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Abstract: Optical remote sensing data are widely used for constructing soil organic carbon (SOC)
mapping models. However, it is challenging to map SOC in forested areas because atmospheric
water vapor affects the results derived from optical remote sensing data. To address this issue, we
utilized Sentinel-1, Sentinel-2, and digital elevation model (DEM) data to obtain a comprehensive
feature set (including S1-based textural indices, S2-based spectral indices, and DEM-derived indices)
to map the SOC content in forested areas. The features set were the predictor variables, and the
measured SOC content was the dependent variable. The random forest algorithm was used to
establish the SOC model. The ratio of performance to inter-quartile range (RPIQ) was 2.92 when the
S2-based spectral indices were used as predictor variables. When the comprehensive feature set was
utilized as the model input, the model achieved an RPIQ of 4.13 (R2 = 0.91, root mean square error
(RMSE) = 9.18), representing a 41.44% improvement in model accuracy. The average SOC content
in the Greater Khingan Mountains was 43.75 g kg−1. The northern and southwestern parts had
higher SOC contents (>54.93 g kg−1), while the southeastern and northwestern parts had lower
contents (<39.83 g kg−1). This discrepancy was primarily attributed to agricultural activities. The
results indicate that using a comprehensive feature set and the random forest algorithm is a reliable
approach for estimating the spatial distribution of the SOC content in forested areas and is suitable
for forest ecology and carbon management studies.

Keywords: soil organic carbon; Sentinel-1; Sentinel-2; spatial distribution; random forest; forested area

1. Introduction

The soil is the largest carbon reservoir on the Earth’s surface and is vital in maintaining
the carbon balance and mitigating climate change [1,2]. Soils in forested areas contain
large amounts of organic carbon, with high rates of carbon absorption and conversion. The
accumulation of organic carbon in soils can reduce the carbon dioxide concentration in the
atmosphere, mitigating global warming, especially in forested areas [3–5]. Therefore, un-
derstanding the content and spatial distribution of soil organic carbon (SOC) in forest areas
is crucial for regulating the global carbon equilibrium and mitigating climate change [6,7].

Three methods have been commonly used to map SOC in forest areas. The first
method involves establishing field sampling points and conducting chemical analysis in
the laboratory, combined with a geostatistical analysis to estimate SOC distribution [8,9].
This method is simple and accurate but labor-intensive, and it is difficult to update the
data. The second method is the soil-landscape model proposed by [10]. It predicts the
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SOC content using environmental factors related to the SOC as predictive variables and
the measured SOC content as the dependent variable to establish a distribution prediction
model for SOC. This method is typically specific to a region and is not widely applicable to
areas outside the study area [11]. The third method uses spectral information from optical
images (such as Sentinel-2) to obtain vegetation information related to the SOC to predict
the SOC content [12–15]. This approach enables SOC mapping using remote sensing in
forested areas because spectral information on the soil cannot be obtained directly due to
vegetation cover in forested areas.

However, the atmospheric water vapor content is relatively high over forest areas due
to tree transpiration and temperature differences, affecting the spectral reflectance data
and resulting in significant uncertainty in SOC mapping relying solely on optical remote
sensing data [16,17]. Therefore, it is challenging to estimate the SOC content in forested
areas using only spectral features, and the model accuracy and stability are insufficient.

Therefore, this study utilizes Sentinel-1 (S1), Sentinel-2 (S2), and digital elevation
model (DEM) data to obtain a comprehensive feature set for predicting the SOC content in
forest areas. The features set are the predictor variables, and the measured SOC content is
the dependent variable. The random forest (RF) algorithm is used to map SOC in forested
areas at the regional scale.

The Sentinel-1 mission comprises a constellation of two polar-orbiting satellites
equipped with active microwave sensors. The C-band synthetic aperture radar (SAR)
sensor onboard the satellites has a spatial resolution of 5–20 m and captures backscatter
information from multiple polarization channels on the Earth’s surface. SAR is highly
sensitive to surface roughness and is not affected by cloud cover or water vapor; thus,
it has been used as complementary data to optical imagery to establish SOC mapping
models [18,19]. Additionally, the relief significantly affects soil formation, resulting in
spatial heterogeneity in soil properties at the regional scale [20]. The topographic re-
lief influences SOC accumulation, therefore, topographic variables are indicators of the
SOC content.

