochastic processes mainly influenced fungal
community assembly. Furthermore, the fungal community assembly remained unchanged
across the whole succession stage (Figure 5B).
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(p < 0.05) among succession stages. Abandoned lands (AL), Deciduous broad-leaved forests (DB),
Coniferous forests (CF), Coniferous broad-leaved mixed forests (CB), and Evergreen broad-leaved
forests (EB).

3.5. The Correlations between Soil Microbial Communities and Soil Properties

Distance-based redundancy analysis (db-RDA) revealed the key soil environmen-
tal factors shaping the soil bacterial variation at the OTU level. (Figure 6A). The soil
environmental factors accounted for a total of 58.89% of the variance in bacterial com-
munities. Specifically, RDA1 and RDA2 explained 35.11% and 23.78% of the total vari-
ation, respectively (Figure 6A). The structure of the bacterial communities was mostly
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determined by TOC (p < 0.01; Figure 6A). The soil environmental factors accounted for
11.7% (CCA1 = 6.7%, CCA2 = 5.0%) of the variation in the fungal community structure
(Figure 6B). The TOC, pH, C:N ratio, and TN significantly influenced the variability in soil
fungal communities (p < 0.01; Figure 6B).
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4. Discussion
4.1. The Structure and Diversity of Soil Microbial Communities during the Succession Stages

Soil bacteria and fungi are the main drivers of material cycling and play important
roles along the forest succession [42]. The α-diversity of soil bacterial communities exhib-
ited a notable decline from the initial to the terminal phases of succession, aligning with
findings from previous research [15,26,43]. However, soil fungal α-diversity did not vary
during the succession stages, which was supported by the previous studies [15,32].This
does not completely align with our first hypothesis. The reason for the different responses
of bacterial and fungal α-diversity to forest succession is that they have different survival
strategies. Compared with the EB, more weeds like Euphorbia latiris, Echinochloa crus galli,
and Cyperus rotundis were prevalent in the AL. Seasonal variation in the plant community
in the AL may create more dynamic and unpredictable conditions [44]. To adapt to this
relatively unfavorable environment, soil bacteria adopt an r-strategy survival mode, result-
ing in higher diversity. Beginning in the succession stage of CF, the environment becomes
relatively stable, and bacteria are subject to selection pressure from soil organic carbon [10].
As a result, the abundance of rare bacterial communities decreased, whereas bacteria that
can utilize the substrate were enriched [45]. As a K-strategy survival mode, the diversity of
fungi was less sensitive to the succession of forests [46], and the null models also indicated
that the response of fungi to succession is primarily driven by stochastic processes.

The PCoA and Adonis analyses revealed significant changes in the bacterial and
fungal community structures at both depths throughout the succession. Many previous
studies have obtained similar results [18]. LEfSe analysis indicated that there was a general
shift from Chloroflexi, Firmicutes, Nitrospirota, and Bacteoidota in AL to Proteobacteria and
Acidobacteria in the CF to Actinobacteria in the EB. There were two possible reasons for our
results. Firstly, it is widely accepted that copiotrophic microorganisms are associated with
the r-strategy, while oligotrophic microbes are regarded as being intimately linked to the
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K-strategy [31,47]. The relative abundance of Actinobacteria and Acidobacteria, which are
indicative of k-strategy bacteria, has notably risen in comparison to the AL, whereas the
relative abundance of Bacteroides belonging to the r-strategy bacteria showed an opposite
trend. This suggests that the bacterial communities shifted from an r-strategy to a k-strategy
in conjunction with the different phases of vegetal succession. Secondly, soil bacterial
communities that were capable of sporulation and strong stress resistance were enriched in
the AL. In hostile conditions, Firmicutes were able to produce resistant endospores [48]. For
fungi, there was a general shift from Ascomycota enriched in the AL to Basidiomycota in the EB
along the succession. This aligns with the findings of fungal community succession in the
middle- and high-latitude regions [49,50]. Generally, members of the Ascomycota phylum
demonstrate high resistance to disturbed environments. Meanwhile, Basidiomycota is crucial
in breaking down stubborn organic matter because it contains several ectomycorrhizal and
saprophytic fungi, which are vital for decomposing complex chemicals [51,52].

4.2. The Changes in Soil Microbial Community Assembly Processes during the Succession Stages

The establishment and maintenance of a vast variety of soil microorganisms has
been a central issue in microbial ecology [16]. Our findings indicate that the median
βNTI values decreased first and then increased along with the succession stages. The
deterministic process was dominant in the four succession stages except for that in the
CF. Although deterministic processes dominated both the initial and terminal succession
stages, the factors of selection differed. At the initial stage of succession, soil bacteria are
under multiple selective pressures due to the combination of harsh environments and
substrates, whereas soil substrate was the main factor in selection at the terminal stage of
succession [17]. The db-RDA findings indicated that TOC had a pivotal role in altering the
bacterial community structures. Compared with the DB and EB, Cunninghamia lanceolata
in the CF has lower nutrient content, higher lignin, and secondary metabolites, making it
less susceptible to microbial utilization. Li et al. (2023) found that the decomposition rate
of conifer litter was lower compared to that of broad-leaved species. Increased nutrient
inputs may amplify the significance of stochastic processes in the relative abundance of
taxonomic units [53].

For fungi, the median βNTI values significantly changed along with the succession
stages. This is consistent with our second hypothesis. However, all of the median βNTI
values were between 2 and –2, indicating that the stochastic process was dominant in
the soil fungal community. These findings were consistent with the results of previous
research [54,55]. This result was the consequence of multiple factors. As mentioned
earlier, fungi are considered K-selected species and exhibit relatively low sensitivity to
environmental changes [46]. The CCA findings revealed that soil fungal community
structure was impacted by soil physicochemical properties beyond only TOC, suggesting
that other soil environmental factors (pH and C:N ratio) play a role in regulating fungal
community composition. Almost all tree species are ectomycorrhizal (ECM) tree species
throughout the complete succession stage. Free-living soil fungi, especially saprotrophic
fungi, compete with ECM fungi for resources [56].

4.3. Soil Physicochemical Properties Drive Soil Microbial Community Changes

Many studies have demonstrated that forest succession modifies soil characteris-
tics, which in turn impacts the composition and diversity of the soil microbial communi-
ties [31,32,57]. According to our findings, TOC showed an increasing trend along with the
succession stages (Table S1). It is worth pointing out that only TOC was the main factor
in the shift of the soil bacterial communities. This partly supports our third hypothesis.
Numerous earlier investigations revealed strong positive relationships between TOC and
the soil microbial communities [10,58]. Elevated TOC along with the succession indicated
that more substrate and nutrients became available for soil microbes. Furthermore, ex-
tensive research has unequivocally shown that the alterations in tree species resulting
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from secondary succession induce forest soil acidification. [15,59]. The soil pH exhibited a
declining pattern in our investigation, while no notable disparity was observed (Table S1).

Unlike the findings for bacteria, the results of CCA analysis illustrated that soil pH,
TN, and C:N ratio had an impact on the structure of the soil fungal community, in addition
to TOC. The other related studies have also found that multiple environmental factors
regulate the community structure of soil fungi [60,61]. Our research demonstrates that soil
pH exerts a more significant influence on fungal communities in comparison to bacterial
communities. Since fungi often have a greater pH tolerance range than bacteria, this is
likely due to the intense interplay between pH and other variables [62]. Although multiple
soil factors can affect the structure of fungal communities, the explanatory power of soil
factors on fungi is lower than that of bacteria, which may be due to differences in the
responses of bacterial and fungal community succession to forest succession.

5. Conclusions

From the Abandoned lands to the Evergreen broad-leaved forests, the diversity of
soil bacteria decreased, while fungal diversity did not vary along with the succession
stage, indicating that bacteria and fungi had distinct patterns along the forest succession.
Moreover, soil bacterial and fungal communities shifted with the succession. More im-
portantly, from Abandoned fields to Coniferous forests to Evergreen broad-leaved forests,
the community assembly of soil bacteria shifts from a deterministic process to a stochastic
process to a deterministic process. Throughout the whole succession, stochastic processes
predominantly governed the community assembly of soil fungal communities. TOC was
the influential soil environmental factor responsible for the change in the structure of the
bacterial communities. More soil environmental factors such as, TOC, TN, C:N ratio, and
pH co-regulate the changes in fungal community structure. Compared with soil fungi, the
structure and composition of soil bacterial communities are more sensitive to substrates.
In conclusion, our findings contribute to a better understanding of how the composition
and assembly processes of the soil microbial community respond to plant succession in
subtropical forests. For future work, co-occurrence networks, as well as abundant and rare
taxa of soil microbial communities, will be further explored in subtropical forests.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f15020242/s1, Table S1: Soil physical and chemical characteris-
tics along the succession; Table S2: Effects of forest succession on the composition of fungal and
bacterial communities.
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