Random Forest (RF) models are effective for determining the mapping relationship
between the SOC content and a comprehensive feature set. Zhang et al. [15] used remote
sensing data and climatic and topographical variables as covariates with the RF algorithm
to estimate the SOC content of coastal wetland soil. Nabiollahi et al. [21] used the RF
model combined with Landsat 8 images to predict SOC contents in forests, wetlands, and
cultivated land. The RF model exhibited high robustness. Xu et al. [22] employed an
optimized RF model alongside the remote sensing indices to map the SOC content across
the Weibei Plain in China. The aforementioned researchers utilized remote sensing data
and the RF model to estimate SOC, obtaining satisfactory accuracy. The RF algorithm is
a machine learning method that uses several parallel weak estimators and voting on the
results of all decision trees. It is not affected by variable collinearity, has high generalization
ability, and is applicable to describe the nonlinear relationships between the features and
the soil properties [23–25].

The objectives of this study are to: (1) construct a comprehensive feature set to predict
the SOC content in forested areas using S1, S2, and DEM data; and (2) establish an RF-based
SOC mapping model for forested areas.

2. Materials and Methods
2.1. Study Area

The study area (Greater Khingan Mountains) is located northwest of Heilongjiang
Province and northeast of the Inner Mongolia Autonomous Region (Figure 1). It covers an
area of about 84,800 km2 (50◦07′02′′ N~53◦33′42′′ N and 121◦10′53′′ E~127◦01′21′′ E). The
area has a cold temperate monsoon climate. The average temperature is −22.7 ◦C in winter
and 16.5 ◦C in summer. The annual temperature difference is large, and the annual average
rainfall is about 460 mm. The terrain is high in the southwest and low in the northeast.
The average altitude is 573 m. The dominant soil types are Podzol and Phaeozems [26].
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Forest area (e.g., coniferous forests and broad-leaved forests) account for 79.83% of the
Greater Khingan Mountains. Vegetation has a positive effect on the accumulation of SOC.
Therefore, this region is an important area for forestry products in China.

Forests 2024, 15, x FOR PEER REVIEW 3 of 18 
 

 

2. Materials and Methods 

2.1. Study Area 

The study area (Greater Khingan Mountains) is located northwest of Heilongjiang 

Province and northeast of the Inner Mongolia Autonomous Region (Figure 1). It covers an 

area of about 84,800 km2 (50°07′02″ N~53°33′42″ N and 121°10′53″ E~127°01′21″ E). The 

area has a cold temperate monsoon climate. The average temperature is −22.7 °C in winter 

and 16.5 °C in summer. The annual temperature difference is large, and the annual aver-

age rainfall is about 460 mm. The terrain is high in the southwest and low in the northeast. 

The average altitude is 573 m. The dominant soil types are Podzol and Phaeozems [26]. 

Forest area (e.g., coniferous forests and broad-leaved forests) account for 79.83% of the 

Greater Khingan Mountains. Vegetation has a positive effect on the accumulation of SOC. 

Therefore, this region is an important area for forestry products in China. 

 

Figure 1. Location of sampling sites in the study area: (a) map of the study area; (b) location of soil 

samples; (c) five-point sampling method. 

2.2. Sample Collection and Chemical Analysis 

The soil type, topography, and transportation conditions in the Greater Khingan 

Mountains were considered to determine the location of 177 soil sampling sites (Figure 

1b) using ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA). Field sampling was con-

ducted in July 2018 to minimize the impact of ice and snow cover in the satellite images. 

Surface soil samples (0–20 cm) were collected using the five-point sampling method (Fig-

ure 1c) and a soil drill [27]. The soil samples at each sampling point were mixed (500–600 

g), packed into an airtight plastic bag, and sent to the laboratory for subsequent pro-

cessing. 

The latitude and longitude coordinates of the sample locations were recorded using 

a handheld GPS, and photos of the surrounding environment were obtained with a cam-

era. The samples were air-dried (25 °C), and weeds, gravel, and other debris were re-

moved. They were ground and passed through a 2 mm nylon mesh. The soil samples were 

weighed (0.1 g) and placed in a porcelain boat. Then, 2 mol/L hydrochloric acid was added 

to remove inorganic carbon, followed by oven-drying at 70 °C. The samples were placed 

in a Multi N/C 3100 analyzer (Jena, Germany) to determine the SOC content[28]. 

  

Figure 1. Location of sampling sites in the study area: (a) map of the study area; (b) location of soil
samples; (c) five-point sampling method.

2.2. Sample Collection and Chemical Analysis

The soil type, topography, and transportation conditions in the Greater Khingan
Mountains were considered to determine the location of 177 soil sampling sites (Figure 1b)
using ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA). Field sampling was conducted
in July 2018 to minimize the impact of ice and snow cover in the satellite images. Surface
soil samples (0–20 cm) were collected using the five-point sampling method (Figure 1c) and
a soil drill [27]. The soil samples at each sampling point were mixed (500–600 g), packed
into an airtight plastic bag, and sent to the laboratory for subsequent processing.

The latitude and longitude coordinates of the sample locations were recorded using a
handheld GPS, and photos of the surrounding environment were obtained with a camera.
The samples were air-dried (25 ◦C), and weeds, gravel, and other debris were removed.
They were ground and passed through a 2 mm nylon mesh. The soil samples were weighed
(0.1 g) and placed in a porcelain boat. Then, 2 mol/L hydrochloric acid was added to
remove inorganic carbon, followed by oven-drying at 70 ◦C. The samples were placed in a
Multi N/C 3100 analyzer (Jena, Germany) to determine the SOC content [28].

2.3. Deriving a Comprehensive Feature Set for Characterizing SOC in Forested Areas
2.3.1. S1, S2, and DEM Data Acquisition and Preprocessing

The European Space Agency (ESA) launched S1, an Earth observation satellite. It has a
C-band SAR sensor capable of penetrating clouds and fog, enabling all-weather and all-day
monitoring, and providing early warning data. Six Interferometric Wide-Swath Ground
Range Detected images acquired on 1 October 2018 and 17 October 2018 were downloaded
from the ESA Open Access Center https://scihub.copernicus.eu/ (accessed on 10 January
2023). The radar tool of the Sentinel Application Platform (SNAP) software (version,
2020) was used to convert the C-band SAR raw intensity signal data into polarization
backscattering coefficients of the vertical transmit-vertical receive (VV) and the vertical
transmit-horizontal receive (VH) channels. Preprocessing included thermal and border
noise removal, orbit correction, radiometric calibration, speckle filtering, terrain correction,
and conversion from the decibel (dB) scale to the linear scale [29,30].

https://scihub.copernicus.eu/
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S2 consists of S2A and S2B, which were launched by the ESA in 2015 and 2017,
respectively. The purpose is for environmental monitoring and disaster relief. The S2
images have 13 bands, and the satellite has a 10-day revisit period. The red-edge bands
(Band 5, Band 6, and Band 7) are highly sensitive to vegetation properties [31]. More
details on S2 have been described in [32]. Seventeen scenes of S2 Level-1C images were
downloaded from the ESA Center. The images were acquired on 1 October 2018 and
17 October 2018. Radiometric calibration and atmospheric correction of the Level-1C data
were executed in SNAP software to obtain ground reflectance (Level-1A) data. The images
were resampled to a 10 m resolution. Band 1 is the coastal band, and bands 9 and 10 are
aerosol and atmospheric bands, respectively. These were not used in the SOC modeling [33].

DEM contains ground elevation data, which provide information on SOC in forested
areas. The 30 m DEM data were downloaded from the Geospatial Data Cloud website
http://www.gscloud.cn/ (accessed on 15 January 2023). They were resampled to 10 m
resolution and co-registered with the S1 and S2 data.

2.3.2. S2-Based Spectral Indices

A spectral index is a spectral band combination containing useful information in
remote sensing images. They reduce the complexity of data processing. Therefore, in
addition to the 10 bands of the S2 imagery, 16 spectral indices closely related to the SOC
content were selected from the literature to predict the SOC content in forest areas: clay
mineral ratio (CMR), normalized difference built-up index (NDBI), normalized difference
vegetation index (NDVI), forest wetland index (FWI), normalized difference tillage index
(NDTI), enhanced vegetation index (EVI), red edge position index (REPI), soil-adjusted
vegetation index (SAVI), green normalized difference vegetation index (GNDVI), inverted
red edge chlorophyll index (IRECI), infrared percentage vegetation index (IPVI), ratio
vegetation index (RVI), difference vegetation index (DVI), modified normalized difference
water index (MNDWI), red green ratio index (RGRI), and green vegetation index (GVI).
Table 1 lists the index equations.

Table 1. S2-based spectral indices and their equations.

ID Equations Reference

1 Single bands ---
2 CMR = SWIR1/SWIR2 [34]
3 NDBI = (SWIR1 − NIR)/(SWIR1 + NIR) [35]
4 NDVI = (NIR − Red)/(NIR + Red) [36]
5 FWI = (NIR − Red)/SWIR2 [37]
6 NDTI = (SWIR1 − SWIR2)/(SWIR1 + SWIR2) [38]
7 EVI = 2.5(NIR − Red)/(NIR + 6Red − 7.5Blue + 1) [39]
8 REPI = 700 + 35(((Red + Red−edge 3)/2)− Red−edge 1)/(Red−edge 2 − Red−edge 1) [40]
9 SAVI = 1.5((NIR − Red)/(NIR + Red + 0.5)) [41]

10 GNDVI = (NIR − Green)/(NIR + Green) [42]
11 IRECI = (Red−edge 3 − Red)/(Red−edge 1+Red−edge 2) [43]
12 IPVI = NIR/(NIR + Red) [44]
13 RVI = NIR/Red [45]
14 DVI = NIR − Red [46]
15 MNDWI = (Green − SWIR1)/(Green + SWIR2) [47]
16 RGRI = Red/Blue [48]
17 GVI = NIR/Green [49]

2.3.3. S1-Based Textural Indices

S1-based textural indices were derived from the S1 radar image. Texture information
represents the macrostructure and microstructure of the forest area. Two polarimetric
backscattering coefficients of the S1 image were used to extract four textural indices,
including the difference between the polarization coefficients of VV and VH (DI), the ratio
of the polarization coefficients of VV and VH (RI), the normalized difference index of the

http://www.gscloud.cn/
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polarization coefficients between VV and VH (NDI), and the average of the sum of the
polarization coefficients of VV and VH (AVE). Additionally, texture features based on the
gray-level co-occurrence matrix were extracted [50], including the mean (MEA), variance
(VAR), homogeneity (HOM), contrast (CON), dissimilarity (DIS), entropy (ENT), second
moment (SM), and correlation (COR). Table 2 lists the equations for the textural indices.

Table 2. S1-based textural indices and their equations.

ID Equations Reference

1 VH = Vertical transmit-horizontal receive polarization ---
2 VV = Vertical transmit-vertical receive polarization ---
3 DI = VH − VV [51]
4 RI = VH/VV [51]
5 NDI = (VH − VV)/(VH + VV) [51]
6 AVE = (VH + VV)/2 [51]

7 MEA = 1
MN

M−1
∑

i=0

N−1
∑

j=0
f (i, j, d, θ) [52]

8 VAR =
M−1
∑

i=0

N−1
∑

j=0
(i − µ)2 f (i, j, d, θ) [52]

9 HON =
M−1
∑

i=0

N−1
∑

j=0

f (i,j,d,θ)
1+(i−j)2

[52]

10 CON =
M−1
∑

i=0

N−1
∑

j=0
(i − j)2 f (i, j, d, θ) [52]

11 DIS =
M−1
∑

i=0

N−1
∑

j=0
|i − j| f (i, j, d, θ) [52]

12 ENT = −
M−1
∑

i=0

N−1
∑

j=0
f (i, j)lg f (i, j, d, θ) [52]

13 SM =
M−1
∑

i=0

N−1
∑

j=0
f (i, j, d, θ)2 [52]

14 COR =
M−1
∑

i=0

N−1
∑

j=0

(i−µ)(j−µ) f (i,j,d,θ)2

δ2
[52]

Note: f (i, j) represents the frequency of simultaneous occurrence of pixel pairs with gray levels of i and j (i, j = 0,
1, 2, 3, . . ., N); d is the relative distance represented by the number of pixels; θ denotes the four directions: 0◦, 45◦,
90◦, and 135◦.

2.3.4. DEM-Derived Indices

DEM-derived indices are critical surface parameters that reflect the distribution of soil
material and energy [53]. Therefore, 15 DEM-derived indices were extracted to characterize
SOC in forested areas: analytical hillshading (AH), aspect (A), closed depressions (CD),
convergence index (CI), plan curvature (PC), relative slope position (RSP), topographic
wetness index (TWI), channel network base level (CNBL), relative slope position (RSP),
length–slope factor (LSF), profile curvature (PFC), slope (S), channel network distance
(CND), total catchment area (TCA), and valley depth (VD). The DEM-derived indices were
calculated using SAGA software (Automated Geoscientific Analyses, Marburg, Germany,
version 7.9) [54].

2.3.5. Predictor Covariate Selection

The Spearman correlation coefficient-variance inflation factor (SCC-VIF) was used to
select the best predictive variables. It considers the multicollinearity between parameters
and the degree of information redundancy. Using predictive variables closely related to
the SOC content can improve the training efficiency, robustness, and performance of the
mapping model. The SCC-VIF is calculated as follows:

SCC = 1 − 6∑ di
2

n(n2 − 1)
(1)
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VIF =
1

1 − R2 (2)

where n is the total number of soil samples, di is the difference in the SOC content between
two samples, and ∑ d2

i is the squared sum of the differences between the two samples. A
VIF < 3 indicates no multicollinearity between the predictors, VIF > 3 indicates potential
multicollinearity, VIF > 5 indicates a low probability of multicollinearity, and VIF > 10
indicates a high probability of multicollinearity [55].

2.4. Mapping Model and Evaluation

The RF algorithm was developed by Breiman in 2001 [56,57]. It is a technique for
ensemble learning that consists of multiple decision trees. Variables are selected randomly
using the bootstrap method. The results of multiple decision trees are aggregated by vot-
ing [58–60]. Therefore, the RF model has high generalization ability and is not prone to
overfitting. The number of decision trees (n_estimators) affects model accuracy. The estima-
tion error of the model is determined based on the out-of-bag (OOB) sample, and optimal
n_estimators are selected. We used the following parameter settings: n_estimators = 800;
oob_score = True; random_state = 0. The other settings were set to their default values [61].
The RF model was implemented in the Python 3.8 platform with the scikit-learn package.

The 177 soil samples were randomly split into calibration (n = 156) and validation
(n = 21) datasets with a ratio of 7:3, which were utilized for tenfold cross validation and
independent validation of the model, respectively. The quantitative evaluation indices of
the model’s prediction performance included the coefficient of determination (R2), root
mean square error (RMSE), and the ratio of performance to inter-quartile range (RPIQ)
(Equations (3)–(5)). The R2 value represents the proportion of the variance in the dependent
variable that is explained by the independent variable. The RMSE represents the difference
between the predicted and measured values. Ref. [62] have shown that when RPIQ ≥ 4.05,
the model has more accurate prediction ability. When 3.37 ≤ RPIQ < 4.05, the estimation
result is good. When 2.70 ≤ RPIQ < 3.37, the model can provide approximate estimation.
When 2.02 ≤ RPIQ < 2.70, it shows that the prediction result has a large gap with the real
value and needs further improvement [63]. Larger R2 and RPIQ values and smaller RMSE
values indicate higher estimation precision and resilience of the model [64].

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
(3)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

RPIQ =
IQ

RMSE
(5)

In the above equation, n (i = 1, 2, 3, . . ., n) is the number of soil samples, yi and ŷi are
the measured and predicted SOC contents value of sample i, respectively, yi is the average
SOC content, IQ is the quartile distance, i.e., the difference between the third quartile (75%
of the number of soil samples in the validation set ranked from small to large) and the
first quartile (25% of the number of soil samples in the validation set ranked from small
to large).

2.5. Flowchart

The flowchart for SOC mapping in forest areas utilizing S1, S2, and DEM data and the
RF algorithm is shown in Figure 2. The procedure begins with soil sample collection and
acquisition of the S1, S2, and DEM data, followed by the construction of the comprehensive
feature set (S1-based textural indices, S2-based spectral indices, and DEM-derived indices).
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The SCC-VIF method is then employed to determine the optimal parameters that character-
ize the SOC content in forest areas. These are the independent variables in the model, and
the measured SOC content is the dependent variable. An RF-based SOC mapping model is
established, and the prediction accuracy is evaluated.
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Figure 2. Flowchart for mapping the soil organic carbon (SOC) content of forested area using
Sentinel-1/2 and DEM data and the random forest algorithm.

3. Results
3.1. Descriptive Statistics of the SOC Content

Figure 3 displays the descriptive statistics of the SOC content for the total, calibration,
and validation sample sets. The SOC content of the total sample ranged from 11.59 to
161.01 g kg−1, with an average of 43.75 g kg−1. The coefficient of variation (CV) is typically
used to assess the level of dispersion in a dataset. The CVs of the total, calibration, and
validation sample sets exceeded 0.36, indicating a high degree of variation [65]. A soil
sample set with high CV values indicates high spatial heterogeneity. The kurtosis and
skewness describe the shape of the frequency distribution of the datasets. Their values
are 0 and 3, respectively, when a dataset is normally distributed. The skewness values
of total, calibration, and validation sample sets exceeded 0, indicating positive skewness,
suggesting that the SOC content in forested areas was unevenly distributed and influenced
by external disturbances. Therefore, it is necessary to perform SOC modeling in the Greater
Khingan Mountains.
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Figure 3. Descriptive statistics of the SOC contents in the (a) total; (b) calibration; and (c) validation
sample sets.

3.2. Feature Selection for Predicting the SOC Content in Forested Areas
3.2.1. Optimal S2-Based Spectral Indices

The SCC-VIF results of the S2-based spectral indices and SOC are presented in Figure 4.
Based on prior knowledge and multiple calculations, an SCC value of 0.8 was used as a
threshold. S2-based spectral indices with SCC values greater than 0.8 were selected for the
VIF test, and the remaining spectral indices were not included in the subsequent calculation.
The selected S2-based spectral indices were B6, B7, B8a, B11, MNDWI, NDTI, CMR, NDVI,
and IPVI. The VIF values of these nine selected S2-based spectral indices are shown in
Figure 4b. Based on the multicollinearity test, S2-based spectral indices with VIFs greater
than 5 were removed. Therefore, the selected S2-based spectral indices were B6, B8a, and
CMR. Overall, the chosen S2 spectral indices consisted of B6, B8a, CMR, DVI, EVI, RVI,
RGRI, REPI, and FWI.
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3.2.2. Optimal S1-Based Textural Indices

The SCC-VIF results of S1-based textural indices and SOC are displayed in Figure 5.
Based on prior knowledge and multiple operations, an SCC threshold of 0.8 was utilized.
S1-based textural indices with SCC values exceeding 0.8 were selected, and the remaining
S1-based textural indices were excluded from further calculations. The selected S1-based
textural indices consisted of VH_E, VH_C, VH_H, AVE, VV_H, VV_SM, VV_E, VV_D, and
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VV_V. Figure 5b illustrates the VIF values of the nine selected S1-based texture indices.
Based on the multicollinearity test, the S1-based textural indices with VIF values exceeding
5 were removed, and VH_E and AVE were selected. Overall, the chosen S1-based textural
indices comprised VH_E, AVE, DI, RI, NDI, VH_Cor, and VV_Cor.
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Figure 5. The variance inflation factor (VIF) value of the S1-based textural indices screened by
Spearman correlation coefficient (SCC). (a) Heat map of the SCC; and (b) VIF values of the S2-based
textural indices selected by the SCC.

3.2.3. Optimal DEM-Derived Indices

The SCC-VIF results of the DEM-derived indices and SOC are presented in Figure 6.
Based on prior knowledge and multiple calculations, an SCC threshold of 0.6 was utilized.
The remaining DEM-derived indices exhibited low collinearity and did not require VIF
testing. The selected DEM-derived indices were RSP, TCA, PFC, CNBL, and LSF. Figure 6b
displays the VIF values of the five selected DEM-derived indices. Based on the multi-
collinearity test, DEM-derived indices with VIF values exceeding 5 were removed, and
RSP, TCA, PFC, CNBL, and LSF were selected. Overall, the chosen DEM-derived indices
comprised RSP, TCA, PFC, CNBL, LSF, AH, A, CD, CI, PC, and TWI.
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3.3. Establishment of SOC Model with the Selected Indices as Predictor Covariates

Selecting SOC-sensitive indices as predictor covariates helps establish a precise SOC
mapping model for forested areas. We used 9 S2-based spectral indices (B6, B8a, CMR,
DVI, EVI, RVI, RGRI, REPI, and FWI), 7 S1-based textural indices (VH_E, AVE, DI, RI, NDI,
VH_Cor, and VV_Cor), and 13 DEM-derived indices (RSP, TCA, PFC, CNBL, LSF, AH,
A, CD, CI, PC, and TWI) as independent variables. The measured SOC content was the
dependent variable, and the RF model was used as the SOC mapping model.

The SOC estimation model contained predictor covariates and their combinations,
including S1-based textural indices, S2-based spectral indices, and DEM-derived indices
and their combinations. Figure 7 displays the estimation results on the validation set.
Among the models with single indices as inputs, the model based on the DEM-derived
indices had the best performance, with an RPIQ value of 3.56 (Figure 7c). The SOC
estimation model based on the S1-based textural indices and S2-based spectral indices
had RPIQ values of 2.71 and 2.92, respectively, (Figure 7a,b), indicating that models with
single indices provided good estimations (RPIQ > 2.70). Figure 7d shows the results
of the model with the comprehensive feature set. Most of the data in the scatter plots
were closely aligned with the 1:1 line, suggesting this model achieved the best estimation
accuracy (R2 = 0.91, RMSE = 9.78, RPIQ = 4.13). The R2 and RPIQ were 9.76% (0.82 versus
0.91) and 16.01% (3.56 versus 4.13) higher, respectively, and the RMSE was 13.80% (10.65
versus 9.18) lower than those of the model with only DEM-derived indices. The model
with the comprehensive feature set had higher accuracy for predicting the SOC content
than the model with single indices. The optimal performance was obtained from the model
with a combination of S1-based textural indices + S2-based spectral indices + DEM-derived
indices as the inputs.
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3.4. SOC Distribution Map

We applied the optimal model to the full research region to assess model’s generaliza-
tion ability. The SOC content in the Greater Khingan Mountains is shown in Figure 8.
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Figure 8. Spatial distribution of soil organic carbon (SOC) content in the Greater Khingan Mountains.

The SOC distribution has a strip pattern, with higher values in the north and southwest.
The northern and southwestern regions have Phaeozems with a high humus content
due to dense vegetation cover and favorable low temperatures for humus fixation and
accumulation. Conversely, the southeast and northwest regions have lower SOC contents
(<39.83 g kg−1). The southeast is dominated by cultivated land and grassland significantly
affected by human activities, such as reclamation, resulting in relatively low SOC contents.
The SOC content varies significantly, with the lowest value at 15.84 g kg−1, the highest
at 129.12 g kg−1, and an average of 49.83 g kg−1. This significant variation confirms the
results of the descriptive statistics of the SOC content. The majority of SOC contents in the
Greater Khingan Mountains are in the range of 34.94–54.93 g kg−1, accounting for 60.05%
of the total. SOC values below 15.84 g kg−1 and above 69.15 g kg−1 represent 20.71%
and 3.76%, respectively. However, it is important to note that the model’s range for the
predicted SOC content (15.84 g kg−1–129.12 g kg−1) is narrower than the field-measured
range (11–161 g kg−1), indicating some limitations in estimating high SOC contents due to
the complex geographical environment of the Greater Khingan Mountains.

4. Discussion

In the SOC mapping models, the S2-based spectral indices were the most important,
followed by the DEM-derived and S1-based textural indices. The S2-based spectral indices,
S1-based textural indices, and DEM-derived indices accounted for 60.44%, 10.92%, and
28.65% of the total, respectively (Figure 9).

Vegetation has rich spectral information and provides indirect features (i.e., S2-based
spectral indices) for estimating the SOC content in forested areas [66]. The MSI sensor
onboard Sentinel-2 is highly sensitive to vegetation properties, particularly the newly added
red-edge band [67]. Among the selected spectral parameters, B8a and B6 were the most
important single bands; they are often considered indicators of plant growth. Additionally,
REPI (VI = 8.78%), RGRI (VI = 6.14), CMR (VI = 5.04), and FWI (VI = 4.36) were the most
important indices in mapping model construction. REPI has a high level of sensitivity
towards the red edge area of plant leaves and can indicate chlorophyll content [68]. The
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RGRI has been primarily used to assess the development of tree leaves and can also serve as
a parameter for estimating the SOC content in forested areas [48]. The CMR is related to soil
minerals and clay content and has been selected as a predictive covariate in SOC spectral
estimation models [69–71]. The FWI can distinguish healthy and unhealthy forest areas and
has been used for the indirect evaluation of the SOC content in forested areas [21,72,73].
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Figure 9. Variable importance (VI) of the predictor covariates in the SOC mapping model of forested
areas.

DEM and indices derived from them are critical parameters for characterizing to-
pographic relief and have a vital role in the material flow during the development of
SOC [23,74,75]. Therefore, these indices can reflect the distribution status of SOC. In this
study, DEM-derived indices were critical in the SOC mapping model. The PFC had the
highest VI value (6.86%), followed by RSP (5.25%) and LSF (3.63%). The PFC is used to
describe local variations in the terrain curvature, which can affect the velocity and direction
of water flow and material. This index can be used to identify areas with abrupt changes
in slope or aspect, explaining the spatial distribution of the SOC concentration [76]. The
RSP is used to identify the slope shape and is a crucial parameter for characterizing the
spatial distribution of the SOC content [20]. The LSF describes the influence of the slope
on soil erosion and is also a crucial parameter in determining the SOC content [77]. The
Greater Khingan Mountains have hilly terrain and uneven ground, affecting the allocation
of matter and energy inside the soil. Therefore, DEM-derived indices are key parameters in
SOC mapping models.

S1-based textural indices reflect the structure and grayscale conditions of the land
surface; thus, they are an important indicator of the SOC content in forested areas. The
AVE, RI, and VH_E had the highest VI values (3.25%, 1.51%, and 2.25%, respectively).
The inclusion of S1-based textural indices as predictor covariates significantly improves
the accuracy of SOC mapping models. Similarly, [78–81] and [30] also found that using
S1-based textural indices as predictor covariates in SOC mapping models improved the
mapping accuracy, particularly in areas with high cloud cover or dense vegetation.

The RF algorithm has significant advantages for describing the nonlinear relationship
between the SOC content and predictive features. SOC in forested areas has a complex
formation mechanism due to long-term interactions between forest litter and root exudates.
Therefore, the SOC content is typically correlated with vegetation and topography prop-
erties and texture features. In addition, partial least squares, artificial neural networks,
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and support vector machine algorithms have been employed as SOC mapping models for
forested regions, but their performance is lower than that of the RF model. The RF model
outperforms these models regarding sample requirements, multicollinearity, and efficiency.

The difference in the image acquisition time (October) and the soil sample collection
time (July) likely had a negligible effect because the SOC content changes slowly over
time [82]. At the second level, due to the effect of clouds, the signal-to-noise ratio of the
images acquired in July was very low due to clouds. Therefore, we selected images from the
nearest period (October). Although the vegetation and texture may have changed slightly,
the conditions still reflect the SOC content. The model’s R2 was 0.91, indicating relatively
high accuracy. Future studies will aim for a closer match between the sampling time and
the image acquisition time.

In summary, the combination of S2-based spectral indices, S1-based textural indices,
and DEM-derived indices (i.e., a comprehensive feature set) provided a better understand-
ing of the content and spatial distribution of SOC in forest regions than the use of single
index types. Additionally, the RF algorithm provided high accuracy for SOC content
mapping in forested areas.

5. Conclusions

This paper proposed a robust approach for mapping SOC in forested areas using
Sentinel-1/2 and DEM data. S1-based textural indices, S2-based spectral indices, and
DEM-derived indices were used as predictive variables, and the measured SOC content
was the dependent variable in the SOC mapping model. The RPIQ of the models with
the different index types were 2.71, 2.92, and 3.56, respectively. The model with the com-
bined indices had the highest performance (RPIQ = 4.13). Its RPIQ values were 52.40%,
41.44%, and 16.01% higher than that of the models with the single index types. The SOC
mapping results revealed a relatively high SOC content in the Greater Khingan Mountains,
with an average value of 43.75 g kg−1. The northern and southwestern parts had higher
SOC contents (>54.93 g kg−1), and the southeastern and northwestern parts had lower
contents (<39.83 g kg−1), which was primarily attributed to agricultural activities. The re-
search findings indicate that the combination of S1-based textural indices, S2-based spectral
indices, and DEM-derived indices and the RF algorithm provides a reliable technique for
predicting the distribution of the SOC content in forested areas.
